当前位置:文档之家› 材料成型基本原理习题整理完成版

材料成型基本原理习题整理完成版

材料成型基本原理习题整理完成版
材料成型基本原理习题整理完成版

一、概念

1、温度场:是加热和冷却过程中某一瞬间的温度分布。

2、凝固:将固体材料加热到液态,然后使其按人们预定的尺寸、形状及组织形态再次冷却

到固态的过程称为凝固。

3、粘度:原子承接相互阻碍运动的内摩擦力。影响粘度因素:温度、表面活性元素、非表

面活性元素。

4、体积成形:是在塑性成形过程中靠体积的转移和重新分配来实现的。体积成形有自由锻

造、模锻、轧制、挤压、拉拔等。

5、轧制:将金属坯料通过两个旋转轧辊间的特定孔形,使其形成一定截面形状的方法。

6、挤压:挤压是使大截面的毛坯在凸模的强大压力作用下产生塑性流动,迫使金属从模具

型腔中挤出,从而获得一定形状和较小截面尺寸的工作。

7、拉拔:拉拔是将金属坯料的前端施以一定的拉力,使它通过锥形的凹模型腔,改变其截

面的形状和尺寸的一种加工方法。

8、板料成形一般称为冲压,可分为落料、冲孔(分离工序,简称冲裁)、弯曲、拉深等工

序。

9、加工硬化:冷态变形时,随着变形程度的增加,材料强度、硬度提高,塑性、韧性下降

现象。

二、简答题

1、材料加工的三要素:材料、能量、信息

2、选择零件加工方法的原则:

要考虑零件的形状、特征、工作条件及使用要求、生产批量和制造成本、现有环境条件等多因素,以达到技术上可行、质量可靠和经济上合理。

3、冷塑性变形的实质:

多晶体变形主要是晶内变形,晶间变形起次要作用,而且需要有其他变形和机制相协调这是由于晶界强度高于晶内,其变形比晶内难,如发生晶界变形易引起晶界破坏和产生裂纹。

4、冷塑性变形特点:

1.不是同时性;

2.晶粒变形的相互协调性;

3.晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。

5、塑性板料成形方面发展方向:

a.大批量向高速化、自动化发展。

b.发展多工位压力机。

c.发展冲压生产线。

d.小批量生产时期朝简易化、通用化发展,提高加工的“柔性”。

e.工艺过程模拟化和模具CAD/CAM。

6、柔性加工单元包括:

开式双柱宽台面压力机、机器人、模具自动仓库、供料装置、堆垛起重机、成品传送带、废品传送带、操纵台等。

7、自由锻方面发展方向:

a.提高大型件质量。

b.改进工艺。

c.发展探伤技术。

d.发展锻焊联合工艺。

8、模锻方面发展方向:

a.压力机取代锤上模锻。

b.精度不断提高,重点发展精密模锻。

c.自动化程度日益提高。

d.模锻过程的计算机模拟和工艺、模具CAD/CAM。

9、如何锻合内部缺陷?

首先是缺陷区发生塑性变形,使空隙两壁靠拢,称为闭合阶段;然后在三向压力作用下,空隙两壁金属焊合成一体,称为焊和阶段。这是,需要有足够大的变形程度才能实现锻合。

10、对变形抗力的影响因素?

(1)化学成分的影响。(2)组织结构的影响。(3)变形温度的影响。

(4)变形程度的影响。(5)变形速度的影响。(6)应力状态的影响。

11、影响铸渗效果的因素:

1)含合金元素涂料组成和配方。

2)浇注温度。

3)浇注位置及涂层在型中位置。

4)型及涂层预热情况。

5)母材合金种类等。

12、冷铁在凝固成形中的作用?

○1在冒口难做位置防缩孔。○2防壁口交叉处裂纹。○3配合冒口,效果更好。

○4用冷铁调节各别热节。○5改变局部组织和性能。○6减轻或防止厚件偏析。

13、什么是“过热”“过烧”?

过热:是指材料加热温度较高,晶粒急长大。

过烧:加热温度过高,晶界氧化,金属失去塑性报废。

14、锻造流线如何形成?它有何有利和不利影响?

塑性变形时,基体金属的晶粒形状和沿晶界分布的杂质形状都发生了变形,它们沿着变形方向被拉长,呈纤维状叫做锻造流线。

有了锻造流线,其性能有了方向性,利用好可提高件的寿命,利用不好则相反。

15、预防焊接变形的措施有哪些?

