当前位置:文档之家› 小波变换快速算法及应用小结

小波变换快速算法及应用小结

小波变换快速算法及应用小结
小波变换快速算法及应用小结

离散小波变换的快速算法

Mallat算法[经典算法]

在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。

MALLAT算法的原理

在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。

多孔算法

[小波变换快速算法及其硬件实现的研究毛建华]

多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0(k)和 h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat 算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。

基干FFT的小波快速算法

[小波变换快速算法及其硬件实现的研究毛建华]

Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

故有必要对该算法作进一步的改进。众所周知,FFT是计算离散傅里叶变换(DFT)的一种快速算法,如能将它和Mallat算法结合在一起,势必会进一步降低小波分解和重构的计算量,事实证明这一想法是可行的。

基于FFT的小波变换快速算法是通过离散傅里叶变换建立起FFT和mallat算法之何的桥梁,从而将、FFT引入到小波变换中来,达到改小波变换快速算法及硬件实现的研究进Mallat算法的目的。

当信号长度较小时,FFT算法效率不及直接算法;随着长度的增加,特别是对于长度是2的幕次方的信号,FFT算法比直接算法更适用,能大大降低计算t。当信号是长序列信号时,小波分解与重构中,滤波器要补很多的零,这对信号的实时计算很不利,我们可以采用长序列快速相关卷积算法对信号进行分段后再运用FFT算法,提高运算速度。

基于算术傅里叶变换的小波变换快速算法

[小波变换快速算法及其硬件实现的研究毛建华]

算术傅里叶变换(AFT)是1988年由Tufts和Sadasiv提出的一种用Mobius反演公式计算连续函数傅里叶系数的方法.它具有乘法运算t仅为O(N)算法简单、并行性好的优点。根据DPT 和连续函数傅里叶系数的关系,可以用AFT计算DFT。同直接算法相比,APT方法可以将DFT 的计算时间减少90%,尤其是对于含有较大素因子,特别是其长度本身为素数的DFT,它的速度比传统的FFT更快.另一方面,Mallat算法的分解和重构算法也可由DFT来计算,从而将AFT与Mallat算法联系了起来,从而为小波变换快速算法开辟了新的途径。

对于尺度

为j的快速分解算法步骤如下:

1)选定滤波器系数h(n)和g(n),再根据FFT的性质2,用N点的AFT分别计算出H(k)和G(k),分别取共扼,进而得到H*(k),G*(k)。

2)在已知cj(n)的情况下,用N点的AFT求出其DFT Cj(k)

3)分别计算出H*(k) Cj(k),G*(k) Cj(k) ,即C’j(k)和D’j(k)

4)用N点的AFT求出C’j+1(k)和D’j+1(k)IDFT,得到C’j+1(n)和D’j+1(n)IDFT,再分别对它

们作二抽取,就可求出Cj+1(n)和Dj+1(n)。

在进行分解计算时,H(k) G(k)只要计算一次即可。重复步骤(2)一(4)可实现下一尺度小波分解,直到达到规定的尺度为止。不过要注意:尺度增加一个级别,信号长度减半。

对于尺度为j+1的快速重构算法为:

1)对Cj+1(n)和Dj+1(n)进行二插值,得到C’j+1(n)和D’j+1(n);

2)用N点的AFT分别求出h(n)、g(n)的DFT H(k)和G(k)

3)用N点的AFT分别求出C’j+1(n)和D’j+1(n)的DFT C’j+1(k)和D’j+1(k);

4)根据(17)式求出Cj(k),再用N点的AFT进行IDFT,可求出cj(n)。

基于Hermite 插值的小波变换模极大值重构信号快速算法

[基于Hermite 插值的小波变换模极大值重构信号快速算法韩民,田岚,翟广涛,崔国辉]

信号在不同尺度上的小波变换模极大值包含了信号中的重要信息,因此研究如何由小波变换模极大值重构信号是很有意义的。论文提出了一种基于Hermite 插值多项式由二进小波

变换模极大值重构信号的快速算法。数值试验表明,与S.Mallat 提出的经典交替投影算法相比,该算法可以在保证重构质量的前提下简化计算过程,提高计算效率,计算所需时间与交替投影算法相比大大减少,是一种实用性较强的信号重构算法。

Hermite 插值[11]方法是一种具有重节点的多项式插值方法,由于它要求在节点处满足相应的导数条件,因此也称为切触差值。由于小波系数模极大值点的导数为零,这与Hermite 插值对节点的导数要求不谋而合,因此我们选用Hermite 插值多项式作为改进的插值方法。

强奇异积分方程小波Petrov-Galerkin快速算法

[强奇异积分方程小波Petrov-Galerkin快速算法隆广庆]

