当前位置:文档之家› 第八章 不定积分(1-3)

第八章 不定积分(1-3)

第八章 不定积分(1-3)
第八章 不定积分(1-3)

第一次作业 第八章 不定积分 §1 不定积分概念与基本积分公式、分部积分法

班级 姓名

1、求下列不定积分 (1)

解:35357

222222242(1)(122)357

x x x x x dx x x x c +=++=+=+++???

(2) 解: (3)

解:224

24242231111111

()arctan (1)(1)13x x dx dx dx x c x x x x x x x x x

+-==-+=-++++++??? (4) 解:2352252[25()]2()33ln 2ln 33x x x x

x dx dx x c ?-?=-?=-+-?? (5) 解:2

4269(23)(4269)ln 4ln 6ln 9

x x x

x

x x

x

x

dx dx c ?+=+?+=

+++?? (6)

解:([()arcsin 1ln x

x x

x

x

x

e a e a dx ea dx x c a -==-++??

(7) 解:21cos 2111

sin (sin 2)(2sin 2)2224

x xdx dx x x c x x c -==-+=-+??

(8) 解:2222

cos 212sin (csc 2)2sin sin x x

dx dx x dx ctgx x c x x

-==-=--+??? (9)

解:cos 2(cos sin )(cos sin )(cos sin )sin cos cos sin cos sin x x x x x dx dx x x dx x x c x x x x +-==+=-+--?

??

(10)

解法一:22222222

cos 2cos sin (csc sec )cos sin cos sin x x x

dx dx x x dx ctgc tgx c x x x x

-==-=--+????? 解法二:2222cos 24cos 2(sin 2)2

2cos sin sin 2sin 2sin 2x x d x dx dx C x x x x x

===-+???? (11)

解法一:111

cos 2cos (cos3cos )(sin 3sin )223

x xdx x x dx x x c ?=

+=++?? 解法二:2232

cos 2cos (12sin )cos (12sin )(sin )sin sin 3

x xdx x xdx x d x x x C ?=-=-=-+???

(12)

:2arcsin dx dx x c ===+??

2、验证:就是在上得一个原函数 证明:,

2

000sgn (0)2lim lim lim sgn 0,(0)002

x x x x x

y y x x y x x →→→-'====-即 所以。即就是在上得一个原函数。 3、求满足下列条件得函数。 (1); (2)

解:(1),将代入,得,所以。 (2),将代入,得, 所以。

4、若曲线上点得切线斜率与成正比,并且曲线通过点,求该曲线方程。 解:依题意,将代入上式,得 所以

5、应用分部积分法求下列不定积分: (1);

解sin sin sin arc xdx xarc x xarc x c =-=+?

(2); 解: (3);

解:2222cos sin 2sin sin 2cos sin 2cos 2sin x xdx x x x xdx x x xd x x x x x x c =-=+=+-+??? (4);

解: 3223222ln 1ln 11ln 11

ln ()(2ln 1)222244x x x dx xd dx c x c x x x x x x x =-=-+=--+=-++???

(1), 解:222(ln )(ln )2ln (ln )2ln 2x dx x x xdx x x x x x c =-=-++??

第二次作业 第八章 不定积分 §2换元积分法与分部积分法

班级 姓名

1、用分部积分法求下列不定积分:

(1), 解:222(ln )(ln )2ln (ln )2ln 2x dx x x xdx x x x x x c =-=-++?? (2), 解:2

2111arctan arctan (1)(1)arctan 222

x xdx xd x x x x c =+=+-+?? (3),解:

22(arcsin )2arcsin (arcsin )2x x x x x x c =+=+-+?

(4),

解:1111[(ln(ln ))]ln(ln )ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x dx dx x x c x x x x

+=+=-+=+????? (5);

解:

233

sec tan (sec 1)sec sec tan sec sec 1

sec tan sec ln sec tan (sec tan ln sec tan )2x x x xdx x x xdx xdx

x x xdx x x x x x x c

=--=-+=-++=+++???? 2、用换元积分法求下列不定积分: (1); 解: (2); 解: (3); 解: (4); 解

:dx d =+??

(5); 解:

(6); 解: (7); 解: (8); 解:

(9);解:22111csc (2)(2)(2)2424sin (2)4

dx x d x ctg x c x ππ

π=+=-+++??

(10); 解: (11);

解法一:22

11sin (sec tan sec )tan sec 1sin cos x

dx dx x x x dx x x c x x -==-=-++??? 解法二:2

111tan tan()1sin 1cos 2421cos()2

t x t x

dx dx dt c c x t x π

ππ=-==-=-+=--++++-?