○1合理选焊缝尺寸和形状。○2尽可能减少不必要焊缝。○3合理安排焊接位置。

○4采用能量集中热源,对称焊、分散焊、多层焊。○5反变形法。○6焊前刚性固定。

○7强散热法。

16、计算机在塑性成形中应用?

○1数据模拟:应力分布、应变分布、温度场硬化状况分布分析。

○2模具CAD/CAM:工艺分析、计算、优化方案、专家系统、模具设计制造。

○3过程控制:加工、装卸、存储、运输、管理。

17、焊接变形对工件的影响?

使工件尺寸、形状不符合设计要求,组装困难,校正变形浪费时间、工时,降低接头塑性,变形严重报废。

18、常用生核剂有哪些种类?(P104习题)

答:生核剂主要有两类:一类是起非自发形核作用;另一类是通过在生长界面前沿的成分富集而使晶粒根部和树枝晶分枝根部产生缩颈,促进枝晶熔断和游离而细化晶粒。

19、何谓“孕育衰退”?如何防止?(P104习题)

答:孕育衰退是指孕育效果逐渐减弱的现象。孕育效果不仅取决于孕育剂的本身,而且也与孕育处理工艺密切相关。一般处理温度越高,孕育衰退越快,在保证孕育剂均匀散开的前提下,应尽量降低处理温度。孕育剂的粒度也要根据处理温度、被处理合金液量和具体的处理方法来选择。

20、焊接热影响区的脆化类型有几种?如何防止?(P168习题)

答:焊接热影响区的脆化类型及防止措施:(1)粗晶脆化。(2)析出脆化。(3)组织脆化。(4)HAZ 的热应变时效脆化(HSE)。尽量使焊接接头无缺口,从而减轻动态应变时效脆化程度;采用合适的冷作工序,静态应变时效脆化的程度取决于钢材在焊前所受到的预应变量以及轧制、弯曲、冲孔、剪切、校直、滚圆等冷作工序。焊接工艺上控制加热速度和最高加热温度以及焊接线能量。

21、简述滑移和孪生两种塑性变形机理的主要区别。(P240习题)

答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。

22、试分析多晶体塑性变形的特点。(P240习题)

答:①多晶体塑性变形体现了各晶粒变形的不同时性。

②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。

③多晶体变形的另一个特点还表现出变形的不均匀性。

④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。

金属的塑性越好。

23、晶粒大小对金属塑性和变形抗力有何影响?(P240习题)

答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。

24、产生加工硬化的原因是什么?它对金属的塑形和塑性加工有何影响?(P240习题)

答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。

25、什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么?(P240习题)

答:动态回复是层错能高的金属热变形过程中唯一的软化机制。对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。

26、什么是动态再结晶?影响动态再结晶的主要因素有哪些?(P240习题)

答:在热塑性变形过程中,层错能低的金属在变形量很大时,当加热升温时,原子具有相当的扩散能力,变形后的金属自发地向低自由能状态转变,称为动态再结晶。影响动态再结晶的主要因素有:金属的层错能高低,晶界迁移的难易程度有关。

27、什么是金属的超塑性?超塑性变形有什么特征?(P240习题)

答:在一些特定条件下,如一定的化学成分、特定的显微组织、特定的变形温度和应变速率等,金属会表现出异乎寻常的高塑性状态,即所谓超常的塑性变形。超塑性效应表现为以下几个特点:大伸长率、无缩颈、低流动应力、对应变速率的敏感性、易成形。

三、简述题

1、焊条药皮的作用?

1)机械保护作用

①气保护在焊接时,焊条药皮熔化后产生大量的气体笼罩着电弧区和熔池,基

本上把熔化金属与空气隔绝开来。②渣保护焊接过程中药皮被电弧高温熔化后形成

熔渣覆盖着熔滴和熔池金属,这样不仅隔绝空气中的氧、氮,保护焊缝金属,而且还能减缓焊缝的冷却速度,并能改善焊缝的成形和结晶。

2)冶金作用通过熔渣与熔化金属冶金反应,除去有害杂质和添加有益的合金元素,使焊缝获得合乎要求的机械性能。

3)改善焊接工艺性能使电弧稳定燃烧、飞溅少、焊缝成形好、易脱渣和熔敷效率高等。

2、试述液态金属充型能力与流动性间的联系。(P30习题)

