当前位置:文档之家› 直升机桨毂结构

直升机桨毂结构

直升机桨毂结构
直升机桨毂结构

直升机桨毂结构

直升机结构(桨毂)

旋翼系统由桨叶和桨毂组成。旋翼形式是由桨毅形式决定的。它随着材料、工艺和旋翼理论的发展而发展。到目前为止,已在实践中应用的旋翼形式有铰接式、跷跷板式、无铰式和无轴承式,它们各自的原理如下表所示。

一、桨毂结构特点

(一)铰接式

铰接式(又称全铰接式)旋翼桨毂是通过桨毂上设置挥舞铰、摆振铰和变距铰来实现桨叶的挥舞、摆振和变距运动。典型的铰接式桨毂铰的布置顺序(从里向外)是由挥舞铰、摆振铰到变距铰,如图2(2—1所示。也有挥舞铰与摆振铰重合的。

在轴向铰中除了用推力轴承来负担离心力并实现变距运动外,另一种流行的方式是利用弹性元件拉扭杆来执行这个功能,如图2(2—2所示。这样在旋翼进行变距操纵时必须克服拉扭杆的弹性及扭短,为了减小操纵力,就必须使拉扭杆有足够低的扭转刚度。

铰接式桨毂构造复杂,维护检修的工作量大,疲劳寿命低。因此在直升机的发展中一直在努力改善这种情况。在20世纪60年代后期开始发展的层压弹性体轴承(橡胶轴承)也是解决这个问题的一个较好的方案,现已实际应用。

层压弹性体轴承也可称为核胶轴承,以图2(2—3b中径向轴承为例,这是由每两层薄橡胶层中间由金属片隔开并硫化在一起。图2(2—4为桨毂一个支管的构造。轴承组件的主要部分是一个球面弹性体轴承,桨叶的挥舞及摆振运动全部通过这个轴承来实现。此外靠近内端有一个层压推力铀承,桨叶变距运动的85,通过这个轴承的扭转变形来实现,其余15,则由球面轴承来实现。这种形式的桨毂是用一组层压弹性体轴承组件来实现挥舞铰、摆振铰、变距铰三铰的功能,这样使构造大

大简化,零件数量也大大减少。同时由于不需要润滑及密封,维护检修的工作量亦少很多。

(二)桨毂减摆器

铰接式旋翼在摆振铰上都带有桨毂减摆器,简称为减摆器,为桨叶绕摆振铰的摆振运动提供阻尼。减摆器对于防止出现“地面共振”,保证其有足够的稳定性裕度是必要的。此外,对于装备涡轮轴发动机的直升机,发动机、传动系统及旋翼整个系统的扭转振动,由于存在着燃油控制系统而形成一个闭合回路,也存在着操纵响应的稳定性问题。对于这样一种自激振动,减摆器对集合型的摆振运动提供的阻尼也是有利的,即可以保证所要求的稳定性裕度。

1(液压减摆器

主要是用油液流动速度的损失来产生压力差从而起到阻尼作用。图2(2—5为这种减摆器的原理,图

—6表示了这种减楼器在桨毂上可能的安装情况。当桨叶绕垂直铰来回摆 2(2 动时,减摆器壳体与活塞杆之间产生往复运动。这时,充满壳体内的油液也就要以高速度流进壳体与活塞之间的缝隙(或者是活塞上的节流孔),活塞的左右就产生了压力差,从而形成减摆力矩。液压减摆器的减摆力矩比较稳定,它不像摩擦减摆器那样需经常检查及调整。但如果油液泄漏使空气进入,则会显著地改变减摆器的特性。因此,除了在减摆器上带密封装置外,往往还需要有油液补偿装置。

2(粘弹减摆器

70年代开始出现了用粘弹性材料硅橡胶制成的粘弹减摆器。这种减摆器是利用粘弹性材料变形时很大的内阻尼来提供所要求的减振阻尼,其构造原理见图2(2—7。减摆器由当中的金屑扳及其两边的两块外部金属板构成。内部金属板及两块外部金屑板之间各有一层硅橡胶,金属板与橡胶硫化粘结在一起,内部金属板一端与

铀向铰轴颈相连,而外部金属板则与中间连接件相连接。桨叶绕垂直铰摆动时,由硅橡胶层的往复剪切变形使减摆器产生往复轴向变形。粘弹材料变形时将产生内摩擦,内摩擦力在相位上滞后变形90’,这些变形要消耗能量,从而起到了阻尼的作用。粘弹减摆器突出的优点是结构简单,除了目视检查外,不需要维护。这种减摆器不仅提供了阻尼也对桨叶摆振运动附加了刚度,提高了桨叶摆振固有频率。在低温下硅橡胶会硬化,这是设计时应注意的问题。

(三)万向接头式及跷跷板式

40年代中期,在全铰式旋翼得到广泛应用的同时,贝尔公司发展了万向接头式旋翼,并将其成功地应用在总重量一吨级的轻型直升机Bell47上。50年代中期又把万向接头式进一步发展成统统板式,研制了总重量达4吨多的中型直升机UH—l 和9吨级的BeH214直升机。虽然这两种族翼形式除了贝尔公司外很少采用,但仅仅Bell47型及UH—l系列直升机产量就很大,应用也很广泛。

图2(2—8所示为Bell47型直升机万向接头式旋翼桨毂的构造,图2。2—9为其原理图。两片桨叶通过各自的轴向铰和桨毂壳体互相连接,而桨毂壳体又通过B铰实现。改变总距是通过万向接头与旋翼轴相连。挥舞运动通过万向接头B—

