当前位置:文档之家› 变频恒压供水设备是采用水泵专用数字式变频调速器而开发的具有PID控制的智能型高性能全自动恒压供水设备

变频恒压供水设备是采用水泵专用数字式变频调速器而开发的具有PID控制的智能型高性能全自动恒压供水设备

变频恒压供水设备是采用水泵专用数字式变频调速器而开发的具有PID控制的智能型高性能全自动恒压供水设备
变频恒压供水设备是采用水泵专用数字式变频调速器而开发的具有PID控制的智能型高性能全自动恒压供水设备

无塔变频供水系统

适用范围:

1、城乡生产、生活高层建筑恒压自动供水、农业节水灌溉。

2、消防用水及自动排水工程。

3、锅炉恒压自动补水,循环泵稳定供暖。

4、可与自来水、低位水箱、水池、深浅井等任意水源条件配套使用。

5、油田输油:本设备适用于油田恒压或恒液位输油及恒界面泵站系统中。

6、本设备适用于其他供热、化工配料、生产线流程中。

主要特点:

1、无塔无罐,可取代传统的水塔,屋顶高位水箱、压力罐等供水方式。

2、节电、节水,节电25%-50%

3、占地小,投资少。

4、手动,自动控制,操作简单,调整系统组态灵活方便,保证系统检修时仍能正常供水。

5、高可靠性,多种自动保护功能,抗干扰性强。

6、系统能停电后来电自动启动,并进入自动方式运行,可实现无人值守。

7、由于水泵软启动,调速运行,消除起动冲击和水锤现象,延长管网和设备的寿命。

8、消除用水的二次污染。

恒压供水技术方案

恒压供水技术方案文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

恒压供水技术方案 一、综述 1、概述:以变频器为核心的自动给水设备已经成为当下现代高楼自动供水设备的核心 设备。可以取代传统的高位水箱、气压罐供水,避免水质的二次污染,具有节能、操作方便、自动化程度高的特点。变频调速恒压供水设备可在生产生活用水、锅炉恒压补水、供暖系统、空调系统、定压差循环水、消防用水等方面直接应用。 2、特点: (1)高效节能; (2)可取代高位水箱或者水池,减少土建投资,避免水质二次污染; (3)采用恒压供水,大大提高供水品质; (4)延迟设备使用寿命,采用变频恒压供水,启动方式是软启动,对机械、电气设备冲击小,可大大延迟设备使用寿命,特别是机械设备。 (5)控制系统可根据客户需求配置人机管理系统、中文提示、中文监控操作,极大方便了客户的操作使用和设备维修; (6)全自动控制,无需人工干预; (7)具有完善的保护功能,变频器保护、欠电压保护、过电压保护、短路保护、过载保护、过热保护、缺相保护。 3、适用范围 (1)适用于自来水厂及加压泵站; (2)适用于住宅小区、宾馆、饭店及其它大型公共建筑的生活供水; (3)适用于大中型工矿企业的生产生活用水; (4)适用于居民住宅小区、宾馆、饭店、大型公共建筑和各种工矿企业的消防供水、生产供水; (5)适用于工矿企业恒压、冷却水工会和循环供水系统; (6)适用于热水供水、采暖、空调、通风系统的供水; (7)适用于污水泵站、污水处理中的污水提升系统; (8)适用于农田排灌、园林喷洒、水景和音乐喷泉系统; 二、工作原理

变频恒压供水系统协议

技术协议 一、总则 1.1本协议书适用于山西柳林王家沟煤业有限公司变频恒压供水系统。它包括了设备的功能设计、结构、性能、供货等方面的技术要求。 1.2如卖方没有以书面形式对技术规范书明确提出异议,那么卖方提供的产品应完全满足技术协议书的要求。若供方所提供的协议书前后有不一致的地方,应以更有利于设备安装运行、工程质量为原则,由买方确定。设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,卖方应保证买方不承担有关设备专利的一切责任。 1.3本技术协议书所使用的标准如与卖方所执行的标准发生矛盾时,按较高标准执行。 二、设备概述 2.1变频恒压供水是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。供水管网的出口压力值是根据用户需求确定的。 2.2变频恒压供水系统以管网水压 (或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节 (PID),使供水系统自动恒稳于设定的压力值:即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求。 2.3变频恒压供水系统是一项成熟的技术,我公司已为多家水处理厂进行设计和改造,并取得可观的经济和社会效益。

