当前位置:文档之家› 基于matlab的图像复原与重建设计

基于matlab的图像复原与重建设计

基于matlab的图像复原与重建设计
基于matlab的图像复原与重建设计

前言 (1)

1MATLAB的简介 (1)

1.1MATLAB的概述 (1)

1.2MATLAB的主要功能 (1)

1.3MATLAB在图像处理中的应用 (2)

2图像复原 (2)

2.1 图像复原的基本概念 (2)

2.2 图像退化的数学模型 (2)

2.3 逆滤波复原 (3)

2.4 维纳滤波复原 (4)

2.5 使用Lucy-Richardson算法的迭代非线性复原 (6)

2.6 盲去卷积 (8)

3图像重建 (10)

3.1 图像重建的概述 (10)

3.2 傅里叶反投影重建 (11)

3.3 卷积法重建 (12)

3.4 代数重建方法 (15)

结论 (16)

参考文献 (17)

致谢 (18)

数字图像处理是将图像信号转换成数字格式,并通过计算机对它们进行处理。图像复原过程往往是对提高图像质量起着重要的作用的数字图像处理方法。图像处理中的一个重要的研究分支是图像重建,其意义在于要检测到获得物体的内部结构图像,而不会其造成任何物体上的损伤。在本文中,先对图像复原与图像重建进行概述,然后介绍几种图像复原技术与图像重建方法。通过MATLAB实验程序获得实际处理效果。

关键词:图像复原;图像重建;MATLAB

Abstract

Digital image processing is to convert the image signal into a digital format and process them through the computer. Image restoration process is often to improve the image quality, it plays an important role in digital image processing methods. Image reconstruction is an important research branch of image processing, in the sense that the object to be detected to obtain images of internal structures without causing objects any damage. In this article, firstly, it will introduce image restoration and reconstruction principle, and then introduce several image restoration techniques and image reconstruction methods. The finally treatment effect obtained by MATLAB experimental procedures.

Key words: image restoration; image reconstruction; MATLAB

基于MATLAB的图像复原与重建设计

前言

随着网络和通信技术的发展,数字图像处理与分析技术已经在科学研究、工业生产、军事技术、医疗卫生、教育等许多领域得到了广泛应用,并产生了巨大的经济效益和社会效益,对推动社会的发展和提高人们生活水平都起到了重要作用[1]。图像复原与重建是数字图像处理的一个重要组成部分,并已被广泛的应用。MATLAB图像处理工具为数字图像处理提供了一个稳定、广泛的软件实现平台。

1 MATLAB的简介

1.1MATLAB的概述

MATLAB是MathWorks公司开发的一款工程数学计算软件。它是集数值符号计算,高质量图形可视化与界面设计为一体。由于其功能强大、操作简单,已成为国际上科学界最具影响力、最有活力的软件。

矩阵是MATLAB的基本数据单位,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解决问题事件比用CFORTRAN等语言简捷方便得多。

MATLAB包括拥有数百个内部函数的主包和三十几种工具包(Toolbox)。工具包又可以分为功能性工具包和科学工具包[12]。功能性工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能;科学工具包是专业性比较强的工具包,它包括控制工具包、通信工具包、信号处理工具包 [9]。

MATLAB的开放性广受用户欢迎,除去内部函数,MATLAB的所有主包文件和各种工具包都是可读并可以修改的文件,通过对源程序的修改或添加,用户可以构造自己的专用工具包。

1.2MATLAB的主要功能

MATLAB是一种用高级技术计算语言和交互式环境,它集算法开发、数值计算、数据分析以及数据可视化为一体。有了它,比用传统的编程语言,如C、C++等,更快的解决技术计算问题。

MATLAB高级语言可以用于技术计算;它所形成的开发环境可管理代码、文件和数据;数学函数可用于线性代数、概率统计、傅里叶分析变换、优化、筛选以及积分等;二维和三维图形函数可用于可视化数据;各种工具可用于构建自定义

的图形用户界面;各种函数可将基于MATLAB的算法与外部应用程序和语言;它具有非常广泛的应用,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。

1.3 MATLAB在图像处理中的应用

一系列支持图像处理操作的函数可以组成图像处理工具。它所支持的图像处理操作有:图像的邻域操作、图像的区域操作、图像的几何操作、图像变换、图像恢复、图像增强,图像复原、图像重建、线性滤波、图像分析和统计等。下面就MATLAB在图像处理中各方面的应用分别进行介绍[6]。

(1)读写和显示数字图像的文件格式。imread()为图像文件读入函数,可以用来读取如:bmp、tif、gif、jpg、png、xwd等格式图像;imwrite()为图像写出函数,而imshow()、image()为图像显示函数。

(2)图像处理的基本运算。加、减等线性运算,卷积、相关、等非线性运算都是MATLAB提供图像处理的基本运算。例如,conv2(X,Y)实现了X,Y两幅图像的卷积。

(3)图像变换。MATLAB提供了离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、离散余弦变换(DCT),连续小波变换(CWT)、离散小波变换(DWT)及其反变换等变换。

(4)图像的分析与图像增强。校正、直方图均衡、中值滤波等都是MATLAB提供的关于图像统计的计算。

(5)图像复原与重建。可用逆滤波复原、维纳滤波复原等方法实现图像复原。傅里叶反投影重建、卷积法重建、代数法重建是常用的图像重建技术。

2图像复原

2.1图像复原的基本概念

图像在形成、传输和记录过程中,由于受到多种原因的影响,图像的质量就会有所下降,典型的表现为图像模糊、失真、有噪声等,这一过程称为图像的退化[5]。

图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因,分析引起退化的环境因素,建立相应的数学模型,并沿着使图像降质的逆过程恢复图像[5]。目的在于消除或减轻在图像获取以及传输的过程中造成的图像品质下降,恢复图像的本来面目。因此,复原技术就是把退化模型化,并采用相反的过程进行处理,以便尽可能复原被退化图像的本来面目。

广义上讲,图像复原是一个求逆问题,逆问题经常存在非唯一解,甚至无解。要想恢复全真的景物图像比较困难。为了得到逆问题的有用解,图像复原本身往往需要一个质量标准,即衡量接近全真景物图像的程度,或者说,对图像的估计是否达到最佳的程度。需要有先验知识以及对解的附加约束条件。

典型的图像复原是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理的方法进行恢复,使图像质量得到改善。

2.2图像退化的数学模型

一般来说,图像的生成可以简单地被描述为如下数学模型:

(x,y)(x,y)g Hf =

f(x,y)是成像景物,H 是综合退化因子,g(x,y)是退化图像。 图像f(x,y)可以表示为:

(x,y)(,)(x ,y )d d f f αβδαβαβ∞∞

∞∞

=--??