轴向铰实现的,而周期变距是通过万向接头绕。a--a铰的转动实现。

跷跷板式旋翼和万向接头式旋翼的主要区别是桨毂壳体只通过一个水平铰与旋翼轴相连,这种桨毂构造比万向接头式简单一些,但是周期变距也是通过变距铰来实现。一般变距铰采用拉扭杆来负担离心力。这两种桨毂形式与铰接式相比,其优点是桨毂构造简单,去绰了摆振铰、减摆器,两片桨叶共同的挥舞铰不负担离心力而只传递拉力及旋翼力矩,轴承负荷比较小,没有“地面共振”问题。但是,这种旋翼操纵功效和角速度阻尼比较小,为了加大角速度阻尼,这种形式的旋翼都要带

机械增稳装置——稳定杆,没有办法改善操纵功效,对于机动性要求较高的直升机,上述缺点就很突出。

(四)无铰式

从40年代到60年代,铰接式旋翼是主要的旋翼形式。在长期的应用中这种形式发展得比较成熟,经验也比较多。但是,由于结构复杂、维护工作量大、操纵功效及角速度阻尼小等固有的缺点,这种形式不够理想。因此,从50年代起,除了简化铰接式旋冀结构外,还开始了无铰式旋翼的研究工作。经过长期的理论与试验研究,印年代末及70年代初无铰式旋翼进入了实用阶段。带有无铰式旋翼的宜升机如德国的

BO—105,英国的“山猫”(WG—13)等,它们取得了成功并投入了批生产。

与铰接式旋冀相比,无铰式旋翼的结构的力学特性与飞行的力学特性联系更为密切。这种形式的旋翼

会产生一些新的动力稳定性问题,本节着重介绍无铰旋冀的结构特点。

(1)BO—105型直升机的无铰式旋翼如图2(2—10所示为BO—105型直升机无较式旋翼,它的桨毂尺寸比较紧凑,刚度也很大,变距铰在桨叶根部与桨毂相连,桨叶挥舞和摆振运动是通过玻璃钢桨叶根部的

弯曲变形来实现的。这种桨叶是屑于摆振柔软型旋翼桨叶,摆振频率n,1,

0(65,旋翼结构锥度角为2(5。

(2)“山猫”直升机的无铰式旋翼图2(2—ll所示为山猫直升机桨毂结构,它与BO—105直,升机桨毂相比刚度要小,桨叶的挥舞运动由和桨轴相联的挥舞柔性件弯曲变形实现,而摆振运动则是由变距铰壳体的延伸段的弯曲变形实现。这种族翼是采用了消除耦合的设计,它的摆振频率。wvl=0(43,也是摆振柔软的旋翼。

(3)星形柔性桨毂

图2(2—12所示为法国航宇公司的SA—365N“海豚” II型直升机的星形柔性旋翼桨毂构造,它主要是由中央星形件、球面层压弹性体轴承、粘弹减摆器(也称频率匹配器)、夹板和自润滑关节轴承等组成。中央星形件通过螺栓直接固定在旋翼轴接合盘上,球关节轴承套装在星形件四个支臂的外端,而轴承座通过粘弹减摆器与夹板相连接。上、下夹板在外端连接桨叶,而内端通过固定在星形件孔内的球面层压弹性体轴承与星形件相连接。星形件上伸出的四个支臂在挥舞方面是柔性的。

1(整流罩2(自润滑关节轴承3(粘弹减摆器4(夹板5(球面弹性轴承6(垫片

7(中央星形件8(销子桨叶上的离心力通过夹板传给弹性轴承,弹性体轴承以受压方式将离心力传到星形件上(图2.2,13)。由变距拉杆经摇臂作用到夹板上的扭转力矩使弹性轴承产生扭转变形,夹板带动桨叶一起绕弹性体轴承球中心与关节轴承中心的连线转动,从而实现桨叶的变距运动,如图2.2—14所示。

桨叶挥舞运动时,由于星形件柔性臂在挥舞方向是柔性的,因此,当桨叶连同夹板组件一起绕弹性

体轴承中心上、下挥舞时,弹性体轴承本身绕球心产生剪切变形,而星形件柔性臂产生上下弯曲变形(见图2.2—15)。由于星形件柔性臂在摆振方向的刚度要比在挥舞方向大得多,因此当桨叶连同夹板组件一起绕弹性体轴承的中心前后摆动时,弹性体轴承本身产生剪切变形,而在摆振方向刚度比星形件柔性臂低得多的粘弹减摆器的硅橡胶层也将产生剪切变形,这样既提供了阻尼又附加了弹性约束(见图2.2—16)。

由以上所述可以看出,这种形式的桨毂实际上就成了在位接处有弹性约束的铰接式旋翼。其挥舞一阶固有频率wV1=1.04,相应的当量水平铰外移量约为4.9,只,接近铰接式旋翼的上限;摆振一阶固有频率。wV1=0.62,接近于摆振柔软的无铰式旋翼的下限。所以,星形柔性旋翼其结构动力学特性介于铰接式与无铰式之

间。采用这种结构动力学布局的出发点,可能是为了能在操纵功效及角速度阻尼方面比铰接式有所改善。同无铰式旋翼一样,这种形式的旋翼也带有结构锥度角,以消除旋翼拉力所引起的不变的弯距。“海脉”旋翼的结构锥度角为4.5度,直升机的桨叶还带有2度的后掠角,这主要是为了改善在巡航状态时桨毂的受力。

(五)无轴承式旋翼

上面所说的无铰式旋翼只是没有挥舞铰和摆振铰,却仍然保留了变距用的轴向铰,因此也还不是真正的“无铰”。由于保留了承受很大力矩和离心力的变距铰,结构重量难以减轻,结构的简化也受到了限制。无铰式旋翼合乎逻辑的进一步发展,就是取消变距铰。无轴承旋翼就是取消了挥舞铰、摆振铰和变距铰的旋翼,桨叶的挥舞、摆振和变距运动都以桨叶根部的柔性元件来完成。