三、设备规范 3.1设备名称:变频恒压供水系统 3.2型号:HHY-50/72-Q3 3.3设备组成:主泵、副泵、稳压罐、系统机组、智能变频控制柜 3.4主要参数: 3.5位置:室内安装

3.6变频恒压供水系统型号说明 3.7该系统设备主泵有二台,全部可软启动,均可变频调速,若按正顺序启动则按逆顺序停止。在三台水泵并联供水时,只有一台泵是变频调速泵,其余为恒速泵。在水泵出水管附近安装压力传感器,并将出水口压力信号反馈给变频恒压控制柜,控制水泵按设计给定的压力自动选择水泵的开停及台数,由用户需水量决定水泵供水量。 四、变频调速水泵恒压供水的特点: 我公司的变频调速水泵恒压供水有如下特点: 4.1供水压力稳定: 系统实现闭环控制,传感器返回系统压力,通过与设定值的比较,输出相应频率,拖动水泵运行在相应的转速,使系统压力保持恒定。 4.2高效节能: 系统能按需设定压力,根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳工作状态。 4.3操作方便简单,稳定可靠: 系统由变频器和PLC自动控制,可实行无人操作,操作简单。配有自动/手动开关控制,保证设备的安全连续运行。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

水泵自动化控制系统使用说明书

水泵自动化控制系统使用说明书 一、························概述 乌兰木伦水泵自动化控制系统是由常州自动化研究所针对乌兰木伦矿井下排水系统的实际情况设计的自动控制系统。通过该系统可实现对水泵的开停、主排水管路的流量、水泵排水管的压力、水仓的水位等信号的实时监测,并能通过该系统实现三台主水泵的自动、手动控制并和KJ95监控系统的联网运行,实现地面监控。 基本参数: 水泵: 200D43*3 3台(无真空泵) 扬程120米流量288米3/小时 主排水管路直径 200mm 补水管路直径 100mm 水仓: 3个 水仓深度分别为: 总容量: 1800米 3 主电机: 3*160KW 电压:AC660V 启动柜控制电压: AC220V 220变压器容量: 1500VA 二、系统组成 本控制系统主要由水泵综合控制柜,电动阀门及传感器三大部分组成。参见“水泵控制柜内部元件布置图:。 1、水泵综合控制柜是本系统的控制中心,由研华一体化工控机、数据采集板、KJ95分站通讯接口、中间继电器、控制按钮及净化电源及直流稳压电源组成。 其中,净化电源主要是提供一个稳定的交流220V电压给研华一体化工控机,以保证研华一体化工控机的正常工作,直流稳压电源主要提供给外部传感器、中间继电器及数据采集板的工作电源。 控制按钮包括方式转换按钮、水泵选择按钮及手动自动控制按钮,分别完成工作方式的转换、水泵的选择及水泵的手动和自动控制。本控制柜共有40个按钮,从按钮本身的工作形式来说这些按钮有两种,一种为瞬间式,即按钮按下后再松开,按钮立刻弹起,按钮所控制的接点也不保持;另外一种为交替式,即按钮按下后再松开按钮,按钮并不立刻弹起,而是再按一次后才弹起,按钮所控制的接点保持(如方式转换按钮、水泵选择按钮等)。 中间继电器采用欧姆龙公司MY4型继电器,主要完成信号的转换和隔离。另外,还对