用卷积符号 表示为:

(x,y)(x,y)(x,y)f f δ=* 因此还有:

(x ,y )(x ,y )(x ,y

f f

αβδαβ--=*-- 式中,(,)f αβ是像素点的特性函数,(x ,y )δαβ--为冲击响应。 假定成像系统是线性移不变系统: 退化模型如图所示

(f (x ,y )g 不考虑加性噪声:(x,y)(x,y)(x,y)g f h =* 考虑加性噪声:(x,y)(x,y)(x,y)(x,y)g f h n =*+ 卷积等同于频域内乘积:G(u,v)F(u,v)H(u,v)N(u,v)=+

2.3逆滤波复原

逆滤波复原法也叫做反向滤波法,其主要过程是首先将要处理的数字图像从空间域转换到傅里叶频域中,进行反向滤波后再由频率域转回到空间域,从而得到复原的图像信号[5]。

1.在不考虑噪声的情况下:

(x ,y )(,)(x ,y )d g f h αβαβαβ

+∞+∞

-∞-∞

=--?

?

上式两边进行傅里叶变换得 (u ,v )F (u ,v )H (G = 则原始图像

?(u ,v )F = (u,v)(u,v)

G H 然后进行傅里叶逆变换,就可以得到原始图像。由此可看出,如果已知退化图像的傅里叶变换和“滤波”传递函数,则可以求得原始图像的傅里叶变换,经反傅里叶变换就可以求得原始图像f(x,y),这就是逆滤波法的基本原理。但在实际中

用逆滤波法存在病态的情况:当H(u,v)=0时,或非常小的数值点上,F(u,v)将变成无穷大或非常大的数。

2.在有噪声的情况下:

逆滤波原理可以写成:G(u,v)=F(u,v)H(u,v)+N(u,v) 写成逆滤波的方式:

(u,v)=F(u,v)+ N(u,v)(u,v)

H 但实际用逆滤波存在病态的情况:

噪声存在,当H(u,v)很小或为零时,则噪声被放大。这意味着退化图像中小噪声的干扰在H(u,v)较小时,会对逆滤波恢复的图像产生很大的影响,有可能使恢复的图像和f(x,y)相差很大,甚至面目全非。

实验证明,当退化图像的噪声较小,即轻度降质时,采用逆滤波复原的方法可以获得较好的结果。通常,在离频率平面原点较远的地方数值较小或为零,因此图像复原在原点周围的有限区域内进行,即将退化图像的傅里叶频谱限制在没出零点而且数值又不是太小的有限范围内。

2.4 维纳滤波复原 逆滤波比较简单,但没有清楚地说明如何处理噪声,而维纳滤波综合了退化函数和噪声统计特性两个方面进行复原处理。维纳滤波是维纳在1949年提出的,并应用于一维平稳时间序列,获得了满意的结果。这是最早也是最著名的线性滤波技术。

采用维纳滤波是假设图像信号可以近似看成平稳随机过程的前提下,按照使

f(x,y)和

之间的均方误差达到最小的准则函数来实现图像复原的,即 22?min {[f(x,y)f(x,

y)]}e E =- 式中,E ( )代表求期望值。因此维纳滤波又称为最小均方误差滤波器。 维纳滤波需要假定下述条件成立:

1、系统为线性空间移不变系统。

2、退化图像、原始图像、噪声都是均匀随机场,噪声的均值为零,且与图像不相关。

维纳滤波的复原滤波函数,即滤波器的传递函数为:

2

2

(,)1?(,)(,)(,)(,)(,)(,)(,)/(,)f H u v F u v P u v G u v G u v H u v H u v S u v S u v η??==??+????

① 没有噪声时,维纳滤波退化为逆滤波。有噪声时,维纳滤波利用信噪功率比对恢复过程进行修正,在信噪功率比很小的区域内,P(u,v)的值也很小,这使恢复图像较小地依赖于退化图像。在H(u,v)很小或等于零时,P(u,v)的分母不为零,维纳滤波没有病态问题[7]。

在实际系统中,维纳滤波经常用下式近似:

2

21|(,)|?(,)(,)(,)|(,)|H u v F u v G u v H u v H u v K ??=??+??,K 为特殊常数。 ② ①的维纳滤波要求未退化图像和噪声的功率必须是已知的。虽然用②近似的方法

能得到好的结果,但功率谱比常数K 的估计一般没有合适的解[8]。

MATLAB 语言程序

clear;

I=imread('C:\ok\原始图.jpg');

imshow(I);

I=rgb2gray(I); %将原图像转化为黑白图

figure;

subplot(2,2,1);

imshow(I);

title('转成黑白图像');

[m,n]=size(I);

F=fftshift(fft2(I));

k=0.0025;

for u=1:m

for v=1:n

H(u,v)=exp((-k)*(((u-m/2)^2+(v-n/2)^2)^(5/6)));

end

end

G=F.*H;

I0=real(ifft2(fftshift(G)));

I1=imnoise(uint8(I0),'gaussian',0,0.001)

subplot(2,2,2);

imshow(uint8(I1));

title('模糊退化且添加高斯噪声的图像');

F0=fftshift(fft2(I1));

F1=F0./H;

I2=ifft2(fftshift(F1));

subplot(2,2,3);

imshow(uint8(I2));

title('全逆滤波复原图');

K=0.1;

for u=1:m

for v=1:n

H(u,v)=exp(-k*(((u-m/2)^2+(v-n/2)^2)^(5/6)));

H0(u,v)=(abs(H(u,v)))^2;

H1(u,v)=H0(u,v)/(H(u,v)*(H0(u,v)+K));

end

end

F2=H1.*F0;

I3=ifft2(fftshift(F2));

subplot(2,2,4);

imshow(uint8(I3));

title(维纳滤波复原图);

运行结果如下:

原始图:

复原后图像:

经过仿真,如上图所示,可以看出逆滤波复原与维纳滤波复原的区别和联系。维纳滤波后虽然仍有一些噪声存在,但已经和原图很接近了。因为原图像和噪声函数都是已知的,可以正确的估算参量。

2.5使用Lucy -Richardson 算法的迭代非线性复原

L -R 算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程:

])

,(),(),(),()[,(),(1y x f y x h y x g y x h y x f y x f k k k ∧

+**

--=

*代表卷积,∧

f 代表未退化图像的估计,

g 和

h 和以前定义一样。这个算法的本质是显而易见的。它的非线性本质是在方程右边用f ∧

来除产生的[4]。

在IPT 中,L-R 算法是由名为deconvlucy 的函数完成的,此函数的语法为

fr= deconvlucy(g,PSF,NUMIT,DAMPAR,WEIGHT)

其中,fr 代表复原的图像,g 代表退化的图像,PSF 是点扩散函数,NUMIT 为迭代次数(默认为10次),DAMPAR 是一个标量,它指定了结果图像与原图像g 之间的偏离阈值。WEIGHT 是一个与g 同样大小的数组,它为每一个像素分配一个权重来反映其重量。 L-R 算法程序:

I=imread('C:\ok\苹果.jpg'); PSF=fspecial('gaussian',5,5) ;

Blurred=imfilter(I,PSF,'symmetric','conv'); V=.003;

BN=imnoise(Blurred,'gaussian',0,V); luc=deconvlucy(BN,PSF,5); figure subplot(2,2,1); imshow(I); title('原始图像'); subplot(2,2,2); imshow (Blurred); title('模糊后的图像'); subplot(2,2,3); imshow (BN); title('加噪后的图像'); subplot(2,2,4); imshow (luc); title('恢复后的图像'); 模拟实验结果如下:

用Lucy-Richardson算法可以较好的恢复图像[1]。但由于迭代产生的噪声痕迹是最大化可能性数据逼近法的常见问题,在低信噪比条件下,恢复图像可能会出现一些斑点,这些斑点并不代表图像的真实结构,只不过是恢复图像过于逼近噪声所产生的结果。另外此法存在一些较严重的缺陷,一是噪声放大问题,二是对于恢复图像中的不同部分,分别执行多少迭代才合适的问题。因为图像中信噪比高的部分可能需要数百次迭代才能获得满意的结果;而另一些光滑的对象可能只需很少次数即可达到满意的结果,所以适当选择迭代次数对图像恢复也很重要。这两个问题若得不到解决,将会对最终结果产生不利影响。

2.6盲去卷积

通常图像恢复方法均在成像系统的点扩展函数PSF已知下进行, 实际上它通常是未知的. 在PSF未知的情况下, 盲去卷积是实现图像恢复的有效方法。因此,盲去卷积算法就是那些不以PSF知识为基础的图像复原的方法。

在过去的20年里,一种盲去卷积的方法已经受到了人们的极大重视,它是以最大似然估计(MLE)为基础,即一种用被随机噪声所干扰的量进行估计的最优化策略。简要的说,关于MLE方法的一种解释就是将图像数据看成随机量,它们与

另外一族可能的随机量之间有着某种似然性。似然函数用)

x

f和

(y

,

,

(y

x

g、)

h来加以表达,然后,问题就变成了寻求最大似然函数。在盲去卷积中,最(y

x

,

)

优化问题规定的约束条件并假定收敛时通过迭代来求解,得到的最大)

x

f和

(y

, x

h就是还原的图像和PSF[3]。

,

(y

)

工具箱通过函数deconvblind来执行盲去卷积,它有如下语法:

[f,PSFe]=deconvblind(g,INITPSF)

其中,g代表退化函数,INITPSF是点扩散函数的出事估计。PSFe是这个函数最终计算到的估计值,fr是利用估计的PSF复原的图像。用来去的复原图像的算法是L-R迭代复原算法[13]。PSF估计受其初始推测尺寸的巨大影响,而很少受其值的影响。

盲去卷积程序:

I=checkerboard(8);

PSF=fspecial('gaussian',7,10);

V=.0001;

BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);

WT=zeros(size(I));

WT(5:end-4,5:end-4)=1;

INITPSF=ones(size(PSF));

FUN=inline('PSF+P1','PSF','P1');

[J P]=deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);

subplot(221);

imshow(BlurredNoisy);

title('A=Blurred and Noisy');

subplot(222);

imshow(PSF,[]);

title('True PSF');

subplot(223);

imshow(J);

title('Deblured Image');

subplot(224);

imshow(P,[]);

模拟实验结果如下:

该算法优点是,同时恢复了图像和点扩张函数,在对失真情况毫无先验知识的情况下, 仍能实现对模糊图像的恢复操作。利用 MATLAB实现的图像恢复, 并对恢复图像的失真情况做了改善。在进行图像恢复时,重建 PSF,对图像进行重建, 得到恢复的图像。

3图像重建

3.1 图像重建的概述

图像处理中的一个重要研究分支是物体图像的重建,它被广泛的应用于检测和观察中,而这种重建方法一般是根据物体的一些横截面部分的投影而进行的。在一些应用中,某个物体的内部结构图像的检测只能通过这种重建才不会有任何物理上的损伤。由于这种无损检测技术的显著优点,因此,它的适用面非常广泛,它在各个不同的领域都显示出独特的重要性。例如:医疗放射学、核医学、电子显微、无线和雷达天文学、光显微和全息成像学及理论视觉等等领域都有应用。在医学影像处理中是医学图像获取的重要方法。如医疗放射学、核医学,电子显微等领域是必不可少的技术,在工业生产中的无损检测技术图像重建也扮演重要的角色。

图像重建经过多年研究已取得巨大进展,产生了许多有效的算法,如:傅里叶反投影法、卷积反投影法、代数法、迭代法等,其中以卷积反投影法运用最为广泛。近年来,由于与计算机图形学相结合,把多个二维图像合成三维图像,并加以光照模型和各种渲染技术,已能生成各种具有强烈真实感的高质量三维人工合成图像。

3.2傅里叶反投影重建

傅里叶反投影重建方法可以说是最简单的一种变换重建方法,一个三维(或二维)物体,它的二维(或一维)投影的傅里叶变换恰好与此物体的傅里叶变换的主题部分相等,傅里叶变换的重建方法正是以此为基础的。该重建方法最早于1974年由Shepp 和Logan 提出,该方法是建立在“投影切片定理”这一理论基础之上的。根据此结论,可以先对投影进行旋转和傅里叶变换以构造整个傅里叶变换域中的各个方向的切片数据,然后再对其进行傅里叶反变换即可得到重建后的目标(原空间域中的图像)。

傅里叶变换重建的原理如下:

令f(x,y)代表一图像函数,则此二维函数的傅里叶变换为:

(,)

(,)e x p [2()]F u v f x y j u x v y d x d y

π∞

+∞

=-+?? 而图像在x 轴上的投影为:

()(,)y g x f x y dy ∞

-∞

=

?