西科斯基公司制出一种所谓“交叉梁”式的无轴承旋翼方案,原理简图见图

2(2—17。桨叶的主要承力件是一根单向碳纤维大梁。士45’铺层的玻璃钢蒙皮构成了桨叶的外形,蒙皮与大梁之间充填泡沫塑料,到达根部蒙皮就转变成为空心的扭管。空心扭管与大梁没有联系,其内端连操纵摇劈。作用在操纵接臂上的操纵力从扭管向外传至大梁,使大梁在扭管中的那一部分产生扭转变形而实现变距。这个方案引人注目地采用了交叉梁的布局,桨叶的离心力在大梁中自身得到平衡,有可能大大地减轻旋翼的重量。与一般无铰式旋具相比,重量可减轻50,。图2(2—18为美国波音—伏托尔公司研制的装于BO—105直升机上的无轴承旋翼方案。它的特点是采用了两个“]”型结构的开剖面单向碳纤维梁,梁的内端与固定在旋翼轴上的连接盘相连接,外端连接桨叶,由士45’铺层的碳纤维构成、固定操纵摇臂的扭管则布置在两个“]”型梁之间。两者之间没有联系,扭管外端与“]”型梁外端固定在一起,内端连接操纵摇劈,来自操纵拐劈上的操纵力通过扭管传给“]”型梁,使梁产生扭转变形,以实现变距。

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

浅谈直升机旋翼的种类和发展趋势

空版不知道是不是也包含直升机,在陆版的介绍看到包括陆航……但好歹直升机也飞的,就强插空版了…… 对直升机而言,重要的部件太多了,但旋翼无疑会被放在首位。直升机的升力,前飞、滚转、俯仰的操纵力,都需要靠旋翼实现。早期直升机采用铰接式旋翼,结构是机器复杂的,动部件太多,寿命不长,可靠性不高,维护性极差,……比较有代表的,CH53,有张“鬼斧”给的图,足见其复杂。 技术贴:浅谈直升机旋翼的种类和发展趋势!AH-66隐形直升机

后来转而坐弹性轴承,来代替过去的金属铰链,黑鹰是比较有代表性的。此外球柔、星形柔性等也就随之出现,海豚是星形柔性桨毂,EC155是球柔。这些旋翼还是大大简化了结构,寿命已经很不错。 UH60

但这些旋翼还不够简单,毕竟还有好多的轴承,于是有人想到用弹性变形来实现轴承的功能。无铰式旋翼就来了。山猫,Bo105,两个最具代表性。一个是消除耦合,一个是利用挥摆耦合,两个分别代表了两种设计思路。 山猫 Bo105

无铰式旋翼用弹性变形来代替铰链,可以预想,桨叶挥舞时对桨毂的力矩就很大,比铰接式大得多。所以这种旋翼直升机机体的响应很灵敏,于是有人想到了武装直升机,武直是需要反应更灵敏一些的。不过无铰式的初衷和最大好处是简化结构,灵敏不是其最大的功效,毕竟太灵敏--->一阶挥舞频率更高--->交叉导数更大--->驾驶员感觉的交叉耦合更大--->更难控制姿态--->飞行员说好累。 无铰式比起CH53那种已经极大简化了,不过这还不够,无铰式旋翼还有变距轴承,所以终极的目标是无轴承旋翼。EC135、MD900,Bell430、AH1Z这些都是,连倭奴的OH1、鹅毛的Ansat也都是。其实不难发现,这累机,重量不大,这是和目前的材料技术有关。做太大,桨毂尺寸大,弹性变形实现挥摆扭,载荷太高,寿命就得下来了。 看看具体的结构,喜欢用EC135说事儿: EC135

(完整word版)飞机起落架基本结构

起落架 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆(飞机的起飞与着陆过程)功能的装置主要就是起落架。 基本介绍 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。 概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑 与滑行时操纵飞机。 2结构组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 2.1减震器 飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。现代飞机上应用最广的是油液空气减震器。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。 2.2收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 2.3机轮和刹车系统 机轮的主要作用是在地面支持收飞机的重量,减少飞机地面运动的阻力,吸收飞机着陆和地面运动时的一部分撞击动能。主起落架上装有刹车装置,可用来缩短飞机着陆的滑跑距离,并使飞机在地

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

飞机结构和组成

飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力

直升机旋翼桨毂结构形式

直升机旋翼桨毂(含主桨尾桨)结构形式 1.简介 尾桨是用来平衡反扭矩和对直升机进行航向操纵的部件。旋转着的尾桨相当于一个垂直安定面,能对直升机航向起稳定作用。虽然后桨的功用与旋翼不同,但是它们都是由旋转而产生空气动力、在前飞时处于不对称气流中工作的状态,因此尾桨结构与旋翼结构有很多相似之处。尾桨的结构形式有跷跷板式、万向接头式、铰接式、无轴承式、“涵道尾桨”式等等。前面几种形式与旋翼形式中的讨论相似,只是铰接式尾桨一般不设置摆振铰。70年代以来,又发展了无轴承尾桨(包括采用交叉式布置无轴承尾桨)及“涵道尾桨”。“涵道尾桨”是把尾桨置于机身尾斜梁的“涵道”之中。涵道风扇直径小,叶片数目多。前飞时尾面可以提供拉力,因此,可以减小尾桨的需用功率。但在悬停时“涵道风功率消耗偏大,对直升机悬停和垂直飞行性能不利。可以避免地面人员或机外物体与尾桨相碰撞,安全性好。 1.1. 名词解释(参考图 2.2-1) 1)水平铰(挥舞铰)的作用:发动机丁作时,旋翼便以一定的转速转动。在飞 行过程中(如前飞),由于飞行速度的存在,使得旋翼前行桨叶的相对气流速度大于后行桨叶的相对气流速度,从而使前行桨叶产生的升力大于后行桨叶产生的升力。若没有水平铰,则由两侧桨叶升力大小不等所构成的滚转力矩,将使直升机倾斜。有水平铰时,情况则不同。前行桨叶升力大,便绕水平铰向上挥舞;后行桨叶升力小,便绕水平铰向下挥舞。这样,横侧不平衡的滚转力矩就不会传到机身,从而避免了直升机在前飞中产生倾斜。 2)垂直铰(摆振或摆振铰)的作用:直升机前飞时,桨叶在绕旋翼轴转动的同 时还要绕水平铰挥舞。桨叶作挥舞运动时,桨叶重心距旋翼轴的距离不断变化。由理论力学得知,旋转着的质量对旋转轴沿径向有相对运动时,会受到