深井泵控制方案

22KW深井泵恒压变频控制方案 变频调速恒压供水具有节能、安全、高品质的供水质量等优点,恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。 一、恒压供水原理 通过管网中的远传压力表或者压力传感器将信号送入变频器,使用英威腾变频器自带的PID运算调节功能,自动调整电机转速,当管网中压力增大时,远传压力表或压力变送器的反馈信号增大,变频器输出频率、电压下降,电机速度下降,水泵轴功率减小,水泵的流量减少,当到达所需恒定压力值时,此时系统处于动态平衡。当管网中压力减小时,远传压力表或压力变送器的反馈值减小,变频器经过PID运算,调节输出频率上升,从而使得电机转速上升,直到达到设定压力,动态平衡。当不用水时,由于管网压力已达恒定,变频器进入休眠待机状态,此时电机不转,水泵停止工作。当管网压力发生改变时,变频器再次自动唤醒,从而达到恒压动态调节水的流量,达到恒压节能的目的。 本控制回路,设有工频备用回路。当变频器回路出现故障时,将选择开关打到“工频模式”,手动启动工频回路,以保证生产生活用水需求。在工频回路设有电动机保护器,电动机保护器具有电动机过载、缺相、短路保护功能,时刻保证水泵机组安全。 二、恒压供水节能方案 如上所述,流量是供水系统的基本控制对象,供水流量需要随时满足用水流量。在供水系统中,管道中的水压能够充分反映供水能力与用水需求之间的关系: 若供水流量 > 用水流量→管道水压上升↑ 若供水流量 < 用水流量→管道水压下降↓ 若供水流量 = 用水流量→管道水压不变 所以,保持管道中的水压恒定,就可保证该处供水能力恰好满足用水需求,这就是恒压供水系统所要达到的目的。 整个控制过程如下: 用水需求↑——管路水压↓——压力设定值与返馈值的差值↑——PID输出↑——变频器输出频率↑——水泵电机转速↑——供水流量↑——管路水压趋于稳定 控制原理框图如下:

冷冻冷却水泵变频节能

安彩集团公司动力厂中央空调变流量控制 可 行 性 方 案 襄樊市环立电气技术有限公司 二OO五年四月二十六日

一、设备现状 安彩集团公司动力厂中央空调主机配置的55KW冷却泵和75kw冷冻泵,运行时每小时电耗总功率为130kw。 上述水泵由于没有配备相应的调速设备,全部工频运行。 二、设备现耗电量统计 夏季中央空调制冷运行时,一台55KW冷却泵和一台75 KW冷冻泵,运行6个月,平均每天24小时,耗电量统计如下: 冷却泵耗电统计: 55KW×1台×24小时×30天×6个月=237600度 冷冻泵耗电统计: 75KW×1台×24小时×30天×6个月=324000度 合计:237600度+324000度=561600度 从以上统计数据可以看到,在中央空调运行的时间里,冷却泵、冷冻泵的耗电量是非常大的。 三、节能潜力分析 中央空调在设计时必须考虑最大用量,裕量普遍大10%—20%. 季节、天气温度的变化,主机制冷量变化亦较大。 空调使用者的多少也导致主机负荷发生变化。 以上主机负荷发生变化时,制冷主机,一般都能根据负荷的大小自动调节制冷量节能运行,而主机外围风水循环系统却没有配置跟踪主机负荷自动调节冷却、冷冻及冷却风量的设备,长期处于大马拉小车状态,因而产生了电能的大量浪费。 主机工作在部分负荷时,其所需配置的冷却、冷冻及冷却风量可大大降低。 四、变流量方案 1、冷却泵 运行55KW冷却泵配置一台55KW变流量控制柜,通过出水和回水温度传感器检测出水和回水温度,然后求差,变送放大。如果温差大, 则说明主机需求散热量大,则通过实时运算主机需求的散热量按比例地调节冷却泵增加相应流量循环,如果温差小,则说明机组需求散热量小,则通过实时运算按比例减配冷却水量循环,以节约电能。通过PLC完成主机发给冷却泵的启动和停止信号,同时反馈给主机冷却泵的工作状态,以便于机组对冷却泵的监控,因温度惰性较