答:联系:(1)液态金属的充型性能是一种基本的性能。液态金属的充型能力好,零件的形状就完整,轮廓清晰;否则就会产生“浇不足”的缺陷。液态金属的充型能力首先取决于液态金属本身的流动能力,同时又与外界条件密切相关,是各种因素的综合反映。 (2)液态金属本身的流动能力称为“流动性”,是由液态金属的成分、温度、杂质含量等决定的,而与外界因素无关。因此流动性也可认为是确定条件下的充型能力。 (3)液态金属的流动性好,其充型能力强;反之,其充型能力差。

3、铸件典型宏观凝固组织是由哪几部分构成的?表面激冷区的形成机理如何?(P104习题)

答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。

4、试分析溶质再分配对游离晶粒的形成及晶粒细化的的影响。(P104习题)

对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。

5、试述焊接熔池中金属凝固的特点。(P104习题)

答:熔焊时,在高温热源的作用下,母材发生局部熔化,并与熔化了的焊接材料相互混合形成熔池,同时进行短暂而复杂的冶金反应。当热源离开后,熔池金属便开始了凝固。因此,焊接熔池具有以下一些特殊性。(1)熔池金属的体积小,冷却速度快。(2)熔池金属中不同区域温差很大、中心部位过热温度最高。(3)动态凝固过程。(4)液态金属对流激烈。

6、焊接条件下组织转变与热处理条件下组织转变有何不同?(P168习题)

答:焊接条件下热影响区的组织转变与热处理条件下的组织转变相比,其基本原理是相同的。但由于焊接过程的特殊性,使焊接条件下的组织转变又具有与热处理不同的特点。焊接热过程概括起来有以下六个特点:(1)一般热处理时加热温度最高在AC3以上l00~200℃,而焊接时加热温度远超过AC3,在熔合线附近可达l350~l400℃。(2)焊接时由于采用的热源强烈集中,故加热速度比热处理时要快得多。(3)焊接时由于热循环的特点,在AC3以上保温的时间很短,而在热处理时可以根据需要任意控制保温时间。(4)在热处理时可以根据需要来控制冷却速度或在冷却过程中不同阶段进行保温。然而在焊接时,一般都是在自然条件下连续冷却,个别情况下才进行焊后保温或焊后热处理。(5)焊接加热的局部性和移动性将产生不均匀相变及应变;而热处理过程一般不会出现。(6)焊接过程中,在应力状态下进行组织转变;而热处理过程不是很明显。

7、如何提高热影响区的韧性?韧化的途径有哪些?(P168习题)

答:(1)提高热影响区的韧性的措施

1)控制组织:对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系,应尽量控制晶界偏析。 2)韧化处理: 对于一些重要的结构,常采用焊后热处理来改善接头的性能。合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度是提高焊接韧性的有效措施。

(2)韧化的途径:除了上述措施外,还有如细晶粒钢(利用微量元素弥散强化、固熔强化、控制析出相的尺寸及形态等)采用控轧工艺,进一步细化铁素体的晶粒,也会提高材质的韧性;采用炉内精炼,炉外提纯等一系列措施,从而得到高纯净钢,使钢中的杂质(S、P、O、N等)含量极低,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。

8、合金的塑性变形有何特点?(P240习题)

答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。

单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用,多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显著的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。

9、冷塑性变形对金属组织和性能有何影响?(P240习题)

答:对组织结构的影响:晶粒内部出现滑移带和孪生带;晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状;晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

材料成型原理考试试卷B-答案

2.内应力按其产生的原因可分为 热应力 、 相变应力 和 机械应力 三种。。 11、塑性变形时不产生硬化的材料叫做 理想刚塑性材料 。 12、韧性金属材料屈服时, 密席斯屈服 准则较符合实际的。 13、硫元素的存在使得碳钢易于产生 热脆 。 14、应力状态中的 压 应力,能充分发挥材料的塑性。 15、平面应变时,其平均正应力 m 等于 中间主应力 2。 16、钢材中磷使钢的强度、硬度提高,塑性、韧性 降低 。 17、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑性 。 18、材料经过连续两次拉伸变形,第一次的真实应变为 1=0.1,第二次的真实应变为 2=0.25,则总的真实应变 =0.35。 19、固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑性 。 1、液态金属的流动性越强,其充型能力越好。 ( √ ) 2、金属结晶过程中,过冷度越大,则形核率越高。 ( √ ) 3、实际液态金属(合金)凝固过程中的形核方式多为异质形核。 ( √ ) 4、根据熔渣的分子理论,B>1时氧化物渣被称为碱性渣。 ( √ ) 5、根据熔渣的离子理论,B2>0时氧化物渣被称为碱性渣。 (√ ) 6、合金元素使钢的塑性增加,变形拉力下降。 ( × ) 7. 合金钢中的白点现象是由于夹杂引起的。 ( × ) 8 . 结构超塑性的力学特性为m k S 'ε=,对于超塑性金属m =0.02-0.2。 ( × ) 9. 影响超塑性的主要因素是变形速度、变形温度和组织结构。 ( √ ) 10.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。 ( × ) 11.变形速度对摩擦系数没有影响。 ( × ) 12. 静水压力的增加,有助于提高材料的塑性。 ( √ ) 13. 碳钢中冷脆性的产生主要是由于硫元素的存在所致。 ( × ) 14. 塑性是材料所具有的一种本质属性。 ( √ ) 15. 在塑料变形时要产生硬化的材料叫变形硬化材料。 ( √ ) 16. 塑性变形体内各点的最大正应力的轨迹线叫滑移线。 ( √ ) 17. 二硫化钼、石墨、矿物油都是液体润滑剂。 ( × ) 18.碳钢中碳含量越高,碳钢的塑性越差。 ( √ ) 3. 简述提高金属塑性的主要途径。 答:一、提高材料的成分和组织的均匀性 二、合理选择变形温度和变形速度 三、选择三向受压较强的变形方式 四、减少变形的不均匀性