飞机结构定义

飞机结构 4. Definitions 4. 定义 A. The definitions of primary and secondary structures are as follows: A. 定义基本的和次级的结构依下列各项: WARNING: THE FAILURE OF PSE’S COULD RESULT IN THE CATASTROPHIC FAILURE OF THE AIRPLANE. 警告: PSE (主要构件)的失效可以造成飞机灾难性的故障。 (1) Primary Structure: Structure which carries flight, ground, or pressure loads. Primary structure is classified into two categories: Principal Structural Elements (PSE) and Other Structure. Most of the primary structures on the airplane are Principal Structural Elements (PSE). PSEs are also known as Structural Significant Items (SSI). (1) 基本结构:承传受飞行, 地面, 或压力载荷的结构。基本的结构又分为两类: 主要构件 (PSE) 和其他构件。飞机上的大部分基本结构是主要构件(PSE). PSEs (主要构件)也是被作为结构的重要项目(SSI). (a) Principal Structural Elements (PSE): Primary structure which contribute significantly to carrying flight, ground, and pressurization loads, and whose failure could result in the catastrophic failure of the airplane. (1) 主要构件 (PSE):主要承受飞行, 地面, 和压力载荷的基本结构,这些构件 的失效将造成飞机的灾难性故障。 (b) Other Structure: Primary structure that is not a Principal Structural Element (PSE). (b) 其他的结构: 基本结构中不是主要构件的部分 (PSE). (2) Secondary Structure: Structure which carries only air or inertial loads generated on or within the secondary structure. Most secondary structures are important to the aerodynamic performance of the airplane. (2) 次级结构:承受空气或次级结构本身产生的惯性载荷的结构。大部分次级结构对飞行的气动性能很重要。 修理定义 1. Applicability A. This subject gives the definitions related to repair classification and inspection for damage-tolerant and non-damage tolerant primary and secondary structures as applicable. 2. References Reference Title 51-10-02 INSPECTION AND REMOVAL OF DAMAGE SOPM 20-20-01 Magnetic Particle Inspection

直升机

模型基础知识-原理与结构-模型直升机结构与飞行控制 关于“直升机玩具飞...”的内容 本站搜索更多关于“直升机玩具飞行原理”的内容 四、模型直升机结构与飞行控制 (一)模型直升机主旋翼结构 通常只有两个主旋翼叶片,油动和电动模型直升机的旋翼桨毂结构不同,因为电动直升机比较容易控制主轴的转速,而油动内燃机的转速必须在一定范围内才能发挥最大的效率,并且要和一定的螺距相匹配,因此都采用变桨距主旋翼,而电动直升机相当一部分采用不变桨距的主旋翼。 1、可变桨距主旋翼结构 可变桨距主旋翼结构的直升机可以做出真飞机都难以做出的出色动作,如倒飞,大幅度急转换向等。模型直升机的桨距变化都是通过倾斜圆盘直接或者间接控制的,而倾斜圆盘又是通过舵机驱动倾斜的。为了使直升机飞行稳定,多数模型直升机都使用了带平衡翼的平衡杆,又称为挥舞桨。 模型直升机倾斜圆盘的控制又分为普通模式和CCPM模式。普通模式是一种传统的倾斜圆盘控制模式,它采用多个舵机串联工作,两个舵机控制倾斜圆盘的前后左右倾斜来控制周期变距,一个舵机控制总桨距,因此它的倾斜圆盘的外盘的球铰为90度间隔排列的有四个(正上方看呈十字形),也成为十字盘,如图所示。十字盘是控制直升机运动方向的关键元件,因此十字盘的稳定性,大大影响了整个机身的操控准确度。

下载(40.08 KB) 2010-1-31 15:40 近年,JR 发表了CCPM ( Cylic Collective Pitch Mixing ) 新型的十字盘控制结构,其他业者也相继推出相同设计原理的机种,如Kyosho 的EMS、Hirobo 的SWM。这新设计关键在於倾斜圆盘驱动方式的差异, CCPM是用三个舵机同时并联工作来完成一系列的十字盘动作,CCPM的十字盘是呈120度排列的有三个(正上方看呈三角形),利用三个舵机连接三个头球,同时工作使十字盘进行前后、左右、上下的动作。因为CCPM是同时使用三个舵机工作,理论上来说,倾斜圆盘受到的控制力度比传统的要大三倍(传统十字盘进行某单一方向控制时,只有一个舵机工作)。螺距是所有舵面控制中负载最大的( 因为要转动主旋翼改变攻角),而CCPM 的螺距是由三个舵机一同完成,等于制动力量是传统十字盘的三倍,这直接降低伺服机的负担、提升控制精准度,动作更加迅速更加准确,而且因为是三个舵机联动,以往改变螺距的那部分机械混控结构部件就可以取消了,减轻了飞机的重量,却增加了飞机的控制能力。CCPM 的缺点∶要达到伺服机相互的混控,遥控器必须支援才可( 因为不再是一个指令,一个伺服机动作),另外,目前CCPM 机种选择较少,价钱也高一点。一般CCPM在电动直机上比较常见,油机上也有,但是比较少,而且也贵,还要求有CCPM混控能力的遥控设备,FUTABA只有FF9以上系列和新出的FF系列有混控外,JR的是MAX 66II以上都有。设备比较昂贵。而且调整比较麻烦,换来的代价是飞机更灵活,更好控制。CCPM是以后模型直升机发展的方向。

