当前位置:文档之家› 复合材料百度百科

复合材料百度百科

复合材料(百度百科)

复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

橡塑复合材料

复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材

料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。

[编辑本段]

分类

复合材料是一种混合物。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。

③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显

著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。

60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达25 0~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复

第五代战机复合材料

合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环

境变化的功能复合材料)、仿生复合材料、隐身复合材料等。

[编辑本段]

性能

复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的

材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,

再生树脂复合材料

使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。

[编辑本段]

成型方法

复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成

复合材料电缆支架

型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。

[编辑本段]

应用

复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的

verton复合材料

壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X 射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。

复合材料的发展和应用

复合材料电缆支架

复合材料是指由两种或两种以上不同物质以

不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多

行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景

气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商P PG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2 000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密

切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。

从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大

的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

树脂基复合材料的增强材料

树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。

1、玻璃纤维

目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进

水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。

2、碳纤维

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。

3、芳纶纤维

20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性

能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。

4、超高分子量聚乙烯纤维

超高分子量聚乙烯纤维的比强度在各种

纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用

前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。

5、热固性树脂基复合材料

热固性树脂基复合材料是指以热固性树

脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优

良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列

强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。

1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9 000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、

冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。

热塑性树脂基复合材料

热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增

强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、P EI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及

可回收

pvd复合材料

利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。

高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。

滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强P P在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制

成的蜂窝状结构的吸音天花板和轿车的摇窗

升降器卷绳筒外壳。

云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护

印度研发复合材料武装直升机

栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。

我国的热塑性树脂基复合材料的研究开

始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。

我国复合材料的发展潜力和热点

我国复合材料发展潜力很大,但须处理好以下热点问题。

1、复合材料创新

复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到2 5%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。

2、聚丙烯腈基纤维发展

我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN 基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。

3、玻璃纤维结构调整

我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复

“石墨烯电池”技术

传说中的“石墨烯电池”技术,难道是一场弥天大谎? 近几年来,石墨烯这种获过诺奖的材料一直广受社会关注,在相关媒体上也充满了各种“石墨烯电池”等方面的新闻。 广大群众此时可能会好奇:石墨烯这种材料到底有多少用处,能不能依靠它来解决目前材料、电池等方面遇到的一系列技术瓶颈,帮助电动汽车、储能等行业实现飞跃? 首先上一下结论:“石墨烯电池”这个技术接近于不存在,石墨烯只有在理论上能够提高充放电速率,而对于容(能)量的提升基本没有任何帮助(期望“石墨烯电池”可以解决手机/电动汽车续航的人要失望了),其噱头意义远大于实用价值。 而且石墨烯材料本身纳米材料的高比表面积等性质与现在的锂离子电池工业的技术体系是不兼容的,应用的希望十分渺茫。

在本文中,笔者将结合石墨烯的具体特性,来重点分析石墨烯相关技术,即所谓的“石墨烯电池”在锂电池/储能行业中的发展情况和应用前景。 定义问题:“石墨烯电池”是否存在? 此处,首先援引知乎用户@土豆泥同学的一篇关于石墨烯的文章,其中对于“石墨烯”电池的定义介绍如下: “事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。维基百科里也没有发现“graphene battery”或者“graphene Li-ion battery”这两个词条的解释。根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。这个解释显然是误导。 根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。之所以称为“锂离子电池”,是因为SONY在1991年将锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithium ion battery”。最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。 目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。那么以后如果负极用硅材料会不会叫做硅电池?也许可能吧。但不管怎么样,谁起主要作用就用谁命名。” 从此文可以看出,在电池中,以主要作用的成分(磷酸铁锂锂电池)、机理(液流电池等)来命名是一般通用的规则,那么对于“石墨烯电池”呢?

等离子技术及其应用

等离子技术及其应用 摘要 通过对等离子体的基本概念、分类和人工产生方法三个方面的介绍,在了解等离子的基础上,介绍了等离子射流喷涂、等离子显示技术、低温等离子治疗系统和等离子清洗技术,深入说明等离子技术在生活中的广泛应用。 关键字 等离子体等离子体产生法等离子射流喷涂等离子显示技术低温等离子治疗等离子清洗 引言 等离子技术是一个新兴的领域,该领域结合等离子物理、等离子化学和气固相界面的化学反应,此为典型的高科技产业,需跨多种领域,包括化工、材料和电机,因此将极具挑战性,也充满机会,由于半导体和光电材料在未来得快速成长,此方面应用需求将越来越大。 一、概述 所谓等离子体,就电气技术而言,它指的是一种拥有离子、电子和核心粒子的不带电的离子化物质。等离子体包括有,几乎相同数量的自由电子和阳极电子。在一个等离子中,其中的粒子已从核心粒子中分离了出来。因此,当一个等离子包括大量的离子和电子,从而是电的最佳导体,而且它会受到磁场的影响,当温度高时,电子便会从核心粒子中分离出来了。 1等离子体的分类 1.1根据低温和高温可分为高温等离子体和低温等离子体两类。 在等离子体中,不同微粒的温度实际上是不同的,所具有的温度是与微粒的动能即运动速度质量有关,把等离子体中存在的离子的温度用Ti表示,电子的温度用Te表示,而原子、分子或原子团等中性粒子的温度用Tn表示,对于Te大大高于Ti和Tn的场合,即低压体气