全自动变频调速恒压供水控制柜

概况: HDL系列水泵控制柜是海德隆公司充分吸收国内外水泵控制的先进经验,经多年的生产和应用,不断完善优化,精心设计制作而成。该产品具有过载、短路、缺相保护以及泵体漏水、电机超温及漏电等多种保护功能及齐全的状态显示。还具备单泵及多泵控制工作模式,多种主、备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制系统。 海德隆公司的控制设备根据不同的使用情况,可分为液位控制、压力(恒压)控制、时间控制、温度控制、空调联控、消防专用等类型。按产品使用的特点可分为:生活泵控制设备、变频恒压控制设备、消防泵专用控制设备、空调泵专用控制设备、潜水排污泵专用控制设备等。 启动方式: 1、直接启动:一般电机功率为15kW以下的水泵采用直接起动。 2、自耦降压启动:15kW以上的排污泵,一般采用自耦降压启动。消防喷淋泵亦多选用此起动方式。 3、Y-△降压启动:其余型号15kW以上的水泵,若无特殊要求,一般采用Y-△降压方式起动。 4、软启动器启动:若希望进一步降低起动时对电源及电机的冲击,延长机械寿命,完全消除水锤现象和噪音,并达到节能的目的,则采用软起动方式。 5、变频启动:适用于任何功率情况下的控制设备,变频控制系统设在自动状态下,水泵启动方式为通过改变电源的频率由小到大延时启动,达到平稳启动的目的。 工作条件: 1、周围最高空气温度不超过40℃,最低温度不低于-5℃。 2、安装地点海拔高度不超过1000米。 3、周围空气中无爆炸危险的介质,且介质中无足以腐蚀金属和破坏绝缘的气体及导电尘埃。 4、工作电压为380±10%。 5、震动:<5.9m/s2(0.6G); 功能原理及用途: 多泵控制工作模式: 一用一备:控制Ⅰ、Ⅱ二台水泵,可工作于“Ⅰ主Ⅱ备”或“Ⅱ主Ⅰ备”两种方式。 二用一备:控制Ⅰ、Ⅱ、Ⅲ三台水泵,可工作于“Ⅰ、Ⅱ主Ⅲ备”或“Ⅱ、Ⅲ主Ⅰ备”或“Ⅰ、Ⅲ主Ⅱ备”三种方式。 三用一备:控制Ⅰ、Ⅱ、Ⅲ、Ⅳ四台水泵,可工作于“Ⅰ、Ⅱ、Ⅲ主Ⅳ备”或“Ⅱ、Ⅲ、Ⅳ主Ⅰ备”或“Ⅰ、Ⅲ、Ⅳ主Ⅱ备”

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。

变频恒压供水的应用方案

变频恒压供水的应用方案 一、前言 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频供水设备已广泛应用于多层住宅小区生活及高层建筑生活消防供水系统。变频调速供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。但在实际应用中若选型及控制不当,不但达不到节能目的,反而“费电”。以下结合我们多年来的实践经验,对几种变频供水系统的应用及其控制方法进行介绍,供同行及用户在设计、改造、选型时参考。 二、一拖二变频供水方式(见图1) 适用一般小区恒压供水,特点:是无需附加供水控制盒,成本低。利用变频器本身内置的恒压PID 控制功能。就能达到2 台水泵循环启停功能。 三、带小流量循环软启动变频供水设备(如3+1 供水模式,见图2) 该类型设备在实际应用中较多,系统由水泵机组、循环软启动变频柜、压力仪表、管路系统等构成。变频柜由变频调速器,供水盒(PLC+AD 模块+DA 模块),低压电器等构成。系统一般选择同型号水泵2~3 台,以3 台泵为例,系统的工作情况如下: 平时1 台泵变频供水,当1 台泵供水不足时,先开的泵切换为工频运行,变频柜再软启动第2 台泵,若流量还不够,第2 台泵切换为工频运行,变频柜再软启动第3 台泵。若用水量减少,按启泵顺序依次停止工频泵,直到最后1 台泵变频恒压供水。 另外系统具有定时换泵功能,若某台泵连续运行超过24h 变频柜可自动停止该泵切换到下一台泵继续变频运行。换泵时间由程序设