通过构造具有高阶消失矩、小支集和半双正交性质的分片多尺度小波基底, 给出第2类强奇异积分方程的小波Petrov-Galerkin 快速算法, 并证明该算法收敛阶达到最佳, 条件数有界, 计算复杂性几乎最佳。构造配置泛函的思想, 构造分片多项式空间Xn 上2列具有半双正交性的小波基,其中一列具有高阶消失矩性质。

小波变换的应用

小波分析在图像压缩编码中的应用

[小波变换算法在数字图像处理中的应用支春强中国电子科技集团公司第二十八研究所,江苏南京210007摘]

数字图像信号像素间一般都具有相关性,相邻之间、相邻列之间的相关性最强,其相关系数呈指规律衰减。图像中相关性的存在,是图像压缩的理论依据,使得能针对性地采用某种相关的手段去除冗余信息,达到压缩的目的。利用变换编码可以有效地消除像素间的相关性,从而获得较好的压缩效果。其基本原理就是将在时域描述的信号(如声音信号)或在空域描述的信号(如图像信号)经变换到正交向量空间(即变换域)中进行描述,在变换域的描述中各信号分量之间的相关性很小或互不相关,即能量得以集中。

小波变换进行图像重构实质上是相当于分别对图像数据的行和列做一维小波逆变换。对通过水平跟垂直滤波,离散小波将一级变换后图像的4个子图进行合成。对多级变换后的图像,则先对其信息集中的图进行重构,然后逐层进行。

小波分析在图像处理边缘检测中的应用

小波变换在车牌定位中的应用张国才,王召巴(中北大学信息与通信工程学院,山西太原030051)

由于传统的边缘检测方法检测到的边缘信息复杂,要想从中找准车牌的位置十分困难,而小波可以在不同的分辨率层次上对图像进行分割,在低分辨率层次上进行粗分割,由于计算量较小,适用于寻找目标的大致轮廓,在较高分辨率上实现精细分割,而且粗分割的结果对精细分割具有一定的指导作用,可以减少计算量和提高目标的定位精度。所以有的学

者将小波变换用在了车牌区域的定位方面,利用小波的特点对车牌图像进行分析,发现小波分解后的细节分量中有能较好体现出车牌位置的信息,特别是水平低频、垂直高频分量能提供更准确的车牌位置信息。利用小波变换对车牌定位,在小波变换的分解图像中这里只研究其低频子图像,对低频子图像利用最大类间方差法进行二值化分割。

在军事工程方面的应用

[小波变换及其在轨道检测中的应用俞峰戴月辉]

目前小波分析应用于轨道检测主要有: ①用小波时域局部特征检测突变信号(如检测钢

轨焊接部位缺陷、钢轨表面磨损等) ; ②当传统的功率谱无法区分信号谱特征时,采用小波分层细化分解,提取信号谱特征。

在语音合成方面的应用

[语音处理中自适应小波变换的应用Application of Adaptive Wavelet Transformations

in Speech Processing 徐静波,冉崇森XU Jing2bo , RAN Chong2sen( 信息工程大学信息工程学院,河南郑州450002)]

对于含噪声语音信号,我们先分离小波变换中语音信号引起的模极大值点和噪声引起的模极

大值点,再根据语音信号引起的模极大值点来检测端点。一般地,原始信号的Lipschitz 指数是正的,而白噪声的Lipschitz 指数是负的。当尺度减少时,如果某些小波变换模极大值点的幅值急剧增加,则表明对应的奇异性具有负的Lipschitz 指数,这些极大值点几乎被噪声控制。因为由噪声引起的模极大值点的平均密度与尺度成反比,所以,随着尺度的递增,至少有一半的模极大值点不能传递到较大尺度上。因此,那些不能从一个尺度上传递到较大尺度上的模极大值点,也是由噪声控制的。我们把噪声控制的模极大值点去掉,剩下的模极大值点就是由语音信号控制的。

在其他方面的应用

(1)小波分析在数字水印中的应用

使用小波域水印方法的优点与在JPEG 中使用小波是类似的,并且小波的多分辨率分析与人眼视觉特性是一致的,这对根据HVS 选择适当的水印嵌入位置和嵌入强度有很大的帮助。(2)小波分析在图像滤波中的应用

在小波变换域,可通过对小波系数进行切削、缩小幅度等非线性处理,以达到滤除噪声的目的。

(3)小波分析在地球物理勘探中的应用

提高物理勘探资料的信噪比和分辨率一直是物理勘探资料处理所追求的目标。在资料处理中所遇到的噪音主要有规则干扰和随机干扰两大类,利用小波变换时频两域都有局部化的特点,对信号进行多尺度分解同样可以抑制噪音。