的场合,此时气体的压力只有几百个帕斯卡,当采用直流电压或高频电压做电场时,由于电子本身的质量很小,在电池中容易得到加快,从而可获得平均可达数电子伏特的高能量,对于电子,此能量的对应温度为几万度(K),而弟子由于质量较大,很难被电场加速,因此温度仅几千度。由于气体粒子温度较低(具有低温特性),因此把这种等离子体称为低温等离子体。当气体处于高压状态并从外界获得大量能量时,粒子之间的相互碰撞频率大大增加,各种微粒的温度基本相同,即Te基本与Ti及Tn相同,我们把这种条件下得到的等离子体称为高温等离子体,太阳就是自然界中的高温等离子体。 1.2根据产生等离子体时应用的气体的化学性质不同,可分为不活泼气体等离子体和活泼气体等离子体两类。 不活泼气体如氩气(Ar)、氮气(N2)、氟化氮(NF3)、四氟化碳(CF4)等,活泼气体如氧气(O2)、氢气(H2)等,不同类型的气体在清洗过程中的反应机理是不同的,活泼气体的等离子体具有更强的化学反应活性,这将在后面结合具体应用实例介绍。 2等离子体的人工产生法 2.1感应偶合式等离子体产生法(ICP) 感应偶合式等离子体(Inductively-Couplede-Plasma,ICP)的工作原理,就是在线圈上加上一个高频电源,当线圈上的电流改变时,就可由“安培定律”知道,当感应产生一变动磁场,同时可由“法拉第定律”知道此变动之磁场会感应出一个反应方向的电场,此电场会加速等离子体中的电子而形成一线圈电流相反的二次电流。并且随着与加于线圈上的电流不断改变,而感应出的电场也不断改变,这不断改变电场与平板式高调波等离子体一样能用来加速电子以维持等离子体,所不同的是电场与电极方向不同。在平板式高调波等离子体中电子受电场影响而运动方向垂直于电极,所以会有许多电子逃离等离子体跑到电极上,使能量消耗在加热电极上,而在感应偶合式等离子中,电子受感应电场的影响而使运动方向与电极平行,因此不会有太多的电子损耗在电极上,固可以维持线圈周围相当高的电子密度。ICP的主要优点有: a等离子体密度高、解离率高,能够在相当大的压力范围上保持高密度等离子体。 b 平板式ICP可大面积操作。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

现行黑板利弊研究报告

现行黑板利弊分析 研究人:宋思存莫佰川 导言 从原始到现代,教室中的设备不断地更新着。每一份教学用具,都为人类知识的传承立下了汗马功劳。但是,先进的教学用具显然能够提高教学的效率,能更好地传承前辈留下来的智慧结晶。所以,历代教育工作者推陈出新,一直在完善现有的工具。然而,究竟什么样的东西才是真正适合的、有用的,自然需要仔细验证。毕竟教育乃是重中之重,且容不得一丝马虎。 作为教室里的必备的用具之一,能记录教师上课手书的黑板一直是我们关注的重点。黑板从最早的用黑色涂料涂抹在木板、水泥等坚硬物体表面,到九十年代的水磨玻璃,现在的彩涂钢板,复合材料板。时代在进步,黑板的种类也开始变的复杂多样。如若细细分类,现存于市场上的黑板种类竟多达十余种。从这么多的黑板中,选出合适学生情况的黑板,并不是一件简单的事情。所以,我们将对现在的各种黑板做一个详细的利弊分析,为对黑板的选择提供参考。我们将分类进行探讨。 关键词:颜色、形状、材料、结构、展望 1.颜色 当我们第一眼看见黑板,首先便会对它的颜色产生一个直观的印象。现在的黑板颜色大致分为黑板、绿板和白板三种(电子黑板单独讨论)。其中,黑板和绿板主要使用白色粉笔

书写,而白板则使用马克笔书写。在此,我们先暂不讨论其他因素,而将颜色对比对视觉效果的影响做单独讨论。 黑板 白纸黑字,几千年来一直被 广泛地使用。时至今日,大部分 纸质载体依然采用这一古老的 配色方法。这是因为黑白对比是 最为明显的。考虑到清洁保持的 原因,黑白一开始采用的就是黑 底白字这样的反色方案。19世 纪,人们用黑漆涂在木板表面,以保护木板不被侵蚀,当然那时黑板的主要作用并非是教学,直到19世纪中期才在世界各地学校流行起来。白粉笔在黑色的板子上字迹清晰、明锐。同时,黑色的颜料多为炭黑,白粉笔原料为石膏,两者价格都十分低廉,减少了教育推广的阻碍。 但是,随着医学、生理及心理学知识的深化更新,这种传统的黑板受到了新的理论的挑战。科学研究显示,黑色的黑板无论对学生的学习效率还是身心健康,都是十分不利的。 不同的环境色彩,对人可产生不同的生理及心理效应,比如蓝色能使人安静、清除紧张等,这是人尽皆知的。一些眼科专家的观点是,黑板颜色是波长最短的一种颜色,它会给人一种压抑感,长时间目睹单一的黑色,会使人陷入抑郁、紧张、恐俱这类的不良心理状态,长此以往,将影响心理健康,导致心身疾病。一长时间的凝视黑板,还容易导致视觉疲劳,有悖于用眼卫