??

(12); 解:

(13); 解: (14); 解: (15); 解:

(16); 解: (17);解:

(18); 解:

(19); 解: (20); 解:

243521

(12sin sin )(sin )sin sin sin 35

x x d x x x x c =-+=-++?

(21); 解法一:11

2csc(2)(2)ln csc(2)(2)sin cos sin 2dx dx x d x x ctg x c x x x ===-+?

??

解法二:2111

(tan )ln tan sin cos tan cos tan dx dx d x x c x x x x

x ===+???

(22);

:322tan 3322221sec 11cos sin sec ()x a t a tdt dx tdt t c c a t a a x a ====+=+??? (23); 解

:

243521

(12cos cos )(cos )cos cos cos 35

t t d t x x x c

c

=--+=-+-+=?

(24) ;

:6

358642

2226166(1)111x t t t t dt dt t t t dt t t t =?===-++++---???

7511

753

666266166263ln 263ln

75175

t t t t t c x x x x c t -=-----+=-----++ (25); 解

:

2112

2(1)44ln 14ln(11

tdt t t t c x c t =-

=-+++=-++? 第三次作业 第八章 不定积分 §3有理函数与可化为有理函数得不定积分

班级 姓名

1、求下列不定积分 (1); 解: (2); 解:

2、求下列不定积分

(1);解:3232111(1)ln 11132

x dx x x dx x x x x c x x =+++=+++-+--?? (2);

解:2

2221(4)2ln 4ln 3ln 712433x x dx dx dx x x c c x x x x x --=-=---+=+-+---???

(3);

解:32211

(21)2

11121122()ln 11311331x x dx dx x dx x x x x x x -+--=-=+-++-+-+??? (4); 解:

222

2

222

2

22

2

11

2121

111

22

ln1

4412(1)

111111

ln1ln(1)arctan

4844(1)2(1)

11111

ln1ln(1)arctan(arctan)

4844(1)41

11

2arctan)

41

x x

x dx dx

x x

x x x dx

x x

x

x x x x c

x x

x

x c

x

?+?+

=---

++

=--+-+-

++

=--+-+-++

++

-

=-++

+

??

?

注:

3、求下列不定积分

(1)

解:

222

2

1211

(2)(tan,2arctan)

1

53cos12142

53

1

dx dt x

d t t x t

t

x t t

t

====

-

-++

-

+

???

(2);解

:

2

2222

sec(tan)

)

2sin2sec tan23tan

dx xdx d x

x c

x x x x

===+

+++

???

(3);

解一:

cos1cos sin sin cos1

(ln sin cos) 1tan sin cos2sin cos2

dx x x x x x

dx dx x x x c x x x x x

+-+

===+++ +++

???

解二:

tan

2

22

111111

()[ln1ln(1)tan] 1tan1121122

t x

dx dt t

dt dt t t arc t c x t t t t

=-

==-=+-+++ +++++

????

(4);

解一

:

1

ln(ln)

2

x c x c ==+++=+解二

:

2

222

2

,,)

1(1)

t t

t x dx dt

t t

====

--

2

1

2222

11

1211

2ln

(1)11

1

ln(ln2)

2

t t t

t dt dt c

t t t t

c x c c c

-+

=??==+

---

=+=++=+

??

解三:令,则

2

11 22

11

12()

2ln12ln12

(12)12

12

1

ln12ln(ln2)

2

t t dt

dt t c x c t t t

t

t

x c x c c c

+

=?=-=-++=-+-

++

-

+

=+++=+++=+

??

(5)

解一

:

222

2222222

(1)414

(,,)

(1)(1)1(1)

t t t t

t dt t x dx dt

t t t t

+---

=??===

-+++

?

22

2222222

22

2

111

444)

(1)(1)1(1)

111111

2ln42ln ln

1(1)1111

12

ln

11

t t

dt dt dt

t t t t

t t t

dt c

t t t t t t

t t

c c

t t x

--

=-==-

----

+++

=-=-+++

-----+

+

=++=-+

--

???

?

1

(

注:,

所以

解二

:

222

2222222

(1)414

(,,)

(1)(1)1(1)

t t t t

t dt t x dx dt

t t t t

+---

=??===

-+++

?