投影的一维傅氏变换为:

()()e x p (2)(,)e x p (2)y G u g x j u x d x y

f x y j u x d x d y

ππ∞

-∞∞

-∞=-=-???,它恰与二维傅氏变换的表达式一致。

即: (,0)(,)exp(2)F u f x y j ux dxdy π∞

-∞

=-??

现在假设将函数投影到一条经过旋转的直线上,该直线的旋转角度为 。

定义旋转坐标为:

c o s s i n ,s i n c o

s x y t x y θθθθ=+=-+ 而将函数投影的直线选为x 轴。投影点通过对距离t 轴为 处的一平行线进行函数积分,因此,该投影可如下表示:

1(,)(,)g s f x y d s θ=? 这里,积分路径是沿着1cos sin s x y θθ=+直线进行的。此投影的一维傅氏变换为:

111(,)(,)exp(2)G r g s j rs ds θθπ∞

-∞=-?,

展开后为:(,)(,)exp[2(cos sin )]G r f x y j r x y dxdy θπθθ∞

-∞

=-+??

为使展开式与投影的二维傅里叶变换相等,把指数项做某种代换得到:co s ,s i n u r v r θθ==

因而,若点(u,v)在一条 角一定而距原点距离为r 的直线上,投影变换将于二维变换中的一直线有相同的傅氏变换,即:(,)(,)F u v G r θ=

若投影变换(,)G r θ中的所有r 及θ值都是已知的,则图像的二维变换也是可以确定的。为得到图像函数,我们必须进行反变换运算,即:

(,)(,)exp[2()].f x y F u v j ux vy dudv π∞

-∞

=+??

这些结论很容易推广到三维情形中。令:123(,,)f x x x 表示一物体,这里f 可以为实数或负数。它的三维傅氏变换由下式给出

123123)112233123(,,)(,,exp[2()]F u u u f x x x j u x u x u x dx dx dx π∞

-∞

=-++??? 而变换的核心部分是:

121233112

2(,,0)[(,

,)]e x p [2()]F u u f x x x d x j u x

u x d x d x

π∞

-∞

-∞

=-+???

通过定义,纵剖面或在12,x x 面上的投影是:

312123(,)

(,,)

f x x f x x x d x ∞

-∞

=? 注意到312(,)f x x 的二维傅里叶变换正好等于上述三维变换的核心部分。这也说明了如果投影在12,x x 平面上旋转了θ角度,相应的傅里叶变换部分也将在变换域内的12,u u 平面内转过θ角。这样,投影可以采用不同的方向角θ插入到三维变换域

中。建立一个傅里叶变换空间需要很多的投影。最后通过傅里叶反变换重建图像123(,,)f x x x 。既然在三维空间中的任意平面都可以被重建,那么,一个二维图像

12(,)f x x 的重建也不失一般性。

我们可以重写二维投影方程,定出θ即投影平面ρ:(,)(,)s

g f x y ds ρθ=?,这里

ds 是光线几何路径中的微分长度。 傅里叶变换的结论由下面给出:

(,)(,)exp(2)F R g j R d θρθπρρ∞

-∞

=-?

(,)(,)exp[2()]f x y F u v j ux vy dudv π∞

-∞

=+??

若已知无数的投影,从极坐标(,)F R θ中计算得到的投影变换推出在矩形平面(,)F u v 中的傅里叶变换并不困难。但是,若只有有限个投影是有效的,则可能需要在变换中插入一些数据。另外需要注意的是,虽然只需一维傅里叶变换的投影数据就可构成变换空间,但图像重建则需要二维反变换。由此,我们得出一个结论,即:三维图像不能在得到部分投影数据的过程中局部的重建,而必须延迟到所有投影数据都获得之后才能重建。

3.3 卷积法重建 卷积法重建的基本思路和方法:

逆投影原理:从各个方向得到的投影逆向返回到该方向的各个位置,如果对多个投影方向中的每个方向都进行这样的逆投影,就可能建立平面上的一个部分。典型的方法是卷积逆投影重建。

卷积重建法是一种变换重建法,可以根据傅里叶变换投影定理推出。

按照二维傅里叶反变换标准定义,有2()(,)(,)j ux vy f x y F u v e dudv π+∞+∞

+-∞-∞

=

??

作代换:cos u R θ=,sin v R θ=

写成极坐标(R, )的形式:22(cos sin )00

(,)(,)j x y f x y F R e RdRd ππθθθθ+∞

+=

??

利用傅里叶变换共轭对称性,有:2(cos sin )

0(,)(,)||j x y f x y F R e

R dRd ππθθθθ+∞

+-∞

=?

?②

令:2(cos sin )

(,;)||(,)j x y f x y e

R F R dR πθθθθ+∞

+-∞

'=

? ③

则③可以表示为:0

(,)(,;)f x y f x y d π

θθ'=?, ④

在②中,当用FFT 计算投影数据的傅里叶变换F(R, )时,投影数据g( )总被有限截断。当 的采样间隔为d 时,在变换域R 的变化范围为1/2d -到1/2d ,于是投影反变换重建公式可以近似写成:

122(cos sin )1

02(,)||(,)d

j R x y d

f x y R F R e dRd ππθθθθ+-≈?

?

采用标记:1/221/2()||d

j R d

h R e dR πρρ-=

?

根据前式③,结合傅里叶投影定理可知:

1/22(cos sin )1/21/222(cos sin )1/21/22(cos sin )1/2(,;)||(,)||[(,)](,)

||(,)(cos sin )d

j R x y d

d

j R j R x y d d

j R x y d

f x y R F R e dR

R g e e dR

g R e dRd g h x y d πθθπρπθθπθθρθθρθρθρ

ρθθθρρ

+-+∞-+--∞+∞

+--∞-+∞

-∞

'=

===

+-?

???

?

?