卡-50“黑鲨”武装直升机_百度百科

卡-50“黑鲨”武装直升机_百度百科 KA-50 [编辑本段] Ka-50 Kamov Ka-50卡-50 黑鲨是俄罗斯卡莫夫直升机科技集团正在研制的新型共轴式反转双旋翼武装直升机,(北约代号:"Hokum A")。开始设计于1980年代于1995投入服役。目前只有Arseniev公司有生产许可特权。1990年代末期,卡莫夫和以色列空军合作研发一种纵列双座版本,称为Kamov Ka-50-2)Erdogan (土耳其文的"天生战士"),以参加土耳其的军用机竞标案。卡莫夫后来又设计另一种双座版,称为Kamov Ka-52鳄鱼 (北约代号:"Hokum B"). 据卡莫夫集团证实,“好嚎头”不是空战直升机,而是一种用于压制敌方地面部队火力的突击武装直升机。卡—50“嚎头”除能完成反坦克任务外,还可用来执行反舰/反潜、搜索和救援、电子侦察等任务。集团还准备研制卡—;0的双座教练型。西方目前尚

没有与之相匹敌的直升机。目前集团正准备为“唬头”换装西方 KA-50 发动机、1电子设备和武器、LA而为打入西方市场开辟一条蹊径。 为提高生存能力,卡—50采用了红外抑制技术、红外诱饵撒布装置和装甲。“嚎头”的准确价值不清楚,但据说比美国的AH—64“阿帕奇”便宜得多。 [编辑本段] 设计特点 旋翼系统3片桨叶的共轴式反转旋翼,旋翼桨尖后掠。其先进性与美国西科斯基公司的“前行桨叶概 念”(ABC)旋翼不相上下。由于采用共轴反转旋翼布局,不再需要尾桨,省去了尾桨及一整套传动和操纵装 置,因此大大提高了卡—50的机动性和灵活性。发动机全部功率都可用于驱动旋翼。 机身机身较窄,具有很好的流线型,机头早锥形,机头前部装皮托管和为火控计算机提供数据的传 感器,机头下方装有探测器舱。机身两侧有短翼,每侧短翼下有2个挂架,挂架上可挂导弹或火箭弹,也可吊挂外部油箱。机身的主结构件是1个1米宽1米高的盒形梁,旋翼减速器和发动机部装在梁上。后机身上有 KA-50三视图

碳纳米管力学性能

由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。 碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只 有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约 800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定 得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性, 给复合材料的性能带来极大的改善。 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。在工业上常用的增强 型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。2000年10月,美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度 高100倍,重量却只有后者的1/6到1/7。碳纳米管因而被称“超级纤维”。 莫斯科大学的研究人员曾将碳纳米管置于1011 MPa的水压下(相当于水下10000米深的 压强),由于巨大的压力,碳纳米管被压扁。撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。这启示人们可以利用碳纳米管制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。 此外,碳纳米管的熔点是已知材料中最高的。 导电 碳纳米管导电 碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大 于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的 一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽 管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。

伸缩节的简明介绍

目录 一、伸缩器介绍 (2) 二、伸缩器作用 (2) 三、伸缩器分类 (3) 弯管式膨胀节 (3) 波纹管膨胀节 (3) 套管伸缩节 (4) 四、非金属膨胀节 (5) 橡胶风道膨胀节 (5) 纤维织物膨胀节 (6) 五、各种管材特点以及适用范围 (6) 非金属 (7) 不锈钢 (7) 金属 (7)

一、伸缩器介绍 伸缩器也可称为管道伸缩节、膨胀节、补偿器,伸缩器。伸缩节是泵、阀门,管道等设备与管道连接的新产品,通过全螺栓把它们连接起来,使其成为整体,并有一定的位移量,方便安装。可承受管线的轴向压力。这样就可以在安装维修时,根据现场安装尺寸进行调整,在工作时,不仅提高工作效率,而且对泵、阀们等管道设备起到一定保护作用。伸缩节分为:波纹伸缩节、套筒伸缩节、方形自然补偿伸缩节等几大类型,其中以波纹伸缩节较为常用,主要为保障管道安全运行。 管道伸缩器是管道连接中由于热胀冷缩引起的尺寸变化给予补偿的连接件。管道伸缩器最常用的有两种,一种是橡胶管道伸缩器,另一种是金属管道伸缩器。 橡胶管道伸缩器特点: 一、体积小、重量轻、弹性好、安装维修方便。 二、安装时可产生轴向、横向、经向、角向位移,不受用户管道不同心、法兰不平行的限制。 三、工作时可减振降噪。 四、用特殊的合成橡胶可耐高温、耐酸碱、耐油,是化工耐腐蚀管道的理想产品。 金属管道伸缩器的主要特点: 伸缩补偿量大,承受温度高,承受压力大。 二、伸缩器作用 1.补偿吸收管道轴向、横向、角向受热引起的伸缩变形。 2.吸收设备振动,减少设备振动对管道的影响。 3.吸收地震、地陷对管道的变形量。