(4)医学检测方面的应用

小波能有效提取生理信号中的突变特征点,这在医学方面(如B超、CT、磁共振、心电图等)已有成熟的应用。在胃动力检测方面,利用小波包变换方法能很清除地分辨出人体胃运动的三相特征,这些在临床上都有重要的应用价值。

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

车辆路径调度问题的启发式算法综述

·论文· 车辆路径调度问题的启发式算法综述1 杨燕旋1,宋士吉1 (1.清华大学自动化系,北京 100084) 摘要:车辆路径调度问题是一类具有重大研究意义及广泛应用价值的NP难优化问题。本文给出了该问题的定义和基本描述,并将目前为止被应用于求解VRP问题的启发式算法分为构造型启发式算法、改进型启发式算法和人工智能算法这三大类,接着介绍了各类中比较典型的算法,并对算法的应用和研究情况进行了分析和总结,最后对进一步的研究做出了展望。 关键词:物流;车辆路径问题;调度;启发式算法 中图分类号:F252 A Survey on the Heuristic Algorithms for the Vehicle Routing Problem YANG Yan-Xuan,1 SONG Shi-Ji,1 (1.Department of Automation, Tsinghua University, Beijing 100084, China) Abstract:Vehicle Routing Problem is an NP-hard problem with great research and application significance. In this research, we first present the definition of the problem and give a classification to the existed heuristic algorithms for the problem. Then typical algorithms are introduced and research on the algorithms are investigated and summarized. Finally, further research directions are given. Key words:Logistics; Vehicle Routing Problem; Scheduling; Heuristic Algorithm 1959年,Dantzig等人首先从旅行商问题(Traveling Salesman Problem,简称TSP问题,)得到启发,提出了车辆分配问题TDP(Truck Dispatching Problem)。这是一类具有重要研究价值的问题。一方面,它代表了一类典型的组合优化问题,具有深远的理论意义;另一方面,它是一类重要的物流运输问题,直接影响着相关企业的运转效率,具有广泛的实践意义。半个世纪以来,许多的专家学者对该问题进行了广泛而深入的研究,并将这类问题统称为车辆路径调度问题(Vehicle Routing Problem,简称为VRP问题)。他们从基本问题出发,根据 1基金项目:自然科学基金(编号:60574077)、国家“八六三”高技术项目(编号:2007AA04Z102) 作者简介:杨燕旋(1983-),女,汉族,广东,清华大学硕士研究生,从事车辆路径调度方向的研究,E-mail: yyx02@https://www.doczj.com/doc/bf7964462.html,. 宋士吉(1965-),男,汉族,黑龙江,清华大学教授,博导,从事供应链管理等方向的研究,E-mail: shijis@https://www.doczj.com/doc/bf7964462.html,

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

启发式优化算法

启发式优化算法
Heuristic Optimization Algorithm
理论与应用 Theory & Application

内容纲要
? ?
优化问题与优化算法 常用的启发式优化算法
模拟退火算法 ? 遗传算法 ? 粒子群优化算法 ? 混合策略优化算法
?
?
讨论

优化问题
?
组合式优化问题
? ? ? ?
七桥问题 最短路径问题 公路连接问题 旅行商问题 无约束函数优化问题 有约束函数优化问题 函数优化+组合优化
?
函数优化问题
? ?
?
混合优化问题
?

七桥问题
?
Euler在1736年访问Konigsberg时,他发现Konigsberg城中有 一条名叫Pregel的河流,河上建有七座桥如图所示: 市民有 趣的消遣活动是星期六作一次走过所有七座桥的散步,每 座桥只能经过一次而且起点与终点必须是同一地点。
Impossible Task!

最短路径问题 SPP-shortest path problem
?
?
?
货柜车司机奉命在最短的时间内将一车货 物从甲地运往乙地。 从甲地到乙地的公路网纵横交错,因此有 多种行车路线,这名司机应选择哪条线路 呢? 假设货柜车的运行速度是恒定的,那么这 一问题相当于需要找到一条从甲地到乙地 的最短路。

公路连接问题
?
?
某一地区有若干个主要城市,现准备修建 高速公路把这些城市连接起来,使得从其 中任何一个城市都可以经高速公路直接或 间接到达另一个城市。 假定已经知道了任意两个城市之间修建高 速公路成本,那么应如何决定在哪些城市 间修建高速公路,使得总成本最小?