由上式可以得出,要实现对已经得到的投影数据实现图像重建,则可以采取两步:首先将投影数据(,)g ρθ和相应脉冲滤波器⑤进行卷积,然后由式④对不同旋转角 求和,就能实现图像重建。

卷积可以看成一种滤波手段,卷积投影相当于先对数据滤波再将结果逆投影回来,这样可以使模糊得到校正。

MATLAB 程序: P=phantom(256); subplot(2,2,1); imshow(P);

title('大脑的幻影图'); theta1=0:10:170;

[R1,xp]=radon(P,theta1); theta2=0:5:175;

[R2,xp]=radon(P,theta2);

theta3=0:2:178;

[R3,xp]=radon(P,theta3);

figure;

imagesc(theta3,xp,R3);

title('大脑幻影图的90条投影光速的Radon变换'); colormap(hot);

colorbar;

xlabel('\theta');

ylabel('x\prime');

I1=iradon(R1,10);%R1有18条投影光速

I2=iradon(R2,5);% R2有36条投影光速

I3=iradon(R3,2);%R3有90条投影光速

figure(1);

subplot(2,2,2);

imshow(I1);

title('用R1重建图像');

subplot(2,2,3);

imshow(I2);

title('用R2重建图像');

subplot(2,2,4);

imshow(I3);

title('用R3重建图像');

通过MATLAB演示我们可以看出:用卷积逆投影来实现,数据质量高的情况下可重建出准确清晰的图像,而用傅里叶反变换重建法实现,不是很容易,且重建的图像质量很差。

3.4代数重建方法

代数重建技术就是事先对未知图像的各像素给予一个初始估值,然后利用这些假设数据去计算各射线穿过对象时可能得到的投影值(射影和),再用它们和实测投影值进行比较,根据差异获得一个修正值,利用这些修正值,修正各对应射线穿过的诸像素值。如此反复迭代,直到计算值和实测值接近到要求的精确度为止[5]。

具体实施步骤:

(1)、对于未知图像各像素均给予一个假定的初始值,从而得到一组初始计算图像;

(2)、根据假设图像,计算对应各射线穿过时,应得到的各个相应投影值,,……,;

(3)、将计算值,,和对应的实测值,,进行比较,然后取对应差值作为修正值;

(4)、用每条射线的修正值修正和该射线相交的诸像素值;

(5)、用修正后的像素值重复1~4各步,直到计算值和实测值之差,即修正值小到所期望的值为止。

只要所测的射线投影值,,组成一个独立的集合,那么代数重建便将收敛于唯一解。

结论

本文介绍了图像退化的原因、图像重建的基本概念并且简要介绍了当前主流的图像复原和图像重建方法,并通过对各种复原和重建方法的仿真,了解了各种方法的优劣性,为我们在实际生活提供依据。但是无论是哪一种方法都有所局限性,我们应该努力致力于研究新型的优秀的图像复原和图像重建方法,来获得更好的图像复原和图像重建效果。同时,我们知道算法利用的信息越多信息的准确性越高,则复原图像和图像重建的质量就越高。而且采用MATLAB实现图像恢复和重建,通过几条简单的MATLAB命令就可完成一大串高级计算机语言才能完成的任务,简捷明快。大多数图像处理模型是可以通过使用MATLAB的基本函数通过编程实现的。

在申老师的指导下,毕业设计即将结束。可是,对我来说,这次设计本身所产生的影响还远远没有结束。这次毕业设计不仅让我从书本上学到知识,而且提高了我的实际动手操作能力,还从思想上深刻的体会到,要把自己的所学变成现实时将面对的种种难题。

参考文献

[1] 龚声蓉,刘纯平,王强.数字图像处理[M].北京:清华大学出版社,2006.46-84,123-144

[2] 张德丰,雷晓平.MATLAB基础与工程应用.北京:清华大学出版社,2012.

[3] 冈萨雷斯等.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2005.5:123-133

[4] 张铮,倪红霞,苑春苗,杨立红.精通MATLAB数字图像处理与识别[M].北京:人民邮电出

版社,2013.8:194-196

[5] 陈传波,金先级.数字图像处理[M].北京:机械工业出版社,2004.119-124,161-176

[6] 林旭梅,葛广英.MATLAB实用教程[M].山东:中国石油大学出版社,2010.3:49-75

[7] 张德丰,张葡青.维纳滤波图像恢复的理论分析与实现[J].中山大学学报,2006.45(6):

44-47

[8] 何东健.数字图像处理[M].西安:西安电子科技大学出版社,2003.261-279

[9] 徐昕.MATLAB工具箱应用指南:控制工程篇[M].北京:电子工业出版社,2000.1-12

[10] 罗军辉,冯平.MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社,2005.257-277

[11] 赵怡红,张常年编著.数字信号处理及其MATLAB实现.北京:化学工业出版社,2002.1:38 -125

[12]徐晰.MATLAB工具箱应用指南:控制工程篇[M].北京:电子工业出版社,2000.1-12

[13]刘维一,于德月等.用迭代法消除数字图像放大后的模糊[J].光电子.激光,2002,13(4):389-400

[14]陶洪.数字共焦显微技术及其图像复原算法研究四川大学硕士学位论文CNKI::CDMD:10610.2.2003.6632

[15]苏开亮.运动模糊图像的恢复及恢复质量评价[D].西安:西安电子科技大学出版社,2010,21-25

基于MATLAB的图像复原

基于MATLAB的图像复原 摘要 随着信息技术的发展,数字图像像已经充斥着人们身边的任意一个角落。由于图像的传送、转换,或者其他原因,可能会造成图像的降质、模糊、变形、质量下降、失真或者其他情况的图像的受损。本设计就针对“图像受损”的问题,在MATLAB环境中实现了利用几何失真校正方法来恢复被损坏的图像。几何失真校正要处理的则是在处理的过程,由于成像系统的非线性,成像后的图像与原图像相比,会产生比例失调,甚至扭曲的图像。 图像复原从理论到实际的操作的实现,不仅能改善图片的视觉效果和保真程度,还有利于后续的图片处理,这对医疗摄像、文物复原、视频监控等领域都具有很重要的意义。 关键字:图像复原;MATLAB;几何失真校正

目录 摘要 (1) 1 MATLAB 6.x 信号处理 (1) 2 图像复原的方法及其应用 (13) 2.1 图像复原的方法 (13) 2.2 图像复原的应用 (14) 3 几何失真校正实现 (15) 3.1 空间变换 (15) 3.1.1 已知()y x r,和()y x s,条件下的几何校正 (16) 3.1.2 ()y x r,和()y x s,未知条件下的几何失真 (16) 3.2 灰度插值 (17) 3.3 结果分析 (19) 参考文献 (20) 附录 (21)