材料成型基本原理第十八章答案

第十九章思考与练习 1.主应力法的基本原理和求解要点是什么? 答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下: ⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应 力状态)或轴对称问题,以便利用比较简单的塑性条件,即 G -二=七S。对于形状复杂的变形体,可以把它划分为若干形状简单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。 ⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在 内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。 ⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦 力对塑性条件的影响,从而使塑性条件大大简化。即有二X- J y=叙(当二X > 二y) ⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接 触面上的应力分布,进而求得变形力。 由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。 2 .一20钢圆柱毛坯,原始尺寸为-5Qmm 50mm ,在室温下镦粗至高度h=25mm 设接触表面摩擦切应力E =0.2丫。已知Y =746 £2Q MPa ,试求所需的变形力P和单位流动压力P O

解:根据主应力法应用中轴对称镦粗得变形力算得的公式 . Y 而本题.=0.2Y 与例题.=mk , k =—相比较得:m=0.4,因为该圆柱被压缩至 2 h=25mm 根据体积不变定理,可得r e =25 ,2 , d=50 2 ,h=25 又因为 Y = 746 ;0.2 (1 -—2 ) 15 3 .在平砧上镦粗长矩形截面的钢坯,其宽度为 a 、高度为h ,长度 l a ,若接触面上的摩擦条件符合库仑摩擦 定律,试用主应力法推导单位流动压力 P 的表 达式。 解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于■= U^y 这个摩擦条件,故在 2U ;二 y ^y LdX 中是一个一阶微分方程, J 算得的结果不一样,后面的答案也不 h 一样, 4 .一圆柱体,侧面作用有均布压应力 G ,试用主应力法求镦粗力 P 和单位流动压力p (见图19-36) 解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当r =r e ,二 re -J 0 而不是二re =0 ,故在例题中,求常数C 不一样: 2 . C = X e ? 2k 飞0 h 2τ ■ -y (X -X e ) 2k — h m d P = 丫(1 图 19-36

材料成形原理课后习题解答汇总

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型原理试卷一B试题教(学)案答案

重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。 2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。 9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和 三个收缩阶段。

10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度 对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料;3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法;4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力;8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于;

材料成型原理

硕士研究生入学考试《材料成形原理》命题大纲 第一部分考试说明 一、考试性质 《材料成形原理》考试科目是我校为招收材料成形及控制工程、材料加工工程专业硕士研究生而设置的,由我校材料科学与工程学院命题。考试的评价标准是普通高等学校材料成形及控制工程和相近专业优秀本科毕业生能达到的及格或及格以上水平。 二、考试的学科范围 应考范围包括:焊接热源及热过程,熔池凝固及焊缝固态相变,焊接化学冶金,焊接热影响区的组织与性能,焊接缺陷与控制;金属塑性成形的物理基础,应力分析,应变分析,屈服准则,应力应变关系,变形与流动问题,塑性成形力学的工程应用。 三、评价目标 《材料成形原理》是材料成形及控制工程和相关专业重要的专业基础课。本课程考试旨在考查考生是否了解材料成形的基本过程、基本特点、基本概念和基本理论,是否掌握了材料成形的基本原理、基本规律及应用。 四、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; 第二部分考查要点 一、焊接热源及热过程 1、与焊接热过程相关的基本概念 2、熔焊过程温度场 3、焊接热循环 二、熔池凝固及焊缝固态相变 1、焊接熔池凝固特点 2、焊接熔池结晶形态 3、结晶组织的细化 4、焊缝金属的化学成分不均匀性 5、焊缝固态相变 6、焊缝性能的控制 三、焊接化学冶金 1、焊接化学冶金过程的特点 2、焊缝金属与气相的相互作用 3、焊缝金属与熔渣的相互作用 4、焊缝金属的脱氧与脱硫 5、合金过渡 四、焊接热影响区的组织与性能 1、焊接热循环条件下的金属组织转变特点 2、焊接热影响区的组织与性能