直升机旋翼桨毂静载荷计算

直升机旋翼桨毂静载荷计算 第十九届(2003)全国直升机年会论文 张亚军1 杨延滨1向锦武2 (1哈尔滨飞机工业集团 2北京航空航天大学) 摘要:本文给出了直升机旋翼桨毂静载荷的一种计算方法,该方法关 键在于确定与旋翼静载荷相对应的直升机的状态,同时采用通用做法推 出旋翼桨叶运动方程,并对桨叶进行有限元离散。利用这种方法对Z9A 型直升机旋翼桨毂静载荷进行了计算,通过与国外同类机型的计算结果 进行了对比分析,发现原计算模型的几个缺陷和计算结果中的几个难以 解释之处。 一、引言 与结构强度有关的载荷有两个:限制载荷和极限载荷,限制载荷为在使用中可能遇到的最大载荷。对于飞机结构,限制载荷乘以,.,的安全系数得到极限载荷。结构必须满足以下要求:在极限载荷下不发生破坏,在限制载荷下不出现永久变形。本文所论及的载荷均为限制载荷。 ——————————————————————————————————————————————— 旋翼载荷分为静载荷和动载荷两部分,旋翼静载荷是在服役期内旋翼可能遇到的载荷的最大平均值,而动载荷是在服役期内旋翼可能遇到的载荷的最大波动量。在校核旋翼结构强度时,静载荷和动载荷一并考虑。 直升机旋翼载荷的确定是直升机旋翼结构设计的关键技术之一,既要保证结738

构安全,又要使结构的安全裕度不至于过大。国外各大直升机公司都有一套自己的旋翼载荷确定方法,我们在这方面还有待深入研究。本文给出了旋翼静载荷的一种确定方法,该方法包括两个部分:状态方程的建立和旋翼桨叶的有限元模拟,状态方程是根据规范导出的,旋翼桨叶的有限元模拟则是很通用的做法,这种做法可以充分计入直升机旋翼结构复杂性。 文献1给出了Z9A直升机旋翼桨叶静载荷的计算结果,这里给出桨毂静载荷的计算结果。 二、静载分析模型 《运输类直升机适航性要求(CCAR29)》2 第547条主旋翼结构中规定:极限扭矩必须均等地和合理地分配给每片桨叶。我们的理解是,极限扭矩平均分到每片桨叶的根部,并合理地分配到桨叶的展向上。基于这一理解,在给定旋翼转速和过载的条件下,求出满足拉力和扭矩限制MLimit 的总距操纵输入?0和下沉速度Vz。 其中: ?M?mb?Nb??g?Nz?FzMLimit?Mz?0?0 Fz 旋翼拉力 ——————————————————————————————————————————————— g 重力加速度 M 直升机总质量 MLimit 极限扭矩 Mz 旋翼扭矩 mb 单片桨叶的质量 Nb 桨叶片数 Nz 过载 旋翼拉力Fz和旋翼扭矩Mz均为总距?0和下沉速度Vz的函数,这是对直升机旋翼受 739

直升机主减速器结构

直升机结构(主减速器) 直升机一般为齿轮传动式主减速器(如下图所示),它有发动机的功率输入端以及与旋翼、尾桨附件传动轴相联的功率输出端,是直升机上主要动部件之一,也是传动装置中最复杂、最大、最重的一个部件。 主减速器工作特点及要求 主减速器的工作特点是减速、转向及并车。它将高转速小扭短的发动机功率变成低转速、大扭短传递给旋翼轴,并按转速、扭矩需要将功率传递给尾桨、附件等,在直升机中它还起作中枢受力构件的作用,它将直接承受旋翼产生的全部作用力和力矩并传递给机体。根据主减速器的工作特点,对其性能有如下要求: 传递功率大、重量轻。随着直升机技术不断发展,要求主减速器传递的功率越来越大,齿轮啮合处的载荷也大得惊人。一台限制传递功率为3000kW直升机主减速器,其中有的一对啮合齿轮要承受高达10000kg的力,为了保证齿轮、轴的强度,减速器不得不付出相当大的重量代价。比如直升机的主减速器重量一般要占整个直升机结构重量的 l/7~l/9。 减速比大,传递效率高。主减速器的减速比即传动比,也就是发动机功率输出轴转速与旋翼转速之比;传递效率即传递过程中功率的损失。由于旋翼与发动机输出轴转速相差十分悬殊,有的直升机总减速比高达120。转速差越大,旋翼轴的扭矩也越大,齿轮载荷就越高。为了减轻载荷,就必须采取多级传动和复杂的齿轮传动系等卸载措施,这势必给传递效率带来不利影响。一般现代直升机减速器的传递效率大致保持在0.985左右。 寿命长、可靠性好。尽管设计时,现代直升机的主减速器多数零件包括齿轮、轴和机匣都是按无限寿命设计的,但实际上却是按有限寿命使用。因此要求在实际使用中每工作一段时间后,要从直升机上卸下主减速器送往工厂翻修;更换被耗损的零件,检查合格后再装上直升机重新投入使用。这样的翻修可以进行数次,每两次送厂翻修的间隔时间称作翻修间隔期,或称主减速器翻修寿命。对于主减速器的可靠性,常用平均故障间隔时间(MTBF)表示,即主减速器在实际使用中,所发生故障的次数对工作时间的平均值(或每两次故障之间的平均时间)。 干运转能力强。由于主减速器内部齿轮多、载荷重,工作时需要滑油循环流动行润滑,以保证主减速器正常工作,一旦失去滑油,齿轮之间、轴与轴之间便会因过热而“烧蚀”,后果十分严重。为了保证飞行安全,特别是军用直升机应要求主减速器一旦断油后,有一定干运转能力。现代直升机上主减速器一般有30—40min的于运转能力,使飞行员能够继续完成作战任务,能安全返场或紧急着陆。 主减速器的结构和工作原理 在直升机上主减速器是一个独立的部件,安装在机身上部的减速器舱内,用支架支撑在机体承力结构上。主减速器由机匣、减速齿轮及轴系和润滑系统组成。见某直升机的主减速器外形和部面图(右图)。 该主减速器机匣为铝合金(或镁合金)铸件,构成主减速器的主要承力构件,内部装有带游星齿轮及轴系的减速装置和滑油润滑系统附件。旋翼轴从顶部伸出,四周有两个与发动机动力输出轴相连的安装座以及尾传动轴、其他附件传动轴相联的安装座,最下方为滑油池。