因为管道的热胀冷缩,所以对于管道来说,就要产生管壁的应力和推拉力;管壁应力大小,影响管道的强度,推拉力增大,管道的固定支架就要做的很大,来承受管道伸缩所产生的推拉力;所以利用伸缩节补偿的变开量办法,以降低管壁应力和推力。 三、伸缩器分类 伸缩节(膨胀节)主要用于补偿管道因温度变化而产生的伸缩变形,也用于管道因安装调整等需要的长度补偿,主要分为弯管式膨胀节、波纹管膨胀节和套管伸缩节3种结构形式。 弯管式膨胀节 将管子弯成U形或其他形体(图1[弯管式膨胀节]),并利用形体的弹性变形能力进行补偿的一种膨胀节。它的优点是强度好、寿命长、可在现场制作,缺点是占用空间大、消耗钢材多和摩擦阻力大这种膨胀节广泛用于各种蒸汽管道和长管道上。 波纹管膨胀节 用金属波纹管制成的一种膨胀节。它能沿轴线方向伸缩,也允许少量弯曲。图2[波纹管膨胀节]为常见的轴向式波纹管膨胀节,用在管道上进行轴向长度补偿。为了防止超过允许的补偿量,在波纹管两端设置有保护拉杆或保护环,在与它联接的两端管道上设置导向支架。另外还有转角式和横向式膨胀节,可用来补偿管道的转角变形和横向变形。这类膨胀节的优点是节省空间,节约材料,便于标准化和批量生产,缺点是寿命较短。波纹管膨胀节一般用于温度和压力不很高、长度较短的管道上。随着波纹管生产技术水平

玻璃钢-百度百科

玻璃钢 玻璃钢(FRP)亦称作GRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚脂、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 含义 玻璃钢学名玻璃纤维增强塑料。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。复合材料的概念是指一种材料不能满足使用要求,需要由两种或两种以上的材料复合在一起,组成另一种能满足人们要求的材料,即复合材料。例如,单一种玻璃纤维,虽然强度很高,但纤维间是松散的,只能承受拉力,不能承受弯曲、剪切和压应力,还不易做成固定的几何形状,是松软体。如果用合成树脂把它们粘合在一起,可以做成各种具有固定形状的坚硬制品,既能承受拉应力,又可承受弯曲、压缩和剪切应力。这就组成了玻璃纤维增强的塑料基复合材料。由于其强度相当于钢材,又含有玻璃组分,也具有玻璃那样的色泽、形体、耐腐蚀、电绝缘、隔热等性能,象玻璃那样,历史上形成了这个通俗易懂的名称“玻璃钢”,这个名词是由原国家建筑材料工业部部长赖际发同志于1958年提出的,由建材系统扩至全国,现在还普遍地采用着。由此可见,玻璃钢的含义就是指玻璃纤维作增强材料、合成树脂作粘结剂的增强塑料,国外称玻璃纤维增强塑料。随着我国玻璃钢事业的发展,作为塑料基的增强材料,已由玻璃纤维扩大到碳纤维、硼纤维、芳纶纤维、氧化铝纤维和碳化硅纤维等,无疑地,这些新型纤维制成的增强塑料,是一些高性能的纤维增强复合材料,再用玻璃钢这个俗称就无法概括了。考虑到历史的由来和发展,通常采用玻璃钢复合材料,这样一个名称就较全面了。 优点 轻质高强 相对密度在1.5-2.0之间,只有碳钢的1/4-1/5,可是拉伸强度却接近,甚至超过碳素钢,

