当前位置:文档之家› 高中物理带电粒子在复合场中的运动练习题及答案

高中物理带电粒子在复合场中的运动练习题及答案

高中物理带电粒子在复合场中的运动练习题及答案
高中物理带电粒子在复合场中的运动练习题及答案

一、带电粒子在复合场中的运动专项训练

1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量

为+q 的粒子由小孔下方

2

d

处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。不计粒子的重力。

(1)求极板间电场强度的大小;

(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、

4mv

qD

,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.

【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)

【答案】(1)2

mv qd

(2)4mv qD 或43mv qD (3)5.5πD

【解析】 【分析】 【详解】

(1)粒子在电场中,根据动能定理2

122

d Eq mv ?=,解得2mv E qd =

(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为

/2

E R 由2

1

1

v qvB m r =,解得4mv B qD = 则当外切时,半径为

e R

由2

12

v qvB m r =,解得43mv B qD =

(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为00

10016819

U U U ≤≤;Ⅱ

区域的磁感应强度为20

12qU mv =,则粒子运动的半径为

2

v qvB m r

=;

设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:

1112R T v π=

;03

4

r L =

据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两

个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=o

;2180θ=o ;

60α=o

粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间

分别为t 1、t 2,可得:r U ∝;1056

U L U L

=

设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD

2.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小

E =5.0×103V/m 。一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)

(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大

小;

(2)在满足1的条件下,求甲的速度v 0;

(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。

【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)

32m 3m 2

x '≤<。

【解析】 【分析】 【详解】

(1)对球乙从B 运动到D 的过程运用动能定理可得

22112222

D B mg R q

E R mv mv --=

-g g 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得

2

D

v mg qE m

R

+=

联立并代入题给数据可得

B v =5m/s

(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得

00

B mv mv mv '=+ 根据机械能守恒可得

22200111222

B mv mv mv '=+

联立解得

0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有

0M m Mv Mv mv =+

2220111

222

M m Mv Mv mv =+ 联立得

2m Mv v M m

=

+ 分析可知:当M =m 时,v m 取最小值v 0;当M ?m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为

002m v v v <<

设乙球过D 点的速度为D

v ',由动能定理得 2211

2222

D m mg R q

E R mv mv --=

'-g g 联立以上两个方程可得

35m /s<230m /s D

v '> 设乙在水平轨道上的落点到B 点的距离为x ',则有

2

122

D x v t R gt ''==

, 所以可得首次落点到B 点的距离范围

32m 23m 2

x '≤<

3.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0<y <2R 的区间内.已知重力加速度大小为g . (1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向. (2)请指出这束带电微粒与x 轴相交的区域,并说明理由.

(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由.

【来源】带电粒子在电场中运动 压轴大题

【答案】(1) mg

E q =

,方向沿y 轴正方向;mv B qR

=,方向垂直xOy 平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x >0;理由见解析 【解析】 【详解】

(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:

mg qE =

可得电场强度大小:

mg q

E =

方向沿y 轴正方向;

带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:

考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:

2

v qvB m R

=

可得磁感应强度大小:

mv B qR

=

根据左手定则可知方向垂直xOy 平面向外;

(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为

(sin ,cos )R R θθ-,圆周运动轨迹方程为:

222(sin )(cos )x R y R R θθ++-=

而磁场边界是圆心坐标为(0,R )的圆周,其方程为:

22()x y R R +-=

解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为

0x y =??=?

或:

sin {

(1cos )

x R y R θθ=-=+

坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;

(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:

(2)

2m v r R qB

'=

= 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.

答:(1)电场强度mg q

E = ,方向沿y 轴正方向和磁感应强度mv

B qR

=

,方向垂直xOy 平面向外.

(2)这束带电微粒都是通过坐标原点后离开磁场的;

(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。

4.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速

度为g .求:

(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mg

E q

>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。

【来源】江苏高考物理试题复习

【答案】(1)2v gy =;(2)2222m m g

y q B

= ;(3)()2m v qE mg qB =-。 【解析】 【详解】

⑴洛伦兹力不做功,由动能定理得

2

102

mgy mv =

- ① 解得

2v gy = ②

⑵设在最大距离m y 处的速率为m v ,根据圆周运动有

2m

m v qv B mg m R

-= ③

且由②知

2m m v gy = ④

由③④及2m R y =,得

2222m m g

y q B

= ⑤

⑶小球运动如图所示,

由动能定理得

2

1()2

m m qE mg y mv -= ⑥

由圆周运动得

2m

m v qv B mg qE m R

+-= ⑦

且由⑥⑦及2m R y =,解得:

()2

m v qE mg qB

=

-

5.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:

(1)带电粒子入射速度的大小;

(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.