直升机桨毂结构

直升机桨毂结构 直升机结构(桨毂) 旋翼系统由桨叶和桨毂组成。旋翼形式是由桨毅形式决定的。它随着材料、工艺和旋翼理论的发展而发展。到目前为止,已在实践中应用的旋翼形式有铰接式、跷跷板式、无铰式和无轴承式,它们各自的原理如下表所示。 一、桨毂结构特点 (一)铰接式 铰接式(又称全铰接式)旋翼桨毂是通过桨毂上设置挥舞铰、摆振铰和变距铰来实现桨叶的挥舞、摆振和变距运动。典型的铰接式桨毂铰的布置顺序(从里向外)是由挥舞铰、摆振铰到变距铰,如图2(2—1所示。也有挥舞铰与摆振铰重合的。 在轴向铰中除了用推力轴承来负担离心力并实现变距运动外,另一种流行的方式是利用弹性元件拉扭杆来执行这个功能,如图2(2—2所示。这样在旋翼进行变距操纵时必须克服拉扭杆的弹性及扭短,为了减小操纵力,就必须使拉扭杆有足够低的扭转刚度。 铰接式桨毂构造复杂,维护检修的工作量大,疲劳寿命低。因此在直升机的发展中一直在努力改善这种情况。在20世纪60年代后期开始发展的层压弹性体轴承(橡胶轴承)也是解决这个问题的一个较好的方案,现已实际应用。 层压弹性体轴承也可称为核胶轴承,以图2(2—3b中径向轴承为例,这是由每两层薄橡胶层中间由金属片隔开并硫化在一起。图2(2—4为桨毂一个支管的构造。轴承组件的主要部分是一个球面弹性体轴承,桨叶的挥舞及摆振运动全部通过这个轴承来实现。此外靠近内端有一个层压推力铀承,桨叶变距运动的85,通过这个轴承的扭转变形来实现,其余15,则由球面轴承来实现。这种形式的桨毂是用一组层压弹性体轴承组件来实现挥舞铰、摆振铰、变距铰三铰的功能,这样使构造大

大简化,零件数量也大大减少。同时由于不需要润滑及密封,维护检修的工作量亦少很多。 (二)桨毂减摆器 铰接式旋翼在摆振铰上都带有桨毂减摆器,简称为减摆器,为桨叶绕摆振铰的摆振运动提供阻尼。减摆器对于防止出现“地面共振”,保证其有足够的稳定性裕度是必要的。此外,对于装备涡轮轴发动机的直升机,发动机、传动系统及旋翼整个系统的扭转振动,由于存在着燃油控制系统而形成一个闭合回路,也存在着操纵响应的稳定性问题。对于这样一种自激振动,减摆器对集合型的摆振运动提供的阻尼也是有利的,即可以保证所要求的稳定性裕度。 1(液压减摆器 主要是用油液流动速度的损失来产生压力差从而起到阻尼作用。图2(2—5为这种减摆器的原理,图 —6表示了这种减楼器在桨毂上可能的安装情况。当桨叶绕垂直铰来回摆 2(2 动时,减摆器壳体与活塞杆之间产生往复运动。这时,充满壳体内的油液也就要以高速度流进壳体与活塞之间的缝隙(或者是活塞上的节流孔),活塞的左右就产生了压力差,从而形成减摆力矩。液压减摆器的减摆力矩比较稳定,它不像摩擦减摆器那样需经常检查及调整。但如果油液泄漏使空气进入,则会显著地改变减摆器的特性。因此,除了在减摆器上带密封装置外,往往还需要有油液补偿装置。 2(粘弹减摆器 70年代开始出现了用粘弹性材料硅橡胶制成的粘弹减摆器。这种减摆器是利用粘弹性材料变形时很大的内阻尼来提供所要求的减振阻尼,其构造原理见图2(2—7。减摆器由当中的金屑扳及其两边的两块外部金属板构成。内部金属板及两块外部金屑板之间各有一层硅橡胶,金属板与橡胶硫化粘结在一起,内部金属板一端与