五、焊接缺陷与控制 1、焊缝中的夹杂与气孔 2、焊接裂纹 六、金属塑性成形的物理基础 1、冷塑性变形与热塑性变形 2、影响塑性与变形抗力的因素 七、应力分析 1、应力张量的性质 2、点的应力状态与任意斜面上的应力 3、主应力,主切应力,等效应力 4、应力球张量与偏张量 八、应变分析 1、应变张量的性质 2、工程应变、对数应变、真实应变 九、屈服准则 1、Tresca屈服准则与Mises屈服准则 2、屈服轨迹与屈服表面 十、应力应变关系 1、塑性应力应变关系 2、增量理论与全量理论 十一、变形与流动问题 1、影响变形与流动的因素 2、摩擦及其影响 十二、塑性成形力学的工程应用。 1、主应力法的应用 2、滑移线法的应用 2014试题范围:今年的真题跟去年论坛里回忆的真题考的内容有80%都不一样。还是分为必做题和选做题,必做题100分,选做题50分。必做题包括塑性和焊接,选做题塑性焊接二选一。必做题前四题是塑性,后五题为焊接。选做题中:塑性部分是三题计算题,焊接部分有五题,第一题是计算题,后四题为分析简答题。 必做题:塑性考了 1.冷塑性变形对金属组织和性能的影响。2.什么是应力偏张量,应力球张量以及它们的物理意义。 3.考了对数应变和相对应变。4.还考了塑性成形过程中的力学方程。焊接考了 1.结晶裂纹的影响因素,防治措施 2.还考了熔渣的脱氧 3.熔渣的碱度对金属氧化,脱氧等等的影响。其他的忘了,跟去年考的很不一样,好多不会。 选作题;塑性是考了三个计算题,我没注意看,反正考了利用屈服准则来计算,还考了正应力,切应力,主应力的计算。最后一题利用主应力法来计算什么,我选做题选的是焊接,

重庆理工大学材料成型原理试卷及答案

重庆理工大学考试试卷 材料成型原理(金属塑性成形部分) A 卷 共 7 页 一、填空题(每空1分,共 16 分) 1. 塑性成形中的三种摩擦状态分别是: 、 、 。 2. 物体的变形分为两部分:1) , 2) 。其中,引起 变化与球应力张量有关,引起 变化与偏应力张量有关。 3. 就大多数金属而言,其总的趋势是,随着温度的升高,塑性 。 4. 钢冷挤压前,需要对坯料表面进行 润滑处理。 5. 在 平面的正应力称主应力。该平面特点 ,主应力的方向与主剪应力方向的夹角为 或 。剪应力在 平面为极值,该剪应力称为: 。 6. 根据变形体的连续性,变形体的速度间断线两侧的法向速度分量必须 。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共13分) 一般而言,接触面越光滑,摩擦阻力会越小,可是当两个接触表面非常光滑时,摩擦阻力反而提高,这一现象可以用哪个摩擦机理解释 。 A、表面凹凸学说; B、粘着理论; C、分子吸附学说 计算塑性成形中的摩擦力时,常用以下三种摩擦条件,在热塑性变形时,常采用哪个 。 A、库伦摩擦条件; B、摩擦力不变条件; C、最大摩擦条件 下列哪个不是塑性变形时应力—应变关系的特点 。 A、应力与应变之间没有一般的单值关系; B、全量应变与应力的主轴重合 C 、应力与应变成非线性关系 4. 下面关于粗糙平砧间圆柱体镦粗变形说法正确的是 。 A、I 区为难变形区; B 、II 区为小变形区; C 、III 区为大变形区 5. 下列哪个不是动可容速度场必须满足的条件 。 A、体积不变条件; B、变形体连续性条件; C、速度边界条件; D 、力边界条件 6. 韧性金属材料屈服时, 准则较符合实际的。 A、密席斯; B、屈雷斯加; C密席斯与屈雷斯加; 7. 塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做 。 A、理想弹性材料; B、理想刚塑性材料; C、塑性材料; 8. 硫元素的存在使得碳钢易于产生 。 A、热脆性; B、冷脆性; C、兰脆性; 9. 应力状态中的 应力,能充分发挥材料的塑性。 A、拉应力; B、压应力; C、拉应力与压应力; 10. 根据下面的应力应变张量,判断出单元体的变形状态。 ??????????=80001000010ij σ ??????????--=4-0001-2027-ij σ ????? ?????=10000000020-ij σ ( ) ( ) ( ) A 、平面应力状态; B 、平面应变状态; C 、单向应力状态; D 、体应力状态 11. 已知一滑移线场如图所示,下列说法正确的是: 。 A 、C 点和B 点的ω角相等,均为45°; B 、如果已知B 、 C 、 D 、 E 四点中任意点的平均应力,可以求解其他三点的平均应力; C 、D 点和E 点ω角相等,均为-25°