PVDF

一、什么是PVDF,有何特性,压电特性相比其他如何? 聚偏氟乙烯(PVDF)是一种半晶态铁电聚合物, 目前,已测得PVDF的晶型有5种。相、β相、γ相、ε相及ρ相。各种晶体结构的生成取决于加工条件,在一定条件(如拉伸、极化、浇注等处理方法)下,这些晶相之间可以互相转变。α相是5种晶型中能量最低,最稳定的结构,PVDF由液态缓慢冷却或由溶液流延形成薄膜时,通常都形成α相。经过拉伸、电极化后形成的日相PVDF显示出强的压电、热释电性质。PVDF具有较宽的工作温度范围,其体电阻高、质量轻、柔顺性好,且机械强度高、频响宽。 ——《电场作用下P V D F薄膜的结构相变与剩余极化特性研究》 叶芸,蒋亚东,吴志明一,曾红娟( 电子科技大学光电信息学院,四川成都) PVDF树脂主要是指偏氟乙烯均聚物或者偏氟乙烯与其他少量含氟乙烯基单体的共聚物,PVDF树脂兼具氟树脂和通用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、介电性、热电性等特殊性能,是目前含氟塑料中产量名列第二位的大产品,全球年产能超过4.3万吨。PVDF应用主要集中在石油化工、电子电气和氟碳涂料三大领域,由于PVDF良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的最佳材料之一。其良好的化学稳定性、电绝缘性能,使制作的设备能满足TOCS以及阻燃要求,被广泛应用于半导体工业上高纯化学品的贮存和输送,近年来采用PVDF树脂制作的多孔膜、凝胶、隔膜等,在锂二次电池中应用,目前该用途成为PVDF 需求增长最快的市场之一。PVDF是氟碳涂料最主要原料之一,以其为原料制备的氟碳涂料已经发展到第六代,由于PVDF树脂具有超强的耐候性,可在户外长期使用,无需保养,该类涂料被广泛应用于发电站、机场、高速公路、高层建筑等。另外PVDF树脂还可以与其他树脂共混改性,如PVDF与ABS树脂共混得到复合材料,已广泛应用于建筑、汽车装饰、家电外壳等。 化学结构中以氟一碳化合键结合,这种具有短键性质的结构与氢离子形成最稳定最牢固的结合.因而氟碳涂料具有特异的物理化学性能,不但有很强的耐磨性和抗冲击性能,而且在极端严酷与恶劣的环境中有很高的抗褪色性与抗紫外线性能。 PVDF 是有机压电材料,又称压电聚合物,。这类材料及其材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点为世人瞩目,且发展十分迅速,现在水声超声测量,压力传感,引燃引爆等方面获得应用。不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。 PVDF亲水性较差,长期浸泡在水中会吸附水中杂质、细菌 ——百度百科 ——《PVDF压电薄膜传感器的制作研究》赵东升

环氧丙烷 结构

环氧丙烷 1. 简介 环氧丙烷(Epichlorohydrin)是一种有机化合物,化学式为C3H5ClO。它是一种无色液体,在常温下具有刺激性气味。环氧丙烷具有较高的挥发性和易燃性,可以溶解于多种有机溶剂中。 2. 结构 环氧丙烷的分子结构中包含一个环氧基团和一个氯原子。环氧基团由两个碳原子和一个氧原子组成,形成了一个三角形的环状结构。这个结构使得环氧丙烷具有很强的反应活性。 3. 物理性质 •分子量:92.52 g/mol •密度:1.180 g/cm³ •沸点:116 °C •熔点:-57 °C •闪点:31 °C 4. 生产方法 4.1 氯水法 环氧丙烷最常用的生产方法是通过将丙烯与氯气反应得到。反应方程式如下: C3H6 + Cl2 -> C3H5Cl + HCl 然后,将产生的环氧丙烷和碱性水溶液(如氢氧化钠)反应,生成环氧丙烷。反应方程式如下: C3H5Cl + NaOH -> C3H5OCH2Na + H2O 4.2 氯醇法 另一种生产环氧丙烷的方法是将丙醇与氯气反应。反应方程式如下: C3H8O + Cl2 -> C3H7Cl + HCl 然后,将产生的环氧丙烷和碱性水溶液(如氢氧化钠)反应,生成环氧丙烷。反应方程式如下: C3H7Cl + NaOH -> C3H7OCH2Na + H2O

5. 应用领域 5.1 树脂制造 由于环氧丙烷具有较高的耐化学性和粘附性,它被广泛用于树脂制造中。通过将环氧丙烷与酚醛树脂、聚酯树脂等进行缩合反应,可以制备出各种用途的环氧树脂。这些环氧树脂可以用于涂料、胶粘剂、复合材料等领域。 5.2 表面活性剂 环氧丙烷还可以用作表面活性剂的原料。通过与聚醚或聚酸进行缩合反应,可以制备出具有良好表面张力和乳化性能的环氧丙烷衍生物。这些表面活性剂广泛应用于洗涤剂、乳化剂、润滑剂等领域。 5.3 医药领域 环氧丙烷在医药领域也有一定的应用。它可以用作抗菌药物和消毒剂的原料,具有较强的杀菌能力。此外,环氧丙烷还可用于合成某些药物和生物活性化合物。 6. 安全注意事项 由于环氧丙烷具有较高的挥发性和易燃性,使用时需要注意以下安全事项: •避免接触皮肤和眼睛,使用时需佩戴防护手套和眼镜。 •远离明火和高温源,存放在阴凉、通风良好的地方。 •使用时应避免吸入其蒸气,工作场所应保持通风良好。 •在操作过程中,应注意防止环氧丙烷泄漏和溅入其他化学品。 7. 结论 环氧丙烷是一种有机化合物,具有较高的反应活性和广泛的应用领域。它在树脂制造、表面活性剂和医药领域都有重要的应用。然而,由于其挥发性和易燃性,使用时需要谨慎操作,并注意安全事项。 参考文献: 1. [Epichlorohydrin - Wikipedia]( 2. [环氧丙烷 - 百度百科](

复合材料百度百科

复合材料(百度百科)

复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 橡塑复合材料 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材

料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 [编辑本段] 分类 复合材料是一种混合物。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。 ③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显