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

启发式算法研究小结

启发式算法研究小结 0.探究启发式算法的缘由 在选《管理优化决策》这门课的时候,我抱着很强的好奇心和巨大的求知欲,试图尝试在这门课上学到我感兴趣的知识点以及确定我今后极有可能的研究领域和大方向。很幸运的是,我找到了。为什么这么说呢?就在我选择博士专业内选修课和专业外选修课的同时我发现了管理优化决策这门课和计算机学院那边开的选修课——《启发式优化》(由吕志鹏教授讲授),有很多是相通的,发现管理界尤其是在管理科学与工程方向和计算机技术应用领域所探究的问题出奇的一致,已经很难分清,哪个是管理方面的问题,哪个是计算机技术应用的范围了。正如各位都知道的是,由于选修课最终确定前一个月是可以去试听的,然而我并没有因为两者看上去内容有些相似就匆忙退选。通过对这两门课的内容进行比较,它给了我很大的触动,也带给我巨大的好奇,到底是管理方面的研究越来越偏向运用计算机等其他学科的知识和工具,还是计算机应用研究的方面越来越偏向实际的管理优化问题了呢?亦或者两个学科的边界正在走向模糊?我想学科交叉和融合的这一说法对于我来说可能并不是很新鲜,但这的确是我亲身经历的一种美妙体验和发现。它带给我新奇的同时也无疑给了我值得我深思几点的启示: 首先,众所周知,管理学科作为一门交叉的新兴学科,它的方法和工具都是依托和借助其他领域和学科而来的,它本身并没有或者几乎没有一个完完整整的只属于管理学科的方法和工具,几乎是其它学科的知识演变而来的,这就是我们所知道的学科交叉和学科融合;然而管理领域和传统计算机研究等领域的视角并不完全一样,其中对于计算机领域的研究者们而言,他们不但在乎启发式算法是否能够解决问题、效率是否大幅提高(而管理领域的专家们更在乎这点,能用第一,好用第二,或者说管理专家们更在乎第一点——问题能够得到的解决,至于第二点就不是那么迫切。而对计算机领域的向专家们而言,可以说两者都非常重要、要求非常苛刻),更在乎它所表现出来的优越特性(就时间、空间复杂度以及算法求解过程中保持一定的集中性和分散性而言的)。然而当管理领域的学者们求解类似问题,一般来说都是和我们生活中的管理者经常遇到且直接和的决策相关的问题,因为由于管理者的决策质量好坏会往往直接导致企业和团体的效率和绩效和高低,进而导致企业和组织的竞争力强弱,所以一般企业或者个人都是基于一定的价值诉求来解决管理问题,进而提高工作效率。由于管理者们非常了解生活中并不存在完完全全的理性人和完全信息,因此他们很难也极少去尝试寻找最优解,找到满意解就可以了,这一点和启发式算法的设计思想不谋而合(由于

集装箱码头泊位调度问题的启发式算法研究

第25卷第4期 青岛大学学报(工程技术版)  Vol.25No.4 2010年12月JOURNAL OF QING DAO UNIVERSIT Y (E &T) Dec.2010 文章编号:1006-9798(2010)04-0057-04 集装箱码头泊位调度问题的启发式算法研究 张海滨,张纪会,宣金钊 (青岛大学复杂性科学研究所,山东青岛266071) 摘要:为优化集装箱码头泊位的分配,提高泊位的利用率,把码头泊位的调度问题转化为带有约束条件的特殊二维装箱问题。通过建立连续泊位调度的非线性规划模型,提出了一种求解集装箱码头连续泊位分配问题启发式算法。仿真算例结果表明该算法能在实际的集装箱码头泊位调度中有效的提高泊位的利用率。关键词:泊位分配;装箱问题;启发式算法中图分类号:U692.4 文献标识码:A 收稿日期:2010-09-11 基金项目:国家自然科学基金项目(70671057);山东省自然科学基金项目(ZR2010GM006)作者简介:张海滨(1982-),男,硕士研究生,主要从事集装箱码头泊位调度的研究。 泊位作为港口运输中一种重要的资源,是影响港口发展的关键因素之一。随着港口之间的竞争越来越激烈,如何最大限度提高泊位的利用率、加快船舶的装卸速度,提高港口作业效率和服务水平,是增强港口竞争力的关键因素之一。因此,泊位调度问题成为港口运输中研究的一项重点内容之一。泊位分配问题根据泊位的特点分为离散泊位分配和连续泊位分配,根据作业特点分为静态泊位分配和动态泊位分配。泊位分配问题作为N P 难问题,可以视为指派问题或者划分问题[1];Lai 等[2]提出了以先到先服务为准则的动态泊位调度的启发式算法;Imai [3-5]提出了一种离散泊位下静态和动态泊位分配的启发式算法;Cordeau 等[6]利用禁忌搜索方法对动态泊位分配问题进行了求解;K im 等[7]建立了惩罚策略下的最小费用泊位动态分配模型,并利用模拟退火算法进行了求解;Monaco 等[8]通过考虑船舶总的在港时间,建立了一种连续泊位动态分配模型并进行求解;Hansen 等[9]基于在港时间和在港费用综合考虑建立了相应的模型,并进行了仿真求解。本文仅考虑泊位一种因素,建立了连续的动态泊位分配优化模型,提出了一种启发式算法可以求得模型的近似最优解。 1 以利用率最高为目标的泊位调度模型 泊位调度问题实际是如何安排船舶靠泊的时间和靠泊位置,使某一时间内港口泊位的利用率最高。实际上泊位的划分主要是逻辑划分而非物理划分。目前国际上的集装箱运输都是采用班轮运输方式,因此,为建立模型作如下假设:模型中的泊位是连续的,进入待泊区域的集装箱船舶都可以进入泊位作业区域进行作业;根据集装箱采取班轮运输的特点,假设船舶的作业时间由所在目的港装卸箱子的数量决定,与船舶的靠泊位置无关;假设船舶都能按照预计时间到达目的港,可以根据船舶的预计到达时间对船舶进行分配靠泊位置。 建立x -y 直角坐标系,x 轴表示作业时间,y 轴表示离散泊位长度。则连续泊位调度的模型可以描述为: 1) 某一时间段内通过合理安排船舶靠泊作业顺序和作业位置使泊位的利用率最大,其模型为 max F = ∑ j ∈V l j t nj /S (1) 式中,l j 表示船舶j 安全作业需要的泊位长度(其中包括船舶的长度和船舶安全作业之间的距离);t nj 表示船