【来源】【市级联考】广东省广州市2019届高三12月调研测试理科综合试题物理试题

【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d

m θ

【解析】 【分析】

画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】

(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .

由几何关系可知:cos d R

θ=

洛伦兹力做向心力:20

0v qv B m R

= 解得0cos qBd

v m θ

=

(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x

θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ

θ

=

(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B

解得2qB d

E mcos θ

=

【点睛】

此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.

6.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=

3

2

mv 02。两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7

2

R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;

(2)如果某次实验时将磁场O 的圆心往上移了2

R

,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。

【来源】湖南省常德市2019届高三第一次模拟考试理科综合物理试题

【答案】(1) 02v v =;02mv B eR =(2) 0336

l π++≥ 【解析】 【详解】

解:(1)对于单个质子进入加速电场后,则有:22

0011eU mv mv 22

=- 又:2

003eU mv 2

=

解得:0v 2v =;

根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R

根据洛伦磁力提供向心力有:2

v evB m r

=

可得磁场磁感应强度:0

2mv B eR

=

(2)磁场O

的圆心上移了

R

2

,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心

由于磁场上移了R 2,故sin ∠COF=R

2R

=12,∠COF=π6,∠DOF=∠FKD=π

3

对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,

下方粒子到达C 后最先到达D 点的粒子所需时间为00

(2)

(4)2

224R

R H R R t v v π

π++

-+'==

而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0

l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为

()0

00π1

R Rsin 2πR 62π3336t R 2v 2v -+-=

+=

要使两质子束相碰,其运动时间满足t t t '≤+? 联立解得0π336

l ++≥

7.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入

电场,不计粒子重力和空气阻力,P 、O

两点间的距离为

20

2mv qE

(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;

(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。

【来源】2019年辽宁省辽阳市高考物理二模试题

【答案】(102v ;20mv qE (2)0

(21)E

B v ≥

【解析】 【详解】

(1)由动能定理有:2

22

0011222

mv qE mv mv qE ?

=- 解得:v 2v 0

设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02

v v =

解得:θ=45° 根据tan 21x

y

θ=?

=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20

mv x qE

=

(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:

s =R +R sinθ

又:2

v qvB m R

=

解得:0

(21)E

B v +=

故0

(21)E

B v ≥

8.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .

(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v

(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P

(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小

【来源】2019年天津市滨海新区塘沽一中高三三模理综物理试卷

【答案】(1) 222202e B R mc v mh h =+,222

02e B R E m = ;(2) 20e B U m

π ;(3)02sin B R n d

π

【解析】 【详解】

解:(1)正、负电子在回旋加速器中磁场里则有:2

00mv evB R

= 解得正、负电子离开回旋加速器时的速度为:00eB R

v m

=

正、负电子进入对撞机时分别具有的能量:2222

00122e B R E mv m

==

正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=

正、负电子对撞湮灭后产生的光子频率:2222

02e B R mc v mh h

=+

(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:

201

2

neU mv =

解得:22

02eB R n mU

=

正、负电子在磁场中运动的周期为:0

2m

T eB π=

正、负电子在磁场中运动的时间为:2022B R n

t T U

π==

D 型盒间的电场对电子做功的平均功率:20e B U

W E P t t m

π===

(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin

2

d

r n

π

=

解得:

2sin

d r n

π=

根据洛伦磁力提供向心力可得:2

00mv ev B r

=

电磁铁内匀强磁场的磁感应强度B 大小:

02sin

B R n B d

π

=

9.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。

(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值

(3)求粒子从出发直至到达P 点经历时间的所有可能取值。 【来源】2019年东北三省四市高考二模物理试题

【答案】(12v 0,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0

nmv B qL

=

n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3……或02324a m m

t n n v qB qB

ππ=++ n =1、2、3……。 【解析】 【详解】

(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2

y v a t =

解得:v y =v 0,tan θ=

y v v =1,θ=45°,

粒子穿过O 点时的速度:2

2002v v v v =+=;