定,可按要求随时调整。这样可均衡各泵的运行时间,延长整体泵组的寿命,防止个别水泵因长时间不工作而锈死。 当变频供水系统在小流量或零流量的情况下,比如在夜间用水低谷时,系统内的用水量很小,此时水泵在低流量下运行,会造成水泵效率大大降低,不能达到节能的目的,水泵功率越大用电越多。例如对300~1000 户的多层住宅小区或600 户左右的小高层住宅楼群(12 层以内)的生活用水系统,生活主泵功率一般在15kW 左右,系统的零流量频率fo 一般为25~35Hz 故在夜间小流量时,采用主泵变频供水效率较低。 这就涉用供水系统在小流量或零流量时的节电问题,一般可以采取4 种方案:a 变频主泵+工频辅泵;b 变频主泵+工频辅泵+气压罐; c 变频主泵+气压罐; d 变频主泵+变频辅泵。从节能、投资角度看第4 种方案更为适宜,该方案即在原变频主泵基础上,再配备1~2 台小泵专用在夜间或平时小流量时变频供水,一般选择小泵流量为3~6m3/h,居民区户数越多,流量可适当选择大些。小泵功率一般为1.5~3kW,小泵的扬程按主泵的扬程或略低扬程即可。 四、深水井变频供水设备

空调水泵变频设计方案

﹡﹡﹡﹡﹡﹡酒店 中央空调冷冻及冷却水泵变频调速设计方案及可行性研究报告 一、 概述 在中央空调系统中冷冻水泵和冷却水泵的容量是按照建筑物最大设计热负载选定 的,且留有余量,而运行情况是一年四季长期在固定的最大水流量下工作。由于季节、昼夜和用户负荷的变化,实际空调热负载在绝大部分时间内远比设计负载低,如图1所示是一建筑物的实测热负载率变化的情况。由图1可见,与决定水泵流量和压力的最大设计负载(负载率为100%)相比,一年中负载率在50%以下的小时数约占全部运行时间的50%以上。一般冷冻水设计温差为5-7℃,冷却水的设计温差为5℃,在系统流量固定的情况下,全年绝大部分运行时间温差仅为1.0-3.0℃,即在低温差、大流量情况下工作,从而增加了管路系统的能量损失,浪费了水泵运行的输送能量。一般空调水泵的耗电量约占总空调系统耗电量的20-30%,故节约低负载时水系统的输送能量,具有很重要的意义。因此,随热负载而改变水量的变流量空调水系统显示了其巨大的优越性,而得到越来越广泛的应用。采用P .W .M 变频器调节泵的转速可以方便地调节水的流量,根据负载变化的反馈信号经PID 调节与变频器组成闭环控制系统,使泵的转速随负载变化,这样就可以实现节能,其节能率通常年平均都在40%以上。 对于冷冻水泵、冷却水泵来说,流量Q 与转速n 成正比,温差△T 与转速n 成反比,扬程H 与转速n 的二次方成正比,而轴功率P 与转速n 的三次方成正比(见表1),从表中我们可以看出上述几个量的变化关系: 2 日变化图示 图1 100% 75% 50% 25% 0 热负载率 4 6 8 12 24 时 16 100% 75% 50% 25% 年变化图示 0 4 5 8 9 11 热负载率 6 7 10 20

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

离心水泵流量控制的方法

离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。离心水泵流量常用控制方法: 1、出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 2、旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 3、调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 4、调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 1)泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率

都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 2)能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。(2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。离心水泵流量控制方法总结: 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用:

群光广场中央空调冷冻、冷却水泵及风机节能改造方案

深圳市海利科科技开发有限公司SHENZHEN HAILIKE SCIENCE AND TECHNOLOGY EXPLOIFATION CO.,LTD. 群光(百货)广场集中空调/冷冻系统节能 及集中监控改造方案 科技创新以人为本