分枝定界搜索算法

分枝定界搜索算法 通过穷举法搜索进行的特征选择会导致计算量过高,而在分枝定界搜索算法帮助下,有可能不需要显示评估所有d 个特征的可能组合而确定最优特征集。此算法的应用需假定特征选择准则满足单调性。用()j x 表示含有j 个特征的候选特征集,单调性指的是对于具有下列嵌套关系的特征集()j x ()()()()12j D x x x x ???? 其准则函数()()j J x 应满足 ()()()()()()12D J x J x J x ≤≤≤ 这点由构造特征评判准则的定义可得到保证。 为引出分枝定界搜索算法的基本观点,考虑从5个特征中挑选2个特征值的问题。特征中所有可能组合如下图的树表示,顶称为根节点,底称为叶节点,中间称为枝节点,共有1D d -+层。 图 分枝定界搜索算法示意图 现假设自底向上,再由上向下的搜索方式从最右节点开始在树的每个节点评估特征,进行特征选择。设初始叶节点的J 为0J (为45x x 的准则函数),在每个节点处,将节点的准则函数值和目前最优特征集的J 值进行比较,如果节点准则函数值大于0J ,则还有发现更佳特征集的机会,而且必须继续沿着最右边的未勘探分枝搜索。如果到达了树底的叶节点且相应准则值大于0J ,则此结点定义了当前新的最佳特征集,而0J 则作为相应更新。 另一方面,如果在某节点的准则函数值小于0J ,则以此节点为起始点的分支就不需勘探。因为根据单调性,再往下的特征组合将导致准则函数值的进一步减小。如此按这一规律,由底向上,再自上而下,从右向左搜索全树,可获得最佳的二特征组合。此搜索算法特别快捷有效。 12x 13235x 45342414251535

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

分支定界法详解

1、概念: 分支定界算法(Branch and bound,简称为BB、B&B, or BnB)始终围绕着一颗搜索树进行的,我们将原问题看作搜索树的根节点,从这里出发,分支的含义就是将大的问题分割成小的问题。大问题可以看成是搜索树的父节点,那么从大问题分割出来的小问题就是父节点的子节点了。分支的过程就是不断给树增加子节点的过程。而定界就是在分支的过程中检查子问题的上下界,如果子问题不能产生一比当前最优解还要优的解,那么砍掉这一支。直到所有子问题都不能产生一个更优的解时,算法结束。 2、例子: 用BB算法求解下面的整数规划模型 因为求解的是最大化问题,我们不妨设当前的最优解BestV为-INF,表示负无穷。 1.

首先从主问题分出两支子问题: 通过线性松弛求得两个子问题的upper bound为Z_LP1 = 12.75,Z_LP2 = 12.2。由于Z_LP1 和Z_LP2都大于BestV=-INF,说明这两支有搞头,继续往下。 2. 3.