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

2

v qvB m r

= ,

粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0

nmv B qL

=

n =1、2、3……; (3)设粒子在第二象限运动时间为t

1,则:t 1=0

2a

v ;

粒子在第四、第一象限内做圆周运动的周期:12m T qB π=

,2m

T qB

π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=

1

4

T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1

4T 1+34

T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×

1

4T 1+34

T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1

4T 1+2×34

T 2, ………… 则23(1)24m

m

t k k qB

qB

ππ=+- k =1、2、3 (2324)

m

t n

n

qB qB

ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB

ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB

ππ=

++ n =1、2、3……;

10.如图,竖直平面内(纸面)存在平行于纸面的匀强电场,方向与水平方向成θ= 60°角,纸面内的线段MN 与水平方向成α=30°角,MN 长度为d .现将一质量为m 、电荷量为q (q >0)的带电小球从M 由静止释放,小球沿MN 方向运动,到达N 点的速度大小为N

v

(待求);若将该小球从M 点沿垂直于MN 的方向,以大小N v 的速度抛出,小球将经过M 点正上方的P 点(未画出),已知重力加速度大小为g ,求:

(l)匀强电场的电场强度E 及小球在N 点的速度N v ; (2)M 点和P 点之间的电势差;

(3)小球在P 点动能与在M 点动能的比值.

【来源】【市级联考】江西省南昌市2019届高三下学期4月第二次模拟考试理综物理试题 【答案】(1)2gd (2)4mgd q (3)7

3

【解析】 【详解】

解:(1)由小球运动方向可知,小球受合力沿MN 方向,如图甲,由正弦定理:

sin30sin30sin120mg F Eq

==o o o

得:3mg

E q

=

合力:F =mg

从M N →,有:2

2N ad υ=

得:2N gd υ=

(2)如图乙,设MP 为h ,作PC 垂直于电场线,小球做类平抛运动:

21cos602

h at

=

o sin60N h t υ=o cos30MC U Eh =o

MP MC U U =

得:4MP mgd

U q

=

(3)如图乙,作PD 垂直于MN ,从M P →,由动能定理:MD KP KM FS E E =-

sin30MD S h =o

21

2

KM N E mv =

7

3

KP MD KM KM KM E FS E E E +==

11.如图所示为一“匚”字型金属框架截面图,上下为两水平且足够长平行金属板,通过左侧长度为L =1m 的金属板连接.空间中有垂直纸面向里场强大小B =0.2T 的匀强磁场,金属框架在外力的作用下以速度v 0=1m/s 水平向左做匀速直线运动.框架内O 处有一质量为m =0.1kg 、带正电q =1C 的小球.若以某一速度水平向右飞出时,则沿图中虚线OO '′做直线运动;若小球在O 点静止释放,则小球的运动轨迹沿如图曲线(实线)所示,已知此曲线在最低点P 的曲率半径(曲线上过P 点及紧邻P 点两侧的两点作一圆,在极限情况下,这个圆的半径叫做该点的曲率半径)为P 点到O 点竖直高度h 的2倍,重力加速度g 取10 m /s 2.求:

(1)小球沿图中虚线OO '做直线运动速度v 大小 (2)小球在O 点静止释放后轨迹最低点P 到O 点竖直高度h

【来源】江西省名校(临川一中、南昌二中)2018-2019学年高三5月联合考理综物理试题

【答案】(1)v 4m/s =;(2)4h m = 【解析】 【详解】

解:(1)框架向左运动,产生感应电动势:0U BLv = 板间场强:0U

E Bv

L

=

= 小球做匀速直线运动,受力平衡:Eq qvB mg += 可解得:v 4m/s = (2)最大速率点在轨迹的最低点 根据动能定理可得:2

102

m Eqh mgh mv -+=

- 最低点根据牛顿第二定律和圆周运动规律有:22m

m v Eq qv B mg m h

+-=

联立可解得:4h m =

12.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:

(1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .

【来源】甘肃省张掖市2019届高三上学期第一次联考理科综合试题(物理部分)

【答案】(1)U=Bv 0d ;(2)m qB

θ;(3)R=0tan

2mv qB

θ

【解析】 【分析】

(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.