群光(百货)广场集中空调/冷库系统节能 及集中监控改造方案及预算 首先感谢您在百忙之中阅读我公司的节能改造方案,也感谢您给予我公司这样一次宝贵的机会,希望您能提出宝贵的建议及批评。以下是我公司对此次节能方案的概叙:根据贵公司的招标文件要求,我公司有针对性的做出了节能及集中监控改造方案,使该系统具备以下特点: ·系统配置精良,自动化程度高,便于整个系统的集中管理; ·回路、系统、特殊单元的监控功能;能快速查阅故障、数据更改等监控工作。 ·高速画面数据,OS传送及高速总线连接; ·具备保密功能; ·基于WINDOWS的全中文操作系统,并完全支持从发现故障位置,分析原因到复位为止时的整个过程; ·优化了的视窗32版本综合开序环境,具备画面转换器、文件处理、求助视窗、调试、过程管理器等等功能; 同时,我公司承诺改造后的最低节电率为20%,但依据现场的实际情况来推算改造后节电率在30%以上,以下针对各部分进行综叙: 一、监控中心工作站监控管理系统 采用韩国LS K120系列产品,内置32BIT的RISC高速图芯形片,为同类人机界面中速度最快的一种。可用标准的WINDOWS工具进行配置,使用软键、功能键或触摸控制,简化了

操作,也保证了操作的安全性;并可轻松地连接其他控制系统。即使在光线很差的情况下也有很高的对比显示和极佳的可读性,并支持中文字符集,使用户操作方便。 中央空调节能自动控制系统监控装置改造方案报价(一套)单位:元 二、冷却水泵节能自动控制系统改造方案及预算 集中空调系统冷却水泵共有七台:5台132K W、2台30K W,以及冻库系统冷却水泵共有二台:2台18.5K W。改造分别采用一台变频器拖动七台水泵和一台变频器拖动二台水泵的循环控制方式,采用温差做为控制的标准信号。 节能改造分别采用一台132K W和一台18.5KW的变频器及相应的空气开关、智能控制器、接触器、热继电器、P L C及传感器组成的控制系统,系统改造后能达到节能降耗及无人值守自动控制的目的。 该控制系统由变频回路和工频回路两部分组成: 变频回路:由一台变频器,空气开关,3个交流接触器和自动运行控制回路及信号报警回路组成变频循环运行回路。工频回路:空气开关、交

水泵恒压供水变频器节能改造

水泵恒压供水变频器节能改造 叶良禄 提要:变频器传动时要得到与工频电源传动相同的转矩特性,变频器输出电压的基波有效值通常要等于工频电源的有效值。因此,变频器调速改造选型时要充分考虑电动机的负载特性。 摘要论述了水泵恒压供水变频节能改造的原理;变频器的选型要点及容量计算;节电计算及运行效果分析。 关键词变频器电动机改造 一、引言 动能公司供水车间七泵房主要承担着热力车间老区3台锅炉和3台汽机生产用水的供水任务。该系统共有水泵机组两大两小,大水泵机组型号为600S-32,额定流量3170m3/h,扬程32m,转速970r/min,配套功率400kW;配用电机为Y4005-6,额定功率400kW,电压6kV,额定电流46.5A,转速988r/min;小水泵机组型号为350S-44A,额定流量1116m3/h,扬程36m,转速1450r/min,配套功率160kW;配用电机为Y315L1-4,额定功率160kW,电压380V,额定电流289A,转速1485r/min。根据平时用水情况来确定机组的匹配数量和阀门开度,平时开一大一小,系统组管压力偏高有富余,有时只需一台大机,有时需要一大两小,其中一台小机的阀门开度仅为20%左右,系统瘪压情况较严重,压力不稳定。设备振动厉害,给生产带来很多不稳定的因素。系统的给水压力和供水量整年呈现一个动态的变化过程。为此,于2005年初对该系统的两台小机组进行了恒压供水变频节能改造,改造后的供水系统完全满足3台锅炉、3台汽机的生产用水要求,同时节能效果也十分显著。 二、恒压供水变频节能的原理 如图1所示,当水泵工作在曲线②的A点时,其流量与压力分别为Q1、p2,此时水泵所需的功率正比于p2与Q1的乘积。由于工艺要求需减小水量到Q2,通过增加管网管阻,使水泵的工作点移到曲线③上的B点,水压增大到p1,这时水泵所需的功率正比于p1与Q2的乘积,由图可见这种调节方式控制虽然简单,但功率消耗并无减少。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF ) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制 压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节 制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。 这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根 据温度误差(与设定值的偏差)和变化速度求出所需的加载/卸载量,从而将冷水温度控 制在设定的范围内。导叶电机根据4?20mA 的电流输入信号,每%地增加或减小导叶的 开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开 启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在土C 以内。 见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容 量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “一-”代表系统控制 “一-”代表控制系统实施操作后有可能引起的现象如图 3所示,系统控制和实施控制操 作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小 来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断 下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进 行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷 运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继 续关小(或导叶已关到最小),则导叶维持该状态运行,出水温度将进一步下降,当下降到 低于出水温度设定点3C 以下时,则机组由控制系统控制进行安全关机。或进入再循环运 行模式控制。 冰机加减机: 加机(4种方式?): 1?冷冻水系统供水温度T si 高于系统设定温度T ss 并持续一段时间 2?压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运 行电流不符合的情况) 3?计算负载 4.如运转中主机已达最大流量,则须加开一台主机 (发生机率不高)。 减机: * △ T 3.系统流量 加减机逻辑:冷冻站管理器将监测供回水总管的温度,同时监测冷机的负荷。 当水系统的计算冷负荷达到运行冷机额定制冷量的 80%(可调),并持续 20 分钟(可 调),则冷冻站管理器将增开站房内下一个可用的运行时间最短的制冷单元。 当水系统的冷负荷低于运行冷机的总名义额定制冷量的 20%,并持续 20 分钟(可调), 1.依压缩机电流百分比(%没定 %RLA 运行机组)) 运行机组台数 1