从节点1和节点2两个子问题再次分支,得到如下结果: 子问题3已经不可行,无需再理。子问题4通过线性松弛得到最优解为10,刚好也符合原问题0的所有约束,在该支找到一个可行解,更新BestV = 10。 子问题5通过线性松弛得到upper bound为11.87>当前的BestV = 10,因此子问题5还有戏,待下一次分支。而子问题6得到upper bound为9<当前的BestV = 10,那么从该支下去找到的解也不会变得更好,所以剪掉! 4.

对节点5进行分支,得到: 子问题7不可行,无需再理。子问题8得到一个满足原问题0所有约束的解,但是目标值为4<当前的BestV=10,所以不更新BestV,同时该支下去也不能得到更好的解了。 6.

算法分析与设计实验五分枝—限界算法

1、实现0/1背包问题的LC分枝—限界算法,要求使用大小固定的元组表示动态状态空间树,与0/1背包问题回溯算法做复杂性比较。 2、实现货郎担问题的分枝—限界算法并与货郎担问 题的动态规划算法做复杂性比较比较。 3、实现带有期限的作业排序的分枝—限界算法并与 带有期限的作业排序贪心算法做复杂性比较。 (任选一个完成)

实验六分枝—限界算法 实验目的 1.掌握分枝—限界的基本思想方法; 2.了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法; 3.掌握分枝—限界算法复杂性分析方法,分析问题复杂性。 预习与实验要求 1.预习实验指导书及教材的有关内容,掌握分枝—限界的基本思想; 2.严格按照实验内容进行实验,培养良好的算法设计和编程的习惯; 3.认真听讲,服从安排,独立思考并完成实验。 实验设备与器材 硬件:PC机 软件:C++或Java等编程环境 实验原理 分枝—限界算法类似于回溯法,也是一种在问题的解空间树上搜索问题解的算法。但两者求解方法有两点不同:第一,回溯法只通过约束条件剪去非可行解,而分枝—限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解;第二,在解空间树上,回溯法以深度优先搜索,而分枝—限界法则以广度优先或最小耗费优先的方式搜索。分枝—限界的搜索策略是,在扩展节点处,首先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值从当前活结点表中选择一个最有利的结点做为扩展,使搜索朝着解空间树上最优解的分支推进,以便尽快找出一个最优解。 分枝—限界法常以广度优先或以最小耗费优先的方式搜索问题的解空间树(问题的解空间树是表示问题皆空间的一颗有序树,常见的有子集树和排序树)。在搜索问题的解空间树时,分枝—限界法的每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或非最优解的儿子结点将被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表取出下一结点成为当前扩展结点,并重复上述扩展过程,直到找到最优解或活结点表为空时停止。