1 MATLAB 6.x信号处理 (1)对MATLAB 6 进行了简介,包括程序设计环境、基本操作、绘图功能、M文件以及MATLAB 6 的稀疏矩阵这五个部分。MATLAB的工作环境有命令窗口、启动平台、工作空间、命令历史记录与当前路径窗口这四部分。M文件的编辑调试环境有四个部分的设置,分别是:Editor/Debugger的参数设置,字体与颜色的设置,显示方式的设置,键盘与缩进的设置。MATLAB采用路径搜索的方法来查找文件系统的M文件,常用的命令文件组在MATLAB文件夹中,其他M文件组在各种工具箱中。基本操作主要是对一些常用的基本常识、矩阵运算及分解、数据分析与统计这三方面进行阐述。MATLAB的基本操作对象时矩阵,所以对于矩阵的输入、复数与复数矩阵、固定变量、获取工作空间信息、函数、帮助命令进行了具体的描述。矩阵运算是MATLAB的基础,所有参与运算的数都被看做为矩阵。MATLAB中共有四大矩阵分解函数:三角分解、正交分解、奇异值分解以及特征值分解。数据分析与统计包括面向列的数据分析、数据预处理、协方差矩阵与相关系数矩阵、曲线拟合这四部分。MATLAB 中含有丰富的图形绘制寒素,包括二维图形绘制、三维图像绘制以及通用绘图工具函数等,同时还包括一些专业绘图函数,因此其具有很强大的绘图功能。简单的二维曲线可以用函数plot来绘制,而简单的三维曲线图则用plot3来绘制。在绘制图形时,MATLAB自动选择坐标轴表示的数值范围,并用一定的数据间隔标记做标注的数据,当然自己也可以指定坐标轴的范围与数据间隔。专业的绘图函数有绘梯度图制条形图、饼图、三维饼图、箭头图、星点图、阶梯图以及等高线。M文件时用户自己通过文本编辑器或字处理器生成的,且其之间可以相互调用,用户可以根据自己的需要,自我编写M文件。M文件从功能上可以分为底稿文件与函数文件两类,其中底稿文件是由一系列MATLAB语句组成的,而函数文件的第一行必须包含关键字“function”,二者的区别在于函数文件可以接受输入参数,并可返回输出参数,而底稿文件不具备参数传递的功能;在函数文件中定义及使用的变量大都是局部变量,只在本函数的工作区内有效,一旦退出该函数,即为无效变量,而底稿文件中定义或使用的变量都是全局变量,在退出文件后仍为有效变量。稀疏矩阵是一种特殊类型的矩阵,

matlab的图像拼接程序(20210119152549)

mat lab的图像拼接程 序 -CAL-FENGHAI-(2020YEAR-YICAI) JINGBIAN ll=imread{,,);%6dTAEuODpAp¥dy2All%6D j u j A ll=double(ll); [hl wl dl]=size(ll);%TEOEdl±al2lldU±a>>0dl I2= imread(n);

I2=double(l2); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure;subplot( 1,2,1); image(ll/255); axis image; hold on; title(*first input image'); [XI Yl]=ginput(2); %get two points from the usersubplot(l z2,2); image(l2/255); axis image; hold on; title('sec ond input image*); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'?X2'; HOOjOOll]1; xp=[Xl; Yl]; t=Z\xp; %solve the I in ear system a=t(l); %=s cos(alpha) b=t(2);%=s sin(alpha) tx=t(3); ty=t(4); % con struct transformation matrix(T) T=[a b tx;?b a ty; 0 0 1]; % warp incoming corners to determine the size of the output image(in to out) cp二T*[l 1 w2 w2; 1 h2 1 h2; 1 111]; Xpr=min([cp(l/:)/O]): max([cp(l/:)/wl]);%min x:maxx Ypr=min([cp(2/:)/0]): max([cp(2/:)/hl]); %min y: max y [Xp/Yp]=ndgrid(Xpr/ Ypr); [wp hp]=size(Xp); %=size(Yp) % do backwards transform (from out to in) X=T\[Xp(:) Yp(:) ones(wp*hp/l)]';%warp %re-sample pixel values with bilinear interpolation clear Ip; xl二reshape(X(b:)Mp,hp)‘; yl=reshape(X(2/:)/wp/hp)1; lp(:/:/l)=interp2(l2(:/:/l)/xl/ yl, '?bilinear*); %red Ip(:/:/2)=interp2(l2(:/:/2)/xl/ yl, '?bilinear1);%green lp(:z:/3)=interp2(l2(:/:/3)/xl/ yl, ^bilinear1);%blue % offset and copy original image into the warped image offset= -rounddmindcpfl/)^]) min([cp(2,:),0])]); lp(l+offset ⑵:hl+offset(2), 1+off set {1): wl+offset (1 )z:); doublefllflihl.liwl,:)); %show the result figure; image(lp/255); axis image; title('mosaic image'); ll=double(imread(n)); [hl wl dl]=size(ll);%TEOEdl±aPll6lJ±agl I2=double(imread(n)); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure; subplot(l,2z l); image(ll/255); axis image; hold on; title('first input image'); [XI Yl]=ginput(2); %get two points from the user subplot(122); image(l2/255); axis image; hold on; title('sec ond input image1); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'-X2' ;1100;0011]'; xp=[Xl; Yl]; t=Z\xp; %solve the linear system %% a=t(l); %=s cos(alpha) b=t(2); %=s sin(alpha)

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

基于MATLAB的图像处理的基本运算

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像处理的基本运算 初始条件: 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)能够对图像亮度和对比度变化调整,并比较结果 (2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存,比较几 种插值的效果 (3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 (4)对图像加入各种噪声,比较效果。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 摘要.......................................................................................................................... 错误!未定义书签。 1 MATLAB简介 ........................................................................................................ 错误!未定义书签。2图像选择及变换................................................................................................... 错误!未定义书签。 2.1 原始图像选择读取....................................................................................... 错误!未定义书签。 2.1.1 原理图的读入与基本变换 .................................................................... 错误!未定义书签。

利用MATLAB进行图像截取_拼接(灰色_彩色)

%灰色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4) A5=double(A4); A6=not(A5); A7=double(A6); B=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Water lilies.jpg'); C=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Winter.jpg'); [m,n]=size(A4); B2=rgb2gray(B); B3=imresize(B2,[m,n]); B4=double(B3); C2=rgb2gray(C); C3=imresize(C2,[m,n]); C4=double(C3); D=A5.*B4; E=A7.*C4; F=uint8(D+E); figure,imshow(F) %彩色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4)