(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】

(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=U

d

,解得两平行板间的电势差:U=Bv

0d

(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:

Bv 0q=m 20

v r

同时有T=

2r

v π 粒子在圆形磁场区域中运动的时间t=

2θπ

T 解得t=m

Bq

θ

(3)由几何关系可知:r tan

2

θ

=R

解得圆形磁场区域的半径R=

0tan 2mv qB

θ

13.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后.从下方以恒定速率v 1,向上射入有磁感应强度为B 1、垂直纸面向里的匀强磁场区域I 内.当栅极MN 、PQ 间形成稳定的电场后.自动关闭区域I 系统(关闭粒子进入通道、撤去磁场B 1).区域Ⅱ内有磁感应强度大小为B 2、垂直纸面向外的匀强磁场,磁场右边界是直径为D 、与上下极板相切的半圆(圆与下板相切于极板中央A ).放在A 处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D 的平行氙粒子束,经过栅极MN 、PQ 之间的电场加速后从PQ 喷出.在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力.不计粒子之间相互作用与相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:

高一物理运动学练习测试题

精心整理 高一物理运动学练习题(一) 1、在不需要考虑物体本身的大小和形状时,可以把物体简化为一个有质量的点,即质点.物理学中,把这种在原型的基础上,突出问题的主要方面,忽略次要因素,经过科学抽象而建立起来的客体称为() A.控制变量 B.理想模型 C.等效代替 D.科学假说 2.下列关于质点的说法中,正确的是()A.体积很小的物体都可看成质点 B.不论物体的质量多大,只要物体的尺寸对所研究的问题没有影响或影响可以忽略不计,就可以看成质点 C.研究运动员跨栏时身体各部位的姿势时可以把运动员看成质点 D.研究乒乓球的各种旋转运动时可以把乒乓球看成质点 3.下列各组物理量中,都是矢量的是()A.位移、时间、速度B.速度、速率、加速度 C.加速度、速度的变化、速度D.速度、路程、位移 4.一个物体从A点运动到B点,下列结论正确的是() A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向B C.物体的位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线 5.一个小球从5m高处落下,被水平地面弹回,在4m高处被接住,则小球在整个过程中(取向下为正方向)() A.位移为9m B.路程为-9m C.位移为-1m D.位移为1m 6.下列关于速度和加速度的说法中,正确的是() A.物体的速度越大,加速度也越大B.物体的速度为零时,加速度也为零 C.物体的速度变化量越大,加速度越大D.物体的速度变化越快,加速度越大 7.我国飞豹战斗机由静止开始启动,在跑动500m后起飞,已知5s末的速度为10m/s,10s末的速度为15m/s,在20s末飞机起飞。问飞豹战斗机由静止到起飞这段时间内的平均速度为() A.10m/s B.12.5m/s C.15m/s D.25m/s 8.在同一张底片上对小球运动的路径每隔0.1s拍一次照,得到的照片如图所示,则小球在拍照的时间内,运动的平均速度是() A.0.25m/s B.0.2m/s C.0.17m/sD.无法确定 9.以下各种运动的速度和加速度的关系可能存在的是 A.速度向东,正在减小,加速度向西,正在增大 B.速度向东,正在增大,加速度向西,正在减小 C.速度向东,正在增大,加速度向西,正在增大 D.速度向东,正在减小,加速度向东,正在增大 10.一足球以12m/s的速度飞来,被一脚踢回,踢出时的速度大小为24m/s,球与脚接触时间为0.1s,则此过程中足球的加速度为:() A、120m/s2,方向与中踢出方向相同 B、120m/s2,方向与中飞来方向相同

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试曲线运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