材料成型基本原理习题答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右, 表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征

材料成型原理复习资料与试题库完整

1过冷度:金属的理论结晶温度和实际结晶温度的差值 2均质形核:在没有任何外来的均匀熔体中的形核过程 3异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程 4异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。 5形核速率:在单位时间单位体积生成固相核心的数目 6液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法 7复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体 8定向凝固:使金属或者合金在熔体中定向生长晶体的方法 9溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值 10流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性 11液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力 影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面力、金属的热导率金属的结晶特点。(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和。12影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响 13液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。凝固过程中由传热。传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。机械搅动、铸型震动、外加磁场。 14铸件的凝固方式:层状凝固方式(动态凝固曲线之间的距离很小的时候)、体积凝固方式(动态凝固曲线之间的距离很大的时候)、中间凝固方式(介于中间情况的时候)、 15影响铸件凝固方式的因素有二:一是合金的化学成分,二是铸件断面上的温度梯度。 16热力学能障动力学能障:热力学能障是右被迫处于高自由能过度状态下的界面原子产生的他能直接影响系统自由能的大小,动力学能障是由于金属原子穿越界面过程引起的,他与驱动力的大小无关,而仅仅取决于界面的结构和性质,例如激活自由能。单从热力学条件来看,液相的自由能已经大于固相的自由能,固相为稳定相,相变应该没有能障,但是要想液相原子具有足够的的能量越过高能界面,还需动力学条件,因此液态金属凝固过程中必须克服热力学和动力学两个能障。液态金属在成分、温度、能量、上不是均匀的,即存在成分、能量、结构

材料成型基本原理期末考试总结

名词解释 1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。 2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞; 缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔; 3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法。 4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。 5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。 6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象 7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动. 填空 1.动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造 2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区 3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面 4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类 5.铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型 6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固 7.液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种 8.晶体的生长方式有连续生长和台阶方式生长两种 9.凝固过程的偏析可分为:微观偏析和宏观偏析两种 10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属 11.Jakson因子α可以作为固液界面微观结构的判据,凡α<=2的晶体,其生长界面为粗糙,凡α>5的晶体,其生长界面为光滑 12.液态金属需要净化的有害元素包括碳氧硫磷 13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦 14.对数应变的特点是具有真实性、可靠性、和可加性 15.就大多数金属而言,其总的趋势是随着温度的升高,塑形增加 16.钢冷挤压时,需要对胚料表面进行磷化、皂化润滑处理 选择题1.塑形变形时,工具表面粗糙度对摩擦系数的影响(A)工件表面的粗糙度对摩擦系数的影响 A大于B等于C小于 2.塑形变形时,不产生硬化的材料叫做(A)A理想塑形材料B理想弹性材料C硬化材料 3.用近似平衡微分方程和近似塑形条件求解塑形成形问题的方法称为(B)A解析法B主应力法C滑移线法 4.韧性金属材料屈服时(A)准则较符合实际的 A密席斯B屈雷斯加C密席斯与屈雷斯加 5.塑形变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做(B)A理想弹性材料B理性刚塑形材料C塑形材料 6.硫元素的存在使碳钢易产生(A)A热脆性B冷脆性C兰脆性 7.应力状态中的(B)应力,能充分发挥材料的塑形A拉应力B压应力C拉应力与压应力 8.平面应变时,其平均正应力σs(B)中间主应力σz.A大于B等于C小于 9.钢材中磷使钢的强度、硬度提高,塑形、韧性(B).A提高B降低C没有变化 简答题1.简述顺序凝固原则和同时凝固原则的优缺点和适用范围 答:(1)铸件的顺序凝固原则是采取各种措施保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方