分枝定界法讲义_代码

第5 章分枝定界 任何美好的事情都有结束的时候。现在我们学习的是本书的最后一章。幸运的是,本章用到的大部分概念在前面各章中已作了介绍。类似于回溯法,分枝定界法在搜索解空间时,也经常使用树形结构来组织解空间(常用的树结构是第1 6章所介绍的子集树和排列树)。然而与回溯法不同的是,回溯算法使用深度优先方法搜索树结构,而分枝定界一般用宽度优先或最小耗费方法来搜索这些树。本章与第1 6章所考察的应用完全相同,因此,可以很容易比较回溯法与分枝定界法的异同。相对而言,分枝定界算法的解空间比回溯法大得多,因此当内存容量有限时,回溯法成功的可能性更大。 算法思想 分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。每个活节点有且仅有一次机会变成E-节点。当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。 有两种常用的方法可用来选择下一个E-节点(虽然也可能存在其他的方法): 1) 先进先出(F I F O)即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活节点表的性质与队列相同。 2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。如果查找一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个E-节点是具有最大收益的活节点。 例5-1 [迷宫老鼠] 考察图16-3a 给出的迷宫老鼠例子和图1 6 - 1的解空间结构。使用F I F O分枝定界,初始时取(1,1)作为E-节点且活动队列为空。迷宫的位置( 1 , 1)被置为1,以免再次返回到这个位置。(1,1)被扩充,它的相邻节点(1,2)和(2,1)加入到队列中(即活节点表)。为避免再次回到这两个位置,将位置(1,2)和(2,1)置为1。此时迷宫如图1 7 - 1 a所示,E-节点(1,1)被删除。 节点(1,2)从队列中移出并被扩充。检查它的三个相邻节点(见图1 6 - 1的解空间),只有(1,3)是可行的移动(剩余的两个节点是障碍节点),将其加入队列,并把相应的迷宫位置置为1,所得到的迷宫状态如图17-1b 所示。节点(1,2)被删除,而下一个E-节点(2,1)将会被取出,当此节点被展开时,节点(3,1)被加入队列中,节点(3,1)被置为1,节点(2,1)被删除,所得到的迷宫如图17-1c 所示。此时队列中包含(1,3)和(3,1)两个节点。随后节点(1,3)变成下一个E-节点,由于此节点不能到达任何新的节点,所以此节点即被删除,节点(3,1)成为新的E-节点,将队列清空。节点(3,1)展开,(3,2)被加入队列中,而(3,1)被删除。(3,2)变为新的E-节点,展开此节点后,到达节点(3,3),即迷宫的出口。 使用F I F O搜索,总能找出从迷宫入口到出口的最短路径。需要注意的是:利用回溯法找到的路径却不一定是最短路径。有趣的是,程序6 - 11已经给出了利用F I F O分枝定界搜索从迷宫的(1,1)位置到(n,n)位置的最短路径的代码。 例5-2 [0/1背包问题] 下面比较分别利用F I F O分枝定界和最大收益分枝定界方法来解决如下背包问题:n=3, w=[20,15,15], p=[40,25,25], c= 3 0。F I F O分枝定界利用一个队列来记录活节点,节点将按照F I F O顺序从队列中取出;而最大收益分枝定界使用一个最大堆,其中的E-节点按照每个活节点收益值的降序,或是按照活节点任意子树的叶节点所能获得的收益估计值的降序从队列中取出。本例所使用的背包问题与例1 6 . 2相同,并且有相同的解空间树。 使用F I F O分枝定界法搜索,初始时以根节点A作为E-节点,此时活节点队列为空。当节点 A展开时,生成了节点B和C,由于这两个节点都是可行的,因此都被加入活节点队列中,节点A被删除。下一个E-节点是B,展开它并产生了节点D和E,D是不可行的,被删除,而E被加入队列中。下一步节点C成为E-节点,它展开后生成节点F和G,两者都是可行节点,加入队列中。下一个E-节点E生成节点J和K,J不可行而被删除,K是一个可行的叶节点,并产生一个到目前为止可行的解,它的收益值为4 0。 下一个E-节点是F,它产生两个孩子L、M,L代表一个可行的解且其收益值为5 0,M代表另一个收益值为1 5的可行解。G是最后一个E-节点,它的孩子N和O都是可行的。由于活节点队列变为空,因此搜索过程终止,最佳解的收益值为5 0。 可以看到,工作在解空间树上的F I F O分枝定界方法非常象从根节点出发的宽度优先搜索。它们的主要区别是在F I F O

启发式开料算法

开料介绍以及启发式算法研究 目前针对PCB行业没有存在可以异形拼版的软件。但是有部分软件可以满足此功能都是应用在其他的行业,如果钢材切割,玻璃。五金之类的行业,这个些行业与PCB的拼版要求有很多工艺上的不一致。比如在钢材比较注重实际的利用率,玻璃行业在留下余料的时候需要考虑加工上的一些可行性。还有就是卷材行业有也类似应用。 下面针对启发式算法做些了初步的探讨 算法分析 问题说明: 一般的开料算法可以简单的表示成如下数学语言: 开料问题是寻找平面最优布局的优化问题,即将一系列二维不规则零件P1,P2,…Pn 合理地排放在原料板 B 中,使材料的利用率(使用面积总和/占用得原料板面积)最高,并满足下面的约束条件; l)料Pi,Pj 互不重叠:i,j=l,2,…n。 2)料Pi 必须放在原料板B 中:i=1,2,…n。 3)满足一定的排样要求。 4)满足加工的便捷以及可能性。 开料问题可以从两个方面加以说明,一个是开料过程中的几何问题,主要是针对规则或者不规则形状的零件,如何确定物料的最佳排放位置,检测物料位置的合理性以及相关算法。 另一个是物料的调度问题,即如何从参加物料的物料库中选出最优的物料零件,如何得到一个优化的物料排样顺序。无论是几何问题还是调度问题,都是非常复杂的问题。这种复杂性一方面来源于物料形状的不规则性,同时也与参与物料零件的多样性以及零件的批量、生产周期、排样方向性要求等有关。这些因素相互没有明确逻辑关系,也很难达到一个预期的全局最优解。在很多情况下,得到的结果都是局部最优解或者是次优解,当然如果只是针对PCB行业,在物料的多样性比其他的开料可能相对比较简单些,一般不会有太多的料需要进行一起拼版,一般针对开料优化搜索算法有启发式搜索算法、人工神经网络算法、模拟退火算法、遗传算法或者他们的组合来解决开料问题。也有这些算法的结果进行比较与分析,以寻求一种最好的优化算法。然而,研究结果表明这些开料算法的开料效率运行时间极长,利用率没有手工开料的高。也有开始从料的形状着手,通过求解任意多边形的临界多边形(NFP)来研究开料问题。目前的