高中物理电学经典试题

高中物理电学经典试题

实验:电表的改装 基础过关:如果某电流表内阻为R g Ω,满偏电流为I g uA ,要把它改装为一个UV 的电压表,需 要_____联一个阻值为________________Ω的电阻;如果要把它改装为一个IA 的电流表,则应____联一个阻值为_ ______________Ω的电阻. 1.电流表的内阻是R g =200Ω,满刻度电流值是I g =500微安培,现欲把这电流表改装成量程为1.0V 的电压表,正确的方法是 [ ] A .应串联一个0.1Ω的电阻 B .应并联一个0.1Ω的电阻 C .应串联一个1800Ω的电阻 D .应并联一个1800Ω的电阻 2.(2011年临沂高二检测)磁电式电流表(表头)最基本的组成部分是磁铁和放在磁铁两极之间的线圈,由于线圈的导线很细,允许通过的电流很弱,所以在使用时还要扩大量程.已知某一表头G ,内阻R g =30 Ω,满偏电流I g =5 mA ,要将它改装为量程为0~3 A 的电流表,所做的操作是( ) A .串联一个570 Ω的电阻 B .并联一个570 Ω的电阻 C .串联一个0.05 Ω的电阻 D .并联一个0.05 Ω的电阻 3.如图2-4-17所示,甲、乙两个电路,都是由一个灵敏电流表G 和一个变阻器R 组成,下列说法正确的是( ) A .甲表是电流表,R 增大时量程增大 B .甲表是电流表,R 增大时量程减小 C .乙表是电压表,R 增大时量程增大 D .乙表是电压表,R 增大时量程减小 4.用两只完全相同的电流表分别改装成一只电流表和一只电压表.将它们串联起来接入电路中,如图2-4-21所示,此时( ) A .两只电表的指针偏转角相同 B .两只电表的指针都不偏转 C .电流表指针的偏转角小于电压表指针的偏转角 D .电流表指针的偏转角大于电压表指针的偏转角 5.(2011年黄冈高二检测)已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 6、用相同的灵敏电流计改装成量程为3V 和15V 两个电压表,将它们串联接人电路中,指针偏角之比为______,读数之比________。用相同电流计改装成0.6A 和3A 的两个电流表将它们并联接入电路中,指针偏角之比_______,读数之比_________. 7.一只电流表,并联0.01Ω的电阻后,串联到电路中去,指针所示0.4A ,并联到0.02Ω的电阻后串联 到同一电路中去(电流不变),指针指示0.6A 。则电流表的内阻R A =_______Ω 8.在如图所示的电路中,小量程电流表的内阻为100Ω满偏 电流为 1mA,R 1=900ΩR 2=999100 Ω.(1)当S 1和 S 2均断开时,改装所成的表是什么表?量程多大?(2)当S 1和 S 2均闭合时,改装所成的表是什么表?量程多 大? 9.一电压表由电流表G 与电阻R 串联而成,如图所示,若在使用中发现此电压表计数总比准确值稍小一些,可以加以改正的措施是 10、有一量程为100mA 内阻为1Ω的电流表,按如图所示的电路改 装,量程扩大到1A 和10A 则图中的R 1=______ G R 2 R 1 S 1 S 2 R G G 公共 10A 1A R 1 R 2

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

高中物理《运动学》练习题

高中物理《运动学》练习题 一、选择题 1.下列说法中正确的是() A .匀速运动就是匀速直线运动 B .对于匀速直线运动来说,路程就是位移 C .物体的位移越大,平均速度一定越大 D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大 2.关于速度的说法正确的是() A .速度与位移成正比 B .平均速率等于平均速度的大小 C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度 D .瞬时速度就是运动物体在一段较短时间内的平均速度 3.物体沿一条直线运动,下列说法正确的是() A .物体在某时刻的速度为3m/s ,则物体在1s 内一定走3m B .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3m C .物体在某段时间内的平均速度是3m/s ,则物体在1s 内的位移一定是3m D .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s 4.关于平均速度的下列说法中,物理含义正确的是() A .汽车在出发后10s 内的平均速度是5m/s B .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5m C .汽车经过两路标之间的平均速度是5m/s D .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则() A .76km/h 是平均速度 B .76km/h 是瞬时速度 C .600m/s 是瞬时速度 D .600m/s 是平均速度 6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是() A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v + 7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是() A .物体A 的运动是以10m/s 的速度匀速运动 B .物体B 的运动是先以5m /s 的速度与A 同方向 C .物体B 在最初3s 内位移是10m D .物体B 在最初3s 内路程是10m 8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则() A .1=t s 时,质点离原点的距离最大 B .2=t s 时,质点离原点的距离最大 C .2=t s 时,质点回到原点 D .4=t s 时,质点回到原点 9.如图所示,能正确表示物体做匀速直线运动的图象是() 10.质点做匀加速直线运动,加速度大小为2 m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( ) A .A 、 B 两个物体同时达到最大静摩擦力 B .B 、 C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动 D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】 ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时 2122C mg m r μω= ,计算得出:11 2.5/20.4 g rad s r μω= = = ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C 可得:2 2222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2g r μω= 当 1 5/0.2 g rad s r μω> = = 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC 2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。则( )

高中物理经典电学实验题(全)