铜箔pet概念

铜箔pet概念 铜箔PET概念 简介 铜箔PET(Polyethylene terephthalate)是一种以聚酯为基材,表面涂布有一层薄铜箔的复合材料。它具有优异的电导性能、高温稳 定性和机械强度,因此在电子、通信、航空航天等领域具有广泛的应用。 特点 •电导性能优异:铜箔PET具有良好的电导性能,可以作为电子产品中的导电层,更好地传导电流,提高设备的稳定性 和可靠性。 •高温稳定性:铜箔PET的结构使其具有较高的耐高温性能,可以在高温环境下工作,适用于一些对温度要求较高的领 域。 •机械强度:铜箔PET具有较高的机械强度,可以防止弯曲和破损,在使用过程中更加耐用。 应用领域 铜箔PET的优良性能使其在以下领域得到广泛应用:

1.电子:铜箔PET常被用作导电材料,如手机薄膜开关、 触摸屏和线路板等。 2.通信:铜箔PET可以用于制作高频电缆和扩缩径设备, 满足通信设备对信号传输性能和电磁屏蔽的要求。 3.航空航天:铜箔PET在航空航天领域中常被应用于导 热片、热敏电阻器和燃料电池等器件中,用于散热和电导。 4.医疗设备:铜箔PET可以制成导电贴片、导电布和导 电织物等用于医疗设备中,用于监测和传导生物电信号。 5.新能源:铜箔PET广泛应用于太阳能电池、锂电池和 燃料电池等清洁能源装置中,提高能源转换效率。 发展趋势 随着电子领域的不断发展和需求的增加,铜箔PET的市场需求也 在不断扩大。同时,技术的不断创新和材料的改进也为铜箔PET的应 用提供了更广阔的空间。未来,铜箔PET有望继续在电子、通信、航 空航天等领域发挥重要作用,并向更多领域拓展应用。 以上就是对铜箔PET概念及其相关内容的简述,希望能对读者对 该领域有更深入的了解。 质量要求 铜箔PET作为一种复合材料,其质量要求较高,主要包括以下几 个方面:

纳米材料发展史

纳米材料发展史 【摘要】本文简要介绍了什么是纳米材料,以及纳米材料的发展历史,纳米材料的特殊物理效应及其应用 【关键词】纳米材料发展历史材料科学 一什么是纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。 几种纳米材料 由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。 1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。 到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制

土木工程材料与可持续发展

土木工程材料与可持续发展 土木工程材料与可持续发展 摘要:当今社会的主题是可持续发展,而土木工程又属于一种高消耗材料的行业,所以我们应当把可持续发展的理念运用到土木工程的材料中。通过运用新的理念和材料来达到可持续发展的目的,由此我们展开论述。 关键词:土木工程材料,可持续性发展,绿色建材 土木工程材料是所有土木工程的物质基础,简单说就是在土木工程施工过程中使用的各种原材料和制件。土木工程材料的选择对于建筑的外观、质量以及成本有着重要的影响,随着自然资源被无节制的开发,资源面临枯竭,如何提高资源的使用率,如何能在建材使用过程中减少或者避免对自然环境的破坏就成为一个现实的课题。于是“生态建材”应运而生,很好的协调了资源与环境的关系,达到了对资源的充分利用同时保护了自然环境。目前从生态建材的发展趋势来看,主要有几个方向。 1、利用新技术对现有建筑材料的革新 利用最新的科学技术对传统的建筑材料进行革新,使其除了在保持原有的使用价值外还具有一些新的环保效果。而对传统建筑材料所采用的技术主要有以下几种:大气净化与光合作用技术、细菌优化技术、远红外以有害气体防治技术、离子交换法、多层次复合材料制备技术等等。 2、开发新型生态建材 随着人们生活水平的提高,人们对住房的居住条件的要求不再局限于简单的生活居住要求,而是对其舒适度、健康性、安全性提出了新的要求,所以医疗方面的一些抗菌剂和建筑材料的结合就成为一个发展趋势。对于传统的建材,通过使用催化剂和抗菌剂使其具有净化和抗菌的效果,成为一种生态建材。眼下市场中常见的生态建材主要有具有净化功能的涂料、具有抗菌、防臭、防霉效果的装饰材料、具有调光功能的玻璃窗、防紫外线辐射的玻璃窗、自我空气净化效果的

贵州新版工程材料报验范本

贵州新版工程材料报验范本 1. 工程材料报验表的格式是什么样的 填写留意事项,如何报审,监理工程师如何签收施工单位报送材料。 一、一般报验申请表都是在监理单位的材料表格里,由于根据监理单位职能,监理单位对整个工程受建设单位托付而全部担任,因而报验单没有单独给建设单位制定的表格,检验记录会签栏一般都会有“监理(建设)单位签章”一栏。 二、凡结构设计施工图所配各种受力钢筋应有钢筋出厂合格证及力学性能现场抽样检验报告单,出厂合格证备注栏中应由施工单位注明单位工程名称、使用部位和进场数量。 三、工程测量定位记录应当全部预备的:建筑工程基本状况表建设批文材料,建设工程规划许可证,建设工程中标通知书,施工合同,监理合同,建设单位资质、人员证书复印件项目监理机构及相关证书复印件设计单位资质、人员证书复印件勘察单位资质、人员证书复印件项目施工机构及相关证书复印件。 2. 工程材料进场都有哪些材料需要报验 (一)金属材料:金属材料是最重要的工程材料,包括金属和以金属为基的合金。工业上把金属和其合金分为两大部分:黑色金属材料:铁和以铁为基的合金(钢、铸铁和铁合金)。 有色金属材料:黑色金属以外的全部金属及其合金。