直升机传动系统

直升机是依靠旋翼作为升力和操纵机构的飞行器,其旋翼充当了固定翼飞机的机翼、副翼、升降舵和推进器的作用。根据反扭矩形式,直升机又可分为单旋翼带尾桨形式,共轴双旋翼,纵列式、横列式及倾转旋翼式。目前应用比较广泛的是单旋翼带尾桨形式直升机。直升机的旋转部件多,包括旋翼系统、操纵系统、主减速器、尾减速器、尾桨等部件。因此,整个直升机是在很多旋转系统及部件的协调运转中工作的。尤其是大旋翼,在飞行中一般处于非对称气流中,除了旋转运动外,还有挥舞、摆振方面的运动,成为直升机振动的主要来源。直升机的关键技术主要体现在直升机的旋转部件的设计技术上。 对于固定翼飞机,由于在高速飞行中工作,其机翼、机身、尾翼的气动外形非常重要,影响到飞机的飞行性能和操稳特性。而对于直升机,其气动特性主要体现在旋翼桨叶的几何特性、翼型、旋翼转速、旋翼实度、桨盘载荷等参数。由于直升机的速度较低,一般最大速度不超过350km/h,机身的气动外形对飞行性能的影响相对固定翼飞机来说较弱。因此,有人说直升机气动特性主要是旋翼气动特性。就直升机本体技术而言,传动系统和旋翼系统是直升机最重要的关键部件,反映了直升机技术的本质和特征。 传动系统 直升机的发动机所提供的动力要经过传动系统才能到达旋翼,从而驱动旋翼旋转。对于一般的直升机来说,其作用是将发动机的功率和转速按一定比例传递到旋翼、尾桨和各附件。直升机性能在很大程度上取决于传动系统的性能,传动系统性能好坏将直接影响直升机的性能和可靠性。 1 传动系统的结构 直升机传动系统的典型构成为“三器两轴”,即:主减速器、尾减速器、中间减速器、动力传动轴和尾传动轴。现代直升机的发动机多为涡轮轴发动机,其输入转速较高,意大利的A129输入转速最高,为27000r/min,所以要达到旋翼的设计转速必须经过主减速器减速。减速器的减速比一般比较大,例如美国武装直升机阿帕奇的总传动比为72.4,“黑鹰”直升机的总

飞机基本结构123

飞机基本结构 飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置(主要介绍机翼和机身)。 机翼 薄蒙皮梁式 主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。 多梁单块式 从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。 多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式) 这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。当左、右机翼连成整体时,与机身的连接与多梁单块式类似。但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。 蒙皮

完整版 直升飞机单翼和共轴双翼自动倾斜器结构图解析

直升飞机单翼和共轴双翼自动倾斜器结构图解析 河南巩义市王有备编辑整理 直升机上用以操纵旋翼实现升降、前后、左右运动的特殊装置,又称自动倾斜仪。1911年由俄国人H.尤里耶夫发明,后为所有直升机采用。自动倾斜器一般由类似轴承的旋转(外)环和不旋转(内)环组成(图1),它通过万向接头或球铰套在旋翼轴上,不旋转环通过操纵拉杆与驾驶舱中的驾驶杆和总距杆相连,旋转环通过变距拉杆与桨叶相连。自动倾斜器无倾斜时,各片桨叶在旋转时桨距保持恒定;当它被操纵倾斜时,则每片桨叶在旋转中周期性地改变桨距。变距拉杆转至倾斜器上位时桨距加大,桨叶向上挥舞;转至下位时桨距减小,桨叶向下挥舞。这样

就形成旋翼旋转面的倾斜,使旋翼合力倾斜,产生一水平分力(图2)。直升机的前后和左右方向的飞行运动就是通过这种操纵实现的,称为周期变距操纵。飞行员操纵(提或压)总距杆使自动倾斜器沿旋翼轴平行向上或向下滑动。各片桨叶的桨距将同时增大或减小,使旋翼的升力增大或减小,直升机随之上升或下降。这种操纵称为总距操纵。 自动倾斜器,直升机上用以操纵旋翼实现升降、前后、左右运动的特殊装置,又称自动倾斜仪。自动倾斜器一般由类似轴承的旋转(外)环和不旋转(内)环组成。

共轴双旋翼直升机机倾斜器结构组成图示比起单旋翼直升机而言,共轴双旋翼直升机省略了尾桨,具有更好的悬停稳定性,作为核心部位,当然它的倾斜器结构也要比但旋翼直升机复杂许多,这是我最着迷的飞行器,这里我把以前收集的一些共轴双旋翼直升机机倾斜器结构图提供给大家,希望有共轴机爱好者喜欢。 这个是最经典的K-50倾斜器图片

这张是模型版本的

(完整word版)直升机桨毂结构

直升机结构(桨毂) 旋翼系统由桨叶和桨毂组成。旋翼形式是由桨毅形式决定的。它随着材料、工艺和旋翼理论的发展而发展。到目前为止,已在实践中应用的旋翼形式有铰接式、跷跷板式、无铰式和无轴承式,它们各自的原理如下表所示。 一、桨毂结构特点 (一)铰接式 铰接式(又称全铰接式)旋翼桨毂是通过桨毂上设置挥舞铰、摆振铰和变距铰来实现桨叶的挥舞、摆振和变距运动。典型的铰接式桨毂铰的布置顺序(从里向外)是由挥舞铰、摆振铰到变距铰,如图2.2—1所示。也有挥舞铰与摆振铰重合的。 在轴向铰中除了用推力轴承来负担离心力并实现变距运动外,另一种流行的方式是利用弹性元件拉扭杆来执行这个功能,如图2.2—2所示。这样在旋翼进行变距操纵时必须克服拉扭杆的弹性及扭短,为了减小操纵力,就必须使拉扭杆有足够低的扭转刚度。