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

(数学分析教案)第八章

第八章 不定积分 (14学时) §1 不定积分概念与基本积分公式 教学目的要求: 掌握不定积分的概念和性质,会用初等数学中的公式和基本积分公式计算不定积分. 教学重点、难点:重点不定积分的定义,用初等数学中的公式和基本积分公式计算不定积分. 难点不定积分定义的理解. 学时安排: (2学时) 教学方法: 讲授法. 教学过程: 微分法的基本问题——从已知函数求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个已知函数,使其导数恰好是某一已知函数——这就是所谓的积分问题。 一 原函数与不定积分 (一) 原函数 定义1 设函数)(x f 与)(x F 在区间I 上有定义。若 )()(x f x F =', I x ∈, 则称)(x F 为)(x f 在区间I 上的一个原函数。 如:331x 是2 x 在R 上的一个原函数;x 2cos 21-, 12cos 21+x , x 2sin ,x 2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。 问题1 )(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则 有多少个? 问题2 若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。 定理1 若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。 证明:在第九章中进行。 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设)(x F 是)(x f 在在区间I 上的一个原函数,则(1)设C x F +)(是)(x f 在在区间I 上的原函数,其中C 为任意常量(若)(x f 存在原函数,则其个数必为无穷多个)。(2))(x f 在I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证明:由定义即可得。 (二) 不定积分 定义2 函数)(x f 在区间I 上的原函数的全体称为)(x f 在I 上的不定积分,记作: ?dx x f )( 其中 ?--积分号;--)(x f 被积函数; --dx x f )(被积表达式;--x 积分变量。 注1 ?dx x f )(是一个整体记号;

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

数学分析教案(华东师大版)第八章不定积分

第八章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式( 4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证 )

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法, 乘法有其逆运算除法一样, 微分法也有它的逆运算———积分法.我们已经知道, 微分法的基本问题是研究如何从已知函数求出它的导函数, 那么与之相反的问题是: 求一个未知函数, 使其导函数恰好是某一已知函数.提出这个逆问题, 首先是因为它出现在许多实际问题之中.例如: 已知速度求路程; 已知加速度求速度; 已知曲线上每一点处的切线斜率( 或斜率所满足的某一规律) , 求曲线方程等等.本章与其后两章( 定积分与定积分的应用) 构成一元函数积分学. 一原函数与不定积分 定义 1 设函数 f 与F 在区间I 上都有定义.若 F′( x ) = f ( x) , x ∈I , 则称F 为f 在区间I 上的一个原函数. -1例 如, 1 3 x3 是x2 在( - ∞, + ∞) 上的一个原函数, 因为( 1 3 1 x3 )′= x2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是 sin 2 x 在( - ∞, + ∞) 上的原函数, 因为 ( - 1 cos 2 x )′= ( - 1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x ) = x arctan x - 1 ln(1 + x2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 . 满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 . 若已知某个函数的原函数存在,又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

不定积分的常用求法(定稿)[1]

郑州大学毕业论文 题目:不定积分的常用求法 指导老师:任国彪职称:讲师 学生姓名:王嘉朋学号:20082100428 专业:数学与应用数学(金融数学方向) 院系:数学系 完成时间:2012年5月25日 2012年5月25日

摘要 微积分是微分学与积分学的简称,微积分的创立是数学史上最重要的事情之一。不定积分的相关知识是微积分中重要的知识,掌握不定积分的求法是学好微积分的前提。另外,不定积分的求法和定积分的求法有一定的相关性,在求面积以及质量中也有一定的应用。但是不定积分的计算是数学分析中的难点之一。求不定积分的方法灵活多样,本文介绍了微分学的来源,创立以及发展历史。并且基于自己对不定积分的理解,通过实例对不定积分的求法进行了总结。 关键字:微积分,微分学,积分学,不定积分,求解方法。 Abstract: Calculus is short for differential calculus and integral calculus and its foundation is one of the most important events in math history. Relevant knowledge in indefinite integral is very significant in calculus learning. Grasping solutions to indefinite integral is the premise of leaning calculus well. Besides, there is correlation between solutions to indefinite integral and definite integral. Indefinite integral can be applied in obtaining area and mass. However,calculating indefinite integral is one of the most hardest parts in math analysis. A variety of methods can be used in seeking indefinite integral. This paper introduced the origin of calculus, founding and developing history. Besides, through some examples based on understanding of indefinite integral,this paper also summarized solutions to indefinite integral. Keywords: calculus; differential calculus; integral calculus; solutions

不定积分知识点总结

三一文库(https://www.doczj.com/doc/bf17447686.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

相关主题
文本预览
相关文档 最新文档