应用最广的是黑色金属。以铁为基的合金材料占整个结构材料和工具材料的90.0%以上。黑色金属材料的工程性能比较优越,价格也较廉价,是最重要的工程金属材料。 (二)非金属材料:非金属材料也是重要的工程材料。它包括耐火材料、耐火隔热材料、耐蚀(酸)非金属材料和陶瓷材料等。 (三)高分子材料:高分子材料为有机合成材料,也称聚合物。它具有较高的强度、良好的塑性、较强的耐腐蚀性能,很好的绝缘性和分量轻等优良性能。 在工程上是进展最快的一类新型结构材料。高分子材料品种许多,工程上通常依据机械性能和使用形态将其分为三大类:塑料、橡胶、合成纤维。 (四)复合材料:复合材料就是用两种或两种以上不同材料组合的材料,其性能是其它单质材料所不具备的。复合材料可以由各种不同品种的材料复合组成。它在强度、刚度和耐蚀性方面比单纯的金属、陶瓷和聚合物都优越,是特别的工程材料,具有宽阔的进展前景。 扩展材料: 从用途来分:可分为电子材料、航空航天材料、核材料、建筑材料、能源材料、生物材料等。 按部位分类:就是按材料在空间的使用部位来将材料分类,如内墙材料、外墙材料、顶棚材料地面材料等。但这种分法确立之后,遇到一种材料既可以用到室内,也可以用到室外。 在室内,一种材料既可以用在地面、墙面,又可以用到顶棚上去,

碳纤维_论文

碳纤维在航空航天中的应用 摘要:碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。本文将针对碳纤维的结构、性能、制备方法及其在航空航天中的应用介绍。 引言 20世纪纳米科技取得了重大发展,而纳米材料是纳米技术的基础,碳纤维是一种比强度比钢大,比重比铝轻的材料,它在力学,电学,热学等方面有许多特殊性能,碳纤维的强度比玻璃钢的强度高;同时它还具有优异的导电、抗磁化、耐高温和耐化学侵蚀的性能,被认为是综合性能最好的先进材料,因此它在各个领域中的应用推广非常迅速。在近代工业中,特别是在航空航天中起着十分重要的作用。 1.碳纤维的概念 碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。 2.碳纤维的结构 碳纤维的结构决定于原丝结构和炭化工艺。对有机纤维进行预氧化、炭化等工艺处理,除去有机纤维中碳以外的元素,形成聚合多环芳香族平面结构。在碳纤维形成过程中,随着原丝的不同,质量损失可达10~80%,形成了各种微小的缺陷。但无论用哪种材料,高模量的碳纤维中的碳分子平面总是沿纤维轴平行的取向。用x一射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构。碳纤维呈现乱层石墨结构。在乱层石墨结构中,石墨层片仍是最基本结构单元,一般由数张到数十张层片组成石墨微晶,这是碳纤维的二级结构单元。层片之间的距离叫面间距d,由石墨微晶再组成原纤维,其直径为50nm左右,长度为数百nm,这是纤维的三级结构单元。最后由原纤维组成碳纤维的单丝,直径一般为6—8μm。原纤维并不笔直,而是呈弯曲、裙皱、彼此交叉的许多条带组成的结构。在这些条带的结构中,存在着针形孔隙,其宽度为1.6—1.8nm,长度可达几十nm。在碳纤维结构中的石墨微晶与纤维轴构成一定的夹角,称为取向角,这个角的大小影响纤维模量的高低。如聚丙烯脯基碳纤维的d为0.337nm,取向角为8°。碳纤维结构是高倍拉伸的、沿轴向择优取向的原纤维和空穴构成的高度有序织态结构。影响碳纤维强度的重要因素是纤维中的缺陷。碳纤维中的缺陷主要来自两方面,一方面是原丝带来的缺陷,另一方面是炭化过程中产生的缺陷。原丝带来的缺陷在炭化过程中可能消失小部分,而大部分将保留下来,变成碳纤维的缺陷。同时,在炭化过程中,由于大量的元素以及各种气体的形成逸出,使纤维表面和内部形成空穴和缺陷。 3.碳纤维的性能 3.1 碳纤维的力学性能