水泵恒压供水方案

水泵恒压供水方案 一.泵房供水电机一般以恒定速度运行,用大小泵切换或调节 进出水阀的方法调节水压及流量,以满足各种不同的需求.这种低效率控制流量的方法,不能满足实际工作要求,由于工作中水量变化,可能使平均水压升高,一方面造成不必要的能量消耗还会使管网因较大的压力冲击,使管网破裂;另一方面使水压不稳,影响供水品质. 二.采用变频恒压供水自动化控制的特点: 1.节省电能,降低能源消耗,能24小时维持恒定压力,并根据 压力信号自动启动备用泵,无级调整压力,供水质量好,与 传统供水相比,不会造成管网破裂及水龙头共振现象. 2.启动平滑,减少电机水泵的冲激,延长了电机及水泵的使 用寿命,降低了维修成本,避免了传统供水中的水锤现象. 3.变频恒压供水保护功能齐全,运行可靠,具有欠压,过压, 过流,过热等保护功能.可根据用户需要,选择各种附加功 能. 三.供水工况 目前通过二台45KW,二台15KW的水泵(一用一备),工艺要求水压为5Mpa。主要考虑节能及自动化的要求,内置自动节能,PID,简易PLC及通讯接口等功能,可以

方便与PLC,现场总线进行通讯,方便操作及监控,同时可以方便地与压力传感器连用。 四、恒压供水原理 当供水系统阻力一定时,水泵转速的变化,将会改变供水系统的压力和流量。如图1所示,当水泵转速由N1提升到N2时,由于阻力曲线R不变,水泵工况由A点移到B点。则流量由Q1提升到Q2,同时扬程也由H1提升到H2。系统阻力不变时,只需调节电动机的转速,即可改变流量与扬程。 H R H2 N2 P=QⅹHⅹr/102ⅹn (1) H1N1 B P:水泵工况点的轴动功率(KW) H0 A Q:水泵工况点的水压或流量(m3/s ) Q1 Q2 Q H:水泵工况点的扬程(m) r:输出介质单位体积重量(Kg/m H0 ( 图1 ) n:水泵工况点的泵效率(%) 根据离心泵的公式 (1)和水阻力特性曲线,我们可以知道,在水阻特性一定时,调速N与流量Q、 扬程H、轴功率P之间的关系式为: Q2/Q1=N2/N1 (2) H2/H1=(N2/N1)2 P2/P1=(N2/N1)3

相关主题
文本预览
相关文档 最新文档