基于MATLAB图像处理报告

基于M A T L A B图像处理报告一、设计题目 图片叠加。 二、设计要求 将一幅礼花图片和一幅夜景图片做叠加运算,使达到烟花夜景的美图效果。 三、设计方案 、设计思路 利用matlab强大的图像处理功能,通过编写程序,实现对两幅图片的像素进行线性运算,利用灰度变换的算法使图片达到预期的效果。 、软件介绍 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB 也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。

基于MATLAB的图像恢复算法研究

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像恢复算法研究 指导教师:职称: 年月日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 课程设计题目:信息处理综合实践: 于MATLAB的图像恢复算法研究起迄日期: 课程设计地点:电子信息科学与技术专业实验室 指导教师: 系主任: 下达任务书日期: 年月日

目录 摘要: (6) 1.图像复原的概念 (6) 1.1图像复原的定义 (6) 1.2 图象恢复与图象增强的异同 (6) 1.3 图象退化的原因 (6) 1.4 维纳滤波的研究历史 (6) 1.5图象退化举例 (7) 2.退化模型 (8) 2.1图象退化模型概述 (8) 2.2连续函数退化模型 (8) 2.3离散函数退化模型 (8) 3.图象复原技术 (9) 3.1无约束恢复 (9) 3.2逆滤波 (9) 3.3 维纳(Wiener)滤波器基本原理 (10) 3.4维纳滤波复原法 (11) 3.5图像复原例图 (12) 4.图像复原的MATLAB实现实例 (13) 5.结束语 (14) 参考文献: (14) 附录: (14) (1).维纳滤波复原源代码: (14) (2).规则化滤波复原程序源代码: (15) (3).Lucy-Richardson复原滤波源代码: (15) (4).盲目去卷积复原源代码: (15)

摘要: 图像复原是图象处理的一个重要课题。图像复原也称图象恢复,是图象 处理中的一大类技术。它的主要目的是改善给定的图像质量。当给定了一幅 退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重 建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍 射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的 扰动效应,图像运动造成的模糊及几何畸变等等。噪声干扰可以由电子成像 系统传感器、信号传输过程或者胶片颗粒性造成。各种退化图像的复原都 可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行 处理,以便恢复出原图像。文章介绍了图象退化的原因,几种常用的图像滤 波复原技术,以及用MATLAB实现图像复原的方法。 1.图像复原的概念 1.1图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。 1.2 图象恢复与图象增强的异同 相同点:改进输入图像的视觉质量。 不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因);图象恢复根据相应的退化模型和知识重建或恢复原始的图像(考虑退化原因)。 1.3 图象退化的原因 图象退化指由场景得到的图像没能完全地反映场景的真实内容,产生了失真等问题。其原因是多方面的。如: 透镜象差/色差 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度) 噪声(是一个统计过程) 抖动(机械、电子) 1.4 维纳滤波的研究历史 维纳是著名的数学家,后来被誉为信息理论家。维纳的著作不仅是一个很好的创见,而且具有结合工程的实际意义,是线性滤波理论研究的一个重要的开端. 在第二次世界大战中,由于雷达的发明以及防空炮火控制的任务,把大量有修养的数学家和物理学家都动员到信息科学这个研究领域中来了,这个时候人们活跃于这个领域,并有许多重大的科学创造。数学家维纳对于滤波理论的研究成果,就是这时候重大的科学创见之一。

基于MATLAB的运动模糊图像处理

基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向θ=30?,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a) 1(b) j=imread('车牌1.jpg'); figure(1),imshow(j); title('原图像'); len=20; theta=30; psf=fspecial('motion',len,theta); j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF 模糊图像'); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

MATLAB实现图像恢复设计报告

MATLAB实现图像恢复设计报告 一、设计目标及需求分析 设计目标:希望通过matlab设计一个软件来实现对CT图像的模糊再恢复的过程,是对现实中CT图像复原的一个简单仿真。 需求分析:随着网络和通信技术的发展,数字图像处理与分析技术已经在科学研究、工业生产、医疗卫生、教育等领域得到了广泛应用,对推动社会的发展和提高人们的生活水平都起到了重要作用[1]。而在医学CT影像中,CT图像的影响因素众多,包括部分容积效应,空间分辨力,密度分辨力,相机条件设定和噪声等[2]。这些因素会造成CT 图像模糊失真,需要对图像进行恢复,才能满足对临床诊断的要求。 二、设计概要 图像退化 三、详细设计 在GUI界面设计中选取三个静态文本分别叫“原始图像”、“模糊加噪图像”、“恢复图像”,添加三个坐标轴,三个按钮分别用于“读入原始图像”、“模糊和加噪”、“恢复”。 图一 GUI界面设计

①点击按钮“读入图像”,将选取的原始肺部CT图像导入第一个坐标轴中。 ②点击按钮“模糊和加噪”,对原始CT图像进行运动模糊,加入高斯噪声,生成的图像显示在第二个坐标轴中。 图二模糊和加噪 在这里用MATLAB图像处理工具函数fspecial生成了一个运动模糊的点扩展函数PSF,PSF 再与原图卷积得到模糊图像,这一步操作是为了模拟现实CT图像中由于病人身体的移动,心脏搏动和胃肠蠕动这些不自主的运动造成的伪影。在CT图像中的噪声有多种类型,有高斯噪声,椒盐噪声,泊松噪声,斑点噪声等。这里只引入了高斯噪声是由于通过查阅文献得知,CT图像中的噪声主要是高斯噪声[3],是一个抽象简化的退化模型。 ③点击按钮“恢复”,对模糊和加噪的图像进行图像复原,将复原后的图像显示在第三个坐标轴上。

基于matlab数字图像处理与识别系统含程序

目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (4) 1.5 论文的内容及组织 (5) 第二章图像处理的Matlab实现 (6) 2.1 Matlab简介 (6) 2.2 数字图像处理及过程 (6) 2.2.1图像处理的基本操作 (6) 2.2.2图像类型的转换 (7) 2.2.3图像增强 (7) 2.2.4边缘检测 (8) 2.3图像处理功能的Matlab实现实例 (8) 2.4 本章小结 (11) 第三章人脸图像识别计算机系统 (11) 3.1 引言 (11) 3.2系统基本机构 (12) 3.3 人脸检测定位算法 (13) 3.4 人脸图像的预处理 (18) 3.4.1 仿真系统中实现的人脸图像预处理方法 (19) 第四章基于直方图的人脸识别实现 (21) 4.1识别理论 (21) 4.2 人脸识别的matlab实现 (21) 4.3 本章小结 (22) 第五章总结 (22) 致谢 (23) 参考文献 (24) 附录 (25)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