钛合金管百度百科

钛合金管 TA1 TA2 TA3 相关标准有: GB/T 3620.1—94 钛及钛合金牌号和化学成分 GB/T 3625—95 换热器及冷凝器用钛及钛合金管 TA1、TA2、TA3均为工业纯钛,它们具有较高的力学性能、优良的冲压性能,并可进行各种形式的焊接,焊接接头强度可达基体金属强度的90%,且切削加工性能良好。钛管对氯化物、硫化物和氨具有较高的耐蚀性能。 钛在海水中的耐蚀性比铝合金、不锈钢、镍基合金还高。钛耐水冲击性能 也较强. 用于制造凝汽器管子,可在受污染的海水、悬浮物含量高的水中,及 在较高的流速下使用. 钛合金按组织可分三类.(1钛中加入铝和锡元素.2钛中加入铝铬钼钒 等合金元素.3钛中加入铝和钒等元素.)钛合金具有强度高而密度又小,机 械性能好,韧性和抗蚀性能很好.另外:钛合金的工艺性能差,切削加工困难.在热加工中,非常容易吸收氢氧氮碳等杂质.还有抗磨性差,生产工艺复杂. 以钛为基加入其他元素组成的合金。钛的工业化生产是1948年开始的。航空工业发展的需要,使钛工业以平均每年约 8%的增长速度发展。目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。使用最广泛的 钛合金是Ti-6Al-4V(TC4),Ti-5Al- 2.5Sn(TA7)和工业纯钛(TA1、TA2和 TA3)。 钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高 速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及 环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于 生产贮氢材料和形状记忆合金等。 中国于1956年开始钛和钛合金研究;60年代中期开始钛材的工业化生产并研制成TB2合金。 特点钛合金与其他金属材料相比,有下列优点:①比强度(抗拉强度/密度)高(见图),抗拉强度可达100~140kgf/mm2,而密度仅为钢的60%。②中温强度好,使用温度比铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。③耐蚀性好,在大气中钛表面立即形成一层均匀致密的氧化膜,有抵抗多种介质侵蚀的能力。通常钛在氧化 性和中性介质中具有良好的耐蚀性,在海水、湿氯气和氯化物溶液中的耐

材料——高热导率绝缘材料整理

高热导率绝缘材料 整理

目录 一常见材料的热导率 (4) 二影响材料热导率的因素 (4) 三高热导率材料的制备与性能 (4) 3.1 高导热基板材料 (5) 3.2.1 高热导率无机物填充聚乙烯复合塑料 (5) 3.2.2 高热导率无机物填充酚醛树脂复合塑料 (6) 3.3高导热高弹性硅胶材料 (6) 3.4高导热粘合剂材料 (7) 四高热导率材料的一些发展思路 (8) 4.1 开发新型导热材料 (8) 4.2 填充粒子表面改性处理 (8)

4.3 成型工艺条件选择及优化 (8) 五热传递解决思路的几个考虑因素 (8) 5.1 热阻值的考虑 (8) 5.2 接触热阻的考虑 (9) 六参考文献 (10)

一常见材料的热导率 钻石的热导率在已知矿物中最高的。各类物质的热导率〔W/(m·K)〕的大致范围是:金属为50~415,合金为12~120,绝热材料为0.03~0.17,液体为0.17~0.7,气体为0.007~0.17,碳纳米管高达1000以上。①一些常用材料的热导率详见“附录一”。 二影响材料热导率的因素 热导率λ与材料本身的关系如下表:①④ 三高热导率材料的制备与性能

3.1 高导热基板材料 高散热系数之基板材料是LED封装的重要部分,氧化铝基板为大功率LED 的发展做出了很大的贡献。但随着LED功率更大化的发展,氧化铝材料已经不能够满足。如何得到更优良的散热基板,一直是LED行业追求的方向。⑨ 被寄希望取代氧化铝的材料包含了两类: 第一类为单一材质基板,如硅基板、碳化硅基板、阳极化铝基板或氮化铝基板。其中硅及碳化硅基板之材料半导体特性,使其现阶段遇到较严苛的考验。而阳极化铝基板则因其阳极化氧化层强度不足而容易因碎裂导致导通,使其在实际应用上受限。因而,现阶段较成熟且普通接受度较高的即为以氮化铝作为散热基板。然而,目前受限于氮化铝基板不适用传统厚膜制程(材料在银胶印刷后须经850℃大气热处理,使其出现材料信赖性问题),因此,氮化铝基板线路需以薄膜制程备制。以薄膜制程备制之氮化铝基板大幅加速了热量从LED晶粒经由基板材料至系统电路板的效能,因此大幅降低热量由LED晶粒经由金属线至系统电路板的负担,进而达到高热散的效果。⑨ 第二类为陶瓷基复合材料基板(覆铜板等) 3.2 高导热塑料材料 对填充型导热绝缘高分子,热导率取决于高分子和导热填料的协同作用。分散于树脂中的导热填料,当填料量提高到某一临界值时,填料间形成接触和相互作用,体系内形成了类似网状或链状结构形态。当导热网链的取向与热流方向一致时,材料导热性能提高很快;体系中在热流方向上未形成导热网链时,会造成热流方向上热阻很大,导致材料导热性能很差。因此,在体系内最大程度上形成热流方向上的网链是核心所在。⑤ 部分无机填料的热导率见下表:⑤ 3.2.1 高热导率无机物填充聚乙烯复合塑料 Hatsuo I研究了BN/PB(聚丁二烯) 热导率及力学性能,研究发现BN的高导

相关主题
文本预览
相关文档 最新文档