八、电学实验题集粹(33个) 1.给你一只内阻不计的恒压电源,但电压未知,一只已知电阻R,一只未知电阻Rx,一只内阻不计的电流表但量程符合要求,以及开关、导线等,用来测Rx接在该恒压电源上时的消耗功率Px,画出测量线路图并写出简要测量步骤,以及Px的表达式. 2.如图3-94所示是研究闭合电路的内电压、外电压和电源电动势间关系的电路.(1)电压表V的(填“正”或“负”)接线柱应接在电源正极A上,电压表V′的(填“正”或“负”)接线柱应接在探针D上.(2)当滑片P向右移动时,V′的示数将(填“变大”、“变小”或“不变”). 图3-94 图3-95 3.有一只电压表,量程已知,内阻为RV,另有一电池(电动势未知,但不超过电压表的量程,内阻可忽略).请用这只电压表和电池,再用一个开关和一些连接导线,设计测量某一高值电阻Rx的实验方法.(已知Rx的阻值和RV相差不大) (1)在如图3-95线框内画出实验电路. (2)简要写出测量步骤和需记录的数据,导出高值电阻Rx的计算式. 4.在“测定金属的电阻率”的实验中,用电压表测得金属丝两端的电压U,用电流表测得通过金属丝中的电流I,用螺旋测微器测得金属的直径d,测得数据如图3-96(1)、(2)、(3)所示.请从图中读出U=V,I=A,d=mm. 图3-96 5.如图3-97所示,是一根表面均匀地镀有很薄的发热电阻膜的长陶瓷管,管长L约40cm,直径D约8cm.已知镀膜材料的电阻率为ρ,管的两端有导电箍M、N,现有实验器材:米尺、游标卡尺、电压表、电流表、直流电源、滑动变阻器、开关、导线若干根,请你设计一个测定电阻膜膜层厚度d的实验,实验中应该测定的物理量是,计算镀膜膜层厚度的公式是. 图3-97 6.用万用表的欧姆挡测电阻时,下列说法中正确的是.(填字母代号) A.万用电表的指针达满偏时,被测电阻值最大 B.万用电表的指针指示零时,说明通过被测电阻的电流最大

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

高中物理平抛运动经典大题

1如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 2 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 3 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q点物体速度。 4 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 5 某一平抛的部分轨迹如图4所示,已知,,,求。

6从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。(提示:从平抛运动的轨迹入手求解问题) 图5 7 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?(提示:灵活分解求解平抛运动的最值问题) 图6 8 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?(提示:利用平抛运动的推论求解分速度和合速度构成一个直角矢量三角形) 图7 9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。(提示:利用推论,分位移和合位移构成直角矢量三角形)10如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。(提示:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。)

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

(完整版)高中物理恒定电流经典习题20道-带答案

选择题(共20小题) 1、如图所示,电解槽内有一价的电解溶液,ts内通过溶液内横截面S的正离子数是n1,负离子数是n2,设元电荷的电量为e,以下解释正确的是() A.正离子定向移动形成电流,方向从A到B,负离子定向移动形成电流方向从B到A B.溶液内正负离子沿相反方向运动,电流相互抵消 C. 溶液内电流方向从A到B,电流I= D. 溶液内电流方向从A到B,电流I= 2、某电解池,如果在1s钟内共有5×1018个二价正离子和1.0×1019个一价负离子通过某截面,那么通过这个截面的电流是() A.0A B.0.8A C.1.6A D.3.2A 3、图中的甲、乙两个电路,都是由一个灵敏电流计G和一个变阻器R组成,它们之中一个是测电压的电压表,另一个是测电流的电流表,那么以下结论中正确的是() A.甲表是电流表,R增大时量程增大 B.甲表是电流表,R增大时量程减小 C.乙表是电压表,R增大时量程减小 D.上述说法都不对 4、将两个相同的灵敏电流计表头,分别改装成一只较大量程电流表和一只较大量程电压表,一个同学在做实验时误将这两个表串联起来,则() A.两表头指针都不偏转 B.两表头指针偏角相同 C.改装成电流表的表头指针有偏转,改装成电压表的表头指针几乎不偏转 D.改装成电压表的表头指针有偏转,改装成电流表的表头指针几乎不偏转 5、如图,虚线框内为改装好的电表,M、N为新电表的接线柱,其中灵敏电流计G的满偏电流为200μA,已测得它的内阻为495.0Ω.图中电阻箱读数为5.0Ω.现将MN接入某电路,发现灵敏电流计G刚好满偏,则根据以上数据计算可知()