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

分支定界算法的MATLAB程序

Linprogdis子程序: function [x,fval,exitflag,output,lambda]=... linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options) %Title: % 分支定届法求解混合整数线性规划模型 % %初步完成:2002年12月 %最新修订: 2004-03-06 %最新注释:2004-11-20 %数据处理 [t1,t2] = size(b); if t2~=1, b=b';%将b转置为列向量 end %调用线性规划求解 [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options); if exitflag<=0,%如果线性规划失败,则本求解也失败 return end %得到有整数约束的决策变量的序号 v1=find(ifint==1);%整数变量的index tmp=x(v1);%【整数约束之决策变量】的当前值 if isempty(tmp), %无整数约束,则是一般的线性规划,直接返回即可 return end v2=find(checkint(tmp)==0);%寻找不是整数的index if isempty(v2), %如果整数约束决策变量确实均为整数,则调用结束 return end %第k个决策变量还不是整数解 %注意先处理第1个不满足整数约束的决策变量 k=v1(v2(1)); %分支1:左分支 tmp1=zeros(1,length(f));%线性约束之系数向量 tmp1(k)=1; low=floor(x(k)); %thisA 分支后实际调用线性规划的不等式约束的系数矩阵A %thisb 分支后实际调用线性规划的不等式约束向量b if ifrowinmat([tmp1,low],[A,b])==1 %如果分支的约束已经存在旧的A,b中,则不改变约束 thisA= A; thisb= b;

深度学习方法在图像处理中的应用与研究(总结)

深度学习方法在图像处理中的应用与研究 1. 概述和背景 (1) 2.人脑视觉机理 (3) 3.深度学习的基本思想 (6) 4.深度学习的常用方法 (7) 5. 总结与展望 (9)

深度学习方法在图像处理中的应用与研究 1. 概述和背景 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一。虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人。 图灵(图灵,大家都知道吧。计算机和人工智能的鼻祖,分别对应于其著名的“图灵机”和“图灵测试”)在1950 年的论文里,提出图灵试验的设想,即,隔墙对话,你将不知道与你谈话的,是人还是电脑。这无疑给计算机,尤其是人工智能,预设了一个很高的期望值。但是半个世纪过去了,人工智能的进展,远远没有达到图灵试验的标准。这不仅让多年翘首以待的人们,心灰意冷,认为人工智能是忽悠,相关领域是“伪科学”。 但是自2006 年以来,机器学习领域,取得了突破性的进展。图灵试验,至少不是那么可望而不可及了。至于技术手段,不仅仅依赖于云计算对大数据的并行处理能力,而且依赖于算法。这个算法就是,Deep Learning。借助于Deep Learning 算法,人类终于找到了如何处理“抽象概念”这个亘古难题的方法。 在实际应用中,例如对象分类问题如对象的分类(对象可是文档、图像、音频等),我们不得不面对的一个是问题是如何用数据来表示这个对象,当然这里的数据并非初始的像素或者文字,也就是这些数据是比初始数据具有更为高层的含义,这里的数据往往指的就是对象的特征。例如人们常常将文档、网页等数据用词的集合来表示,根据文档的词集合表示到一个词组短语的向量空间(vector space model, VSM模型)中,然后才能根抓不同的学习方法设计出适用的分类器来对目标对象进行分类;又如在图像处理中,像素强度的集合的表示方法可以最初浅的表示一幅图像,这也是我们视觉意义上的图像,一可是由于各种原因人们提出了更高层的语义的特征,如SIFT为经典的几何特征、以LBP为经典的纹理特征、以特征脸为经典的统计特征等,像SIFT,特征在很多图像处理的应用中突显出其优越性,因此特征选取得好坏对于实际应用的影响是很深刻的。因此,选取什么特征或者用什么特征来表示某一对象对于解决一个实际问题非常的重要。然而,人为地选取特征的时间代价是非常昂贵,另外劳动成本也高,而所谓的启发式的算法得到的结果往往不稳定,结果好坏经常是依靠经验和运气。既然如此,人们自然考虑到自动学习来完成特征抽取这一任务。Deep Learning的产生就是缘于此任务,它又被称为无监督的特征学习(Unsupervised Feature Learning ),一显然从这个名称就可以知道这是一个没有人为参与的特征选取方法。 深度学习(Deep Learning)的概念是2006年左右由Geoffrey Hinton等人在《science》上发表的一篇文章((Reducing the dimensionality of data with neural networks》》提出来的,主要通过神经网络(Neural Network NN)来模拟人的大脑

相关主题
文本预览
相关文档 最新文档