材料成型原理(上)考试重点复习题

《材料成形原理》阶段测验 (第一章) 班级:姓名:学号成绩: 1、下图中偶分布函数g(r),液体g(r)为c图,晶态固体g(r)为a图,气体g(r)为 b 图。 (a)(b)(c) 2、液态金属是由大量不停“游动”着的原子团簇组成,团簇内为某种有序结构,团簇周围是一些散乱无序的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为结构起伏。 3、对于液态合金,若同种元素的原子间结合力F(A-A、B-B) 大于异类元素的原子间结合力F(A-B),则形成富A及富B的原子团簇,具有这样的原子团簇的液体仅有“拓扑短程序”;若熔体的异类组元具有负的混合热,往往F(A -B)>F(A-A、B-B),则在液体中形成具有A-B化学键的原子团簇,具有这样的原子团簇的液体同时还有“化学短程序”。 4、液体的原子之间结合力(或原子间结合能U)越大,则内摩擦阻力越大,粘度也就越大。液 体粘度η随原子间结合能U按指数关系增加,即(公式):?? ? ? ? ? = T U T B B k exp k 2 3 τ δ η。 5、加入价电子多的溶质元素,由于造成合金表面双电层的电荷密度大,从而造成对表面压力大,而使整个系统的表面张力增大。 6、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、合金的结晶潜热H ?越大,浇注温 度 浇 T、铸型温度T型越高,充型能力越强。 7、两相质点间结合力越大,界面能越小,界面张力就越小。两相间的界面张力越大,则润湿角越大,表示两相间润湿性越差。 8、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、 合金的结晶潜热H ?越小,浇注温度 浇 T、铸型温度T型越高, 充型能力越强。 9、右图为碱金属液态的径向分布函数RDF,请在图中标注液 态K的平均原子间距r1的位置,并以积分面积(涂剖面线)表 达液态K的配位数N1的求法。见图中标注 10、试总结原子间相互作用力、温度、原子间距、表面活性元 素对液态金属的粘度、表面张力的总体规律。(可写于背面)

材料成形原理经典试题及答案

《材料成形基础》试卷(A)卷 考试时间:120 分钟考试方式:半开卷学院班级姓名学号 一、填空题(每空0.5分,共20分) 1. 润湿角是衡量界面张力的标志,润湿角?≥90°,表面液体不能润湿固体;2.晶体结晶时,有时会以枝晶生长方式进行,此时固液界面前液体中的温度梯度为负。3.灰铸铁凝固时,其收缩量远小于白口铁或钢,其原因在于碳的石墨化膨胀作用。 4. 孕育和变质处理是控制金属(或合金)铸态组织的主要方法,两者的主要区别在于孕育主要影响生核过程,而变质则主要改变晶体生长方式。 5.液态金属成形过程中在固相线附近产生的裂纹称为热裂纹,而在室温附近产生的裂纹称为冷裂纹。 6.铸造合金从浇注温度冷却到室温一般要经历液态收缩、固态收缩和凝固收缩三个收缩阶段。 7.焊缝中的宏观偏析可分为层状偏析和区域偏析。 8.液态金属成形过程中在附近产生的裂纹称为热裂纹,而在附近产生的裂纹成为冷裂纹。 9.铸件凝固方式有逐层凝固、体积凝固、中间凝固,其中逐层凝固方式容易产生集中性缩孔,一般采用同时凝固原则可以消除;体积凝固方式易产生分散性缩松,采用顺序凝固原则可以消除此缺陷。 10.金属塑性加工就是在外力作用下使金属产生塑性变形加工方法。