基于Matlab的遥感图像处理

基于Matlab的遥感图像处理 测绘工程1161641014 鲍家顺 摘要文章运用Matlab软件对遥感影像的不足之处进行处理改善,详细介绍了处理方法和处理的原理,对处理结果进行了比对分析,并进行了边缘检测与特征提取,论证了处理方法的可行性。 关键词图像处理;matlab ;均衡化;规定化;色彩平衡;边缘检测;特征提取 在获取遥感图像过程中,由于多种因素的影响,会导致图像质量的退化,为了改善图像质量,突出遥感图像中的某些信息,提高图像的视觉效果,需要对图像进行各方面的处理,如分段线形拉伸,对数变换,直方图规定化、正态化,图像滤波,纹理分析及目标检测等。通过图像处理可以去除图像中的噪声,增强感兴趣的目标和周围背景图像间的反差,有选择地突出便于人或电脑分析的信息,抑制一些无用的信息,强调出图像的边缘,增强图像的识别方便性,从而进行边缘检测和特征提取。图像写出函数,显示图像函数有image ( ) 、inshow ( ) 等。[2 ]Matlab 图像处理工具箱处理工具提供了imhist () 函数来计算和显示图像的直方图, 提供了直方图均衡化的函数histeq() 、边缘检测函数edge ( ) 、腐蚀函数imerode () 、膨胀函数imdilate () 及二值图像转换函数im2bw () 等。文中实验数据采用的是桂林市区灰度遥感图像,宽度为1024 像素,高度为713 像素。 文件读入: 讲workspace切入到图片所在图层: Cd d:\ 读入图片: [x,cmap]=imread('m.PNG'); %将图片读入转换为矩阵 clf;imshow(x); %显示图片 原始图片

基于MATLAB图像复原论文

学号: 基于MATLAB 的离焦模糊图像复原 学院名称: 计算机与信息技术学院 专业名称: 通信工程 年级班别: 2008级1班 姓 名: 指导教师: 2012年5月 XXXX 学校 本科毕业设计

基于MATLAB的离焦模糊图像复原 摘要图像在获取、传输和存储过程中会受到如模糊、失真、噪声等原因的影响,这些原因会使图像的质量下降。因此,我们需要采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目,这称为图像复原。通过阅读图像复原技术相关资料,本文主要探讨了维纳(Wiener)滤波、约束最小二乘滤波算法、Lucy-Richardson算法和盲解卷积算法,并使用相关的工具箱函数deconvwnr函数、deconvreg函数、deconvlucy函数、deconvblind函数进行仿真。另外本文对上述算法进行了仿真实现,并分析了四种算法的实验结果。 关键词图像复原;维纳滤波恢复;约束最小二乘滤波恢复;Lucy-Richardson恢复;盲解卷积恢复 Based on the MATLAB of defocus blurred image restoration Abstract Image in the acquisition, transmission and storage process will be subject to such as blurring, distortion, noise and other reasons, these reasons will make the image quality degradation.Therefore, we needed to take a certain amount of ways to reduce or eliminate image quality to fall, to restore the image of self, this is known as image restoration. By reading the image restoration technology related data. This paper mainly discusses the Wiener filter, constrained least squares filtering algorithm, Lucy-Richardson algorithm and blind deconvolution algorithm,and the deconvwnr function,the deconvreg function ,the deconvlucy function and the deconvblind function are used for emulation.This article on the above algorithm to simulation and experimental result analysis of four kinds of algorithms. Keywords image restoration; Wiener filtering restore; Constrained least squares filtering restore; Lucy-Richardson recovery; Blind solution convolution recovery

基于MATLAB的图像处理的基本运算

基于MATLAB的图像处理的基本运算

————————————————————————————————作者:————————————————————————————————日期:

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像处理的基本运算 初始条件: 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)能够对图像亮度和对比度变化调整,并比较结果 (2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存, 比较几种插值的效果 (3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 (4)对图像加入各种噪声,比较效果。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................................................................................................... - 2 -1 MATLAB简介 ................................................................................................................................... - 2 -2图像选择及变换.............................................................................................................................. - 3 -2.1 原始图像选择读取.................................................................................................................. - 3 - 2.1.1 原理图的读入与基本变换 ............................................................................................... - 3 - 2.1.2 程序源代码及调试结果 ................................................................................................... - 4 - 2.2 转换图像为灰阶图像.............................................................................................................. - 5 - 3 图像处理及代码程序 ..................................................................................................................... - 6 -3.1 图像亮度对比度调整.............................................................................................................. - 6 - 3.1.1 函数说明及参数选择....................................................................................................... - 6 - 3.1.2 源程序及运行结果........................................................................................................... - 6 -3.2 图像放大和缩小...................................................................................................................... - 7 - 3.2.1 函数说明及参数选择....................................................................................................... - 7 - 3.2.2 源程序及运行结果........................................................................................................... - 7 -3.3 图像任意角度的旋转.............................................................................................................. - 8 - 3.3.1 函数说明及参数旋转....................................................................................................... - 8 - 3.3.2 源程序及运行结果........................................................................................................... - 9 -3.4图像直方图统计和均衡........................................................................................................... - 9 - 3.4.1 函数说明及参数选择....................................................................................................... - 9 - 3.4.2 源程序及运行结果......................................................................................................... - 10 -3.5 图像加入噪声........................................................................................................................ - 11 - 3.5.1 函数说明及参数选择..................................................................................................... - 11 - 3.5.2 源程序及运行结果......................................................................................................... - 12 - 4 图像处理结果比较分析 ............................................................................................................... - 14 -4.1 调整对比度和亮度后图像比较 ............................................................................................ - 14 -4.2 图像放大缩小及旋转后比较 ................................................................................................ - 14 -4.3 进行直方图均衡后图像比较 ................................................................................................ - 1 5 -4.4加入各种噪声后图像比较 ..................................................................................................... - 1 6 -5感悟体会小结................................................................................................................................ - 16 -参考文献........................................................................................................................................... - 1 7 -

相关主题
文本预览
相关文档 最新文档