A.M、N两端的电压为1mV B.M、N两端的电压为100mV C.流过M、N的电流为2μA D.流过M、N的电流为20mA 6、一伏特表有电流表G与电阻R串联而成,如图所示,若在使用中发现此伏特计的读数总比准确值稍小一些,采用下列哪种措施可能加以改进() A.在R上串联一比R小得多的电阻 B.在R上串联一比R大得多的电阻 C.在R上并联一比R小得多的电阻 D.在R上并联一比R大得多的电阻 7、电流表的内阻是R g=200Ω,满偏电流值是I g=500μA,现在欲把这电流表改装成量程为1.0V的电压表,正确的方法是() A.应串联一个0.1Ω的电阻B.应并联一个0.1Ω的电阻 C.应串联一个1800Ω的电阻D.应并联一个1800Ω的电阻 8、相同的电流表分别改装成两个电流表A1、A2和两个电压表V1、V2,A1的量程大于A2的量程,V1的量程大于V2的量程,把它们接入图所示的电路,闭合开关后() A.A1的读数比A2的读数大 B.A1指针偏转角度比A2指针偏转角度大 C.V1的读数比V2的读数大 D.V1指针偏转角度比V2指针偏转角度大 9、如图所示是一个双量程电压表,表头是一个内阻R g=500Ω,满刻度电流为I g=1mA的毫安表,现接成量程分别为10V和100V的两个量程,则所串联的电阻R1和R2分别为() A.9500Ω,9.95×104ΩB.9500Ω,9×104Ω C.1.0×103Ω,9×104ΩD.1.0×103Ω,9.95×104Ω 10、用图所示的电路测量待测电阻R X的阻值时,下列关于由电表产生误差的说法中,正确的是() A.电压表的内电阻越小,测量越精确 B.电流表的内电阻越小,测量越精确 C.电压表的读数大于R X两端真实电压,R X的测量值大于真实值 D.由于电流表的分流作用,使R X的测量值小于真实值

高中物理牛顿运动定律经典练习题

牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作用力后有反作用力。

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

高中物理曲线运动经典习题道带答案

一.选择题(共25小题)1.(2015春?苏州校级月考)如图所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下面说法正确的是() A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>v1 C.物体做加速运动,且v2<v1D.物体做减速运动,且v2<v1 2.(2015春?潍坊校级月考)如图所示,沿竖直杆以速度v为速下滑的物体A,通过轻质细绳拉光滑水平面上的物体B,细绳与竖直杆间的夹角为θ,则以下说法正确的是() A.物体B向右做匀速运动B.物体B向右做加速运动 C.物体B向右做减速运动D.物体B向右做匀加速运动3.(2014?蓟县校级二模)如图所示,绕过定滑轮的细绳一端拴在小车上,另一端吊一物体A,A的重力为G,若小车沿水平地面向右匀速运动,则() A.物体A做加速运动,细绳拉力小于G B.物体A做加速运动,细绳拉力大于G C.物体A做减速运动,细绳拉力大于G D.物体A做减速运动,细绳拉力小于G 4.(2014秋?鸡西期末)如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速靠岸的过程中() A.绳子的拉力不断增大B.绳子的拉力不变 C.船所受浮力增大D.船所受浮力变小 5.(2014春?邵阳县校级期末)人用绳子通过动滑轮拉A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为θ,求A物体实际运动的速度是()

A.v0sinθB.C.v0cosθD. 6.(2013秋?海曙区校级期末)如图中,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A 环上升至与定滑轮的连线处于水平位置时,其上升速度V1≠0,若这时B的速度为V2,则() A.V2=V1B.V2>V1C.V2≠0D.V2=0 7.(2015?普兰店市模拟)做平抛运动的物体,在水平方向通过的最大距离取决于() A.物体的高度和受到的重力 B.物体受到的重力和初速度 C.物体的高度和初速度 D.物体受到的重力、高度和初速度 8.(2015?云南校级学业考试)关于平抛物体的运动,下列说法中正确的是()A.物体只受重力的作用,是a=g的匀变速运动 B.初速度越大,物体在空中运动的时间越长 C.物体落地时的水平位移与初速度无关 D.物体落地时的水平位移与抛出点的高度无关 9.(2014?陕西校级模拟)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为() A.B.C.t anθD.2tanθ10.(2011?广东)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是()

相关主题
文本预览
相关文档 最新文档