1.12.塑性变形时,由于外力所作的功转化为热能,从而使物体的温度升高的现象称为 温度效应。 2.13.在完全不产生回复和再结晶温度以下进行的塑性变形称为冷变形。 14.多晶体塑性变形时,除了晶内的滑移和产生,还包括晶界的滑动和转动。 3.15.单位面积上的内力称为应力。 4.16.物体在变形时,如果只在一个平面内产生变形,在这个平面称为塑性流平面。17.细晶超塑性时要求其组织超细化、等轴化和稳定化。18.轧制时,变形区可以分为后滑区、中性区和前滑区三个区域。19.棒材挤压变形时,其变形过程分为填充和挤压两个阶段。20.冲裁件的切断面由圆角带、光亮带、断裂带三个部分组成。 二、判断题(在括号内打“√”或“×”,每小题0.5分,共10分)1.酸性渣一般称为长渣,碱性渣一般称为短渣,前者不适宜仰焊,后者可适用于全位置焊。(√ ) 2.低合金高强度钢焊接时,通常的焊接工艺为:采取预热、后热处理,大的线能量。( x ) 3.电弧电压增加,焊缝含氮量增加;焊接电流增加,焊缝含氮量减少。(√ ) 4.电弧电压增加时,熔池的最大深度增大;焊接电流增加,熔池的最大宽度增大。( x ) 5.在非均质生核中,外来固相凹面衬底的生核能力比凸面衬底弱。( x ) 6.液态金属导热系数越小,其相应的充型能力就越好;与此相同,铸型的导热系数越小,越有利于液态金属的充型。(√ ) 7.在K0<1的合金中,由于逆偏析,使得合金铸件表层范围内溶质的浓度分布由外向内逐渐降低。(√ ) 8. 粘度反映了原子间结合力的强弱,与熔点有共同性,难熔化合物的粘度较高,而熔点较低的共晶成分合金其粘度较熔点较高的非共晶成分合金的低。 (√ ) 9.两边是塑性区的速度间断线在速端图中为两条光滑曲线,并且两曲线的距离即为速度间断线的间断值。(√ )

材料成型原理复习

《材料成型原理》试卷 一、铸件形成原理部分(共40分) (1)过冷度;(2)液态成形;(3)复合材料;(4) 定向凝固; (1)过冷度:金属的理论结晶温度与实际结晶温度的差,称为过冷度。 (2)液态成形:将液态金属浇入铸型后,凝固后获得一定形状和性能的铸件或铸锭的加工法。 (3)复合材料:有两种或两种以上物理和化学性质不同的物质复合组成的一种多相固体。(4)定向凝固:定向凝固是使金属或合金在熔体中定向生长晶体的一种工艺方法。 (5)溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。 2、回答下列问题 (1)影响液态金属凝固过程的因素有哪些?影响液态金属凝固的过程的主要因素是化学成分;冷却速率是影响凝固过程的主要工艺因素;液态合金的结构和性质等对液态金属的凝固也具有重要影响。 (2)热过冷与成分过冷有什么本质区别?热过冷完全由热扩散控制。成分过冷由固-液界前方溶质的再分配引起的,成分过冷不仅受热扩散控制,更受溶质扩散控制。 (3)简述铸件(锭)典型宏观凝固组织的三个晶区.表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。 3、对于厚大金属型钢锭如何获得细等轴晶组织?降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。 二、焊接原理部分1简述氢在金属中的有害作用。氢脆,白点,气孔,冷裂纹2写出锰沉淀脱氧反应式,并说明熔渣的酸碱性对锰脱氧效果的影响.[Mn] + [FeO] = [Fe] + (MnO),酸性渣脱氧效果好,碱度越大,锰的脱氧效果越差。3冷裂纹的三大形成要素是什麽?钢材的淬硬倾向,氢含量及其分布,拘束应力状态4说明低碳钢或不易淬火钢热影响区组织分布.(1)熔合区:组织不均匀;(2)过热区:组织粗大; (3)相变重结晶区(正火区):组织均匀细小;(4)不完全重结晶区:晶粒大小不一,组织分布不均匀. 一、填空题 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。 2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 4.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。 5.液态金属凝固时由热扩散引起的过冷称为热过冷。 6.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区不同形态的晶区。 7.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。 8.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 9.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。

材料成型原理试卷一B试题及答案

. 重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

. A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

材料成型基本原理课后答案

第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大, 金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显着的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么? 答:动态回复是层错能高的金属热变形过程中唯一的软化机制。 对于层错能高的金属,变形位错的交滑移和攀移比较容易进行,位错容易在滑移面间转移,使异号位错互相抵消,其结果是位错密度下降,畸变能降低,达不到动态再结晶所需的能量水平。 9. 什么是动态再结晶?影响动态再结晶的主要因素有哪些?

超有用的材料成型原理试卷试题及答案(精选.)

陕西工学院考试试卷(B)标准答案 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。6.液态金属凝固时由热扩散引起的过冷称为热过冷。 7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。 8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响大于工件表面的粗糙 度对摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做B。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 mB中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。(X )

材料成型原理试卷一B试题及答案

重庆工学院考试试卷(B) 题号一二三四五六总分总分人 分数 一、填空题(每空2分,共40分) 得分评卷人 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 得分评卷人 1.合金元素使钢的塑性增加,变形拉力下降。()

相关主题
文本预览
相关文档 最新文档