铰接式桨毂构造复杂,维护检修的工作量大,疲劳寿命低。因此在直升机的发展中一直在努力改善这种情况。在20世纪60年代后期开始发展的层压弹性体轴承(橡胶轴承)也是解决这个问题的一个较好的方案,现已实际应用。 层压弹性体轴承也可称为核胶轴承,以图2.2—3b中径向轴承为例,这是由每两层薄橡胶层中间由金属片隔开并硫化在一起。内外因的相对转动是通过橡胶层的剪切变形来实现的,而径向负荷则要由橡胶的受压来传递。图中还表示了层压弹性轴承的一些基本形式,并标示了它允许的相对运动方向和受力方向。 图2.2—4为桨毂一个支管的构造。轴承组件的主要部分是一个球面弹性体轴承,桨叶的挥舞及摆振运动全部通过这个轴承来实现。此外靠近内端有一个层压推力铀承,桨叶变距运动的85%通过这个轴承的扭转变形来实现,其余15%则由球面轴承来实现。这种形式的桨毂是用一组层压弹性体轴承组件来实现挥舞铰、摆振铰、变距铰三铰的功能,这样使构造大大简化,零件数量也大大减少。同时由于不需要润滑及密封,维护检修的工作量亦少很多。 (二)桨毂减摆器 铰接式旋翼在摆振铰上都带有桨毂减摆器,简称为减摆器,为桨叶绕摆振铰的摆振运动提供阻尼。减摆器对于防止出现“地面共振”,保证其有足够的稳定性裕度是必要的。此外,对于装备涡轮轴发动机的直升机,发动机、传动系统及旋翼整个系统的扭转振动,由于存在着燃油控制系统而形成一个闭合回路,也存在着操纵响应的稳定性问题。对于这样一种自激振动,减摆器对集合型的摆振运动提供的阻尼也是有利的,即可以保证所要求的稳定性裕度。

直升机旋翼结构

直升机旋翼结构 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在1.5t以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个

机翼。旋翼的截面形状是一个翼型,如图2.5.1所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以?表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。 气流V 与翼弦之间的夹角即为该剖面的迎角α。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头 图2.5.1 直升机的旋翼 (a) (b)

直升机结构与系统综合

单元一 1.直升机的基准桨叶角取决于总距杆的位置和最大最小桨叶角取决于周期变距杆的移动量。 2.直升机驾驶员在落地前需要采取的动作叫做拉姿态通常是指修正直升机落地前的姿态和旋翼旋转平面的姿态。 3.直升机在有动力的情况下垂直下降且下降率较大,存在一个向上流动的趋势这将引起气流回流,造成涡环效应。涡环效应将造成气流分离、和振动、升力的减小。 4.转动部件的振动频率一般与部件的转动速度有关,而直升机上部件的转动速度各不相同,因此振动频率是识别振动来源的一个主要指标。振动频率一般分:低频振动、中频震动和高频振动。 5.防火系统分为火警探测系统、和灭火系统。 6.直升机灭火系统分为固定灭火系统和手提式灭火器。 7.液压泵种类繁多,按其结构形式可分为齿轮泵、叶片泵、和柱塞泵。按输出排量能否调节可分为定量泵和变量泵。8.在现代直升机液压系统中,中低压系统多采用齿冷泵,对于高压系统,一般采用柱塞泵。 9.在现代直升机的主桨毂和尾桨毂上安装弹性橡胶部件以取代传统的滚珠和滚棒轴承,实际应用中会有自然橡胶、合成橡胶、和自然与合成橡胶的混合体。 10.防、除冰系统按部位主要由空速管加温、发动机进气道加温、风挡加温、水平安定面除冰和旋翼电加温除冰等系统组成。 11.直升机的尾桨能平衡主桨的反扭矩和直升机航向操纵两种。 12.直升机消除和减少固有振动的方法安装节点梁、采用柔性安装

盘和安装减震器附件。 13.机械刹车系统由连接在传动轴上的刹车鼓轮、刹车操纵杆和刹车垫组成。 14.直升机绞车系统在直升机处于悬停状态时,用于垂直方向运送人员的装置,必要时也可以运送货物,绞车可以由下列部件操纵:液态马达、电动马达和气动马达。 15.过渡飞行状态是指直升机从悬停状态转换成飞行状态。的过程。 16.航空燃油的种类分为航空汽油和航空煤油。 17.液压泵种类繁多,按其结构形式可分为齿轮泵、叶片泵、和柱塞泵。按输出排量能否调节可分为定量泵和变量泵。 18.相对气流方向与翼弦之间的夹角, 称为迎角又叫攻角, 用α表示。根据气流指向不同, 迎角可分为正迎角、负迎角和零迎角。当迎角α大到某一程度, 再增加迎角, 升力不但不增加反而迅速下降, 这种现象我们叫做“失速”。失速对应的迎角就叫做“临界迎角”或“失速迎角”。 19.高度的表示绝对高度(True Altitude)相对海平面的高度。 真实高度(Absolute Altitude)相对地面的高度,又称为相对高度。 压力高度(Pressure Altitude)相对标准气压平面的高度。20.防、除冰系统按部位主要由空速管加温、发动机进气道加温、风挡加温、水平安定面除冰和旋翼电加温除冰等系统组成。 21.自由轮组件主要有两种类型,它们是滚棒式和制动轮式。 22.现代直升机通常采用燃气涡轮轴发动机提供所需的功率,用于驱动主旋

飞机基本结构

飞机结构详细讲解 机翼 机翼是飞机的重要部件之一,安装在机 上。其最主要作用是产生升力,同时也 在机翼内布置弹药仓和油箱,在飞行中 收藏起落架。另外,在机翼上还安装有 起飞和着陆性能的襟翼和用于飞机横向 纵的副翼,有的还在机翼前缘装有缝翼 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架 机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受 全部或大部分弯矩和剪力。翼梁一般由凸 缘、腹板和支柱构成(如图所示)。凸缘通 常由锻造铝合金或高强度合金钢制成,腹板 用硬铝合金板材制成,与上下凸缘用螺钉或 铆钉相连接。凸缘和腹板组成工字型梁,承 受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在 樯的凸缘很弱并且不与机身相连,其长 时仅为翼展的一部分。纵樯通常布置在 的前后缘部分,与上下蒙皮相连,形成 盒段,承受扭矩。靠后缘的纵樯还可以 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

相关主题
文本预览
相关文档 最新文档