当前位置:文档之家› 第12章数项级数

第12章数项级数

第12章数项级数
第12章数项级数

第十二章 习题一

数项级数

一.选择题

1.给定下列命题:① 若∑∞

=-+1

212)(n n n u u 收敛,则∑∞

=1

n n u 收敛;② 若∑∞

=1

n n u 收敛,则

∑∞

=+1100

n n u

收敛;③ 若0lim ≠=∞

→a u n n ,则∑∞=1

n n u 发散;④ 若∑∞=+1

)(n n n v u 收敛,则∑∞

=1

n n u 、

∑∞

=1

n n

v

都收敛.其中正确的命题是( B )

(A )①和②; (B )②和③; (C )③和④; (D )①和④. 2.设∑==n

k k n a S 1

,则数列}{n S 有界是级数∑∞

=1

n n a 收敛的( B )

(A )充分非必要条件; (B )必要非充分条件; (C )充分且必要条件; (D )既非充分又非必要条件. 3.若∑∞

=1

2

n n a 、∑∞

=1

2

n n b 收敛,则∑∞

=1

n n n b a ( C )

(A )发散; (B )条件收敛; (C )绝对收敛; (D )收敛性不定.

4.级数∑∞

=+-1

1

)1(n p n n (0>p )敛散性为( A )

(A )当1p >时,绝对收敛;当1p ≤时,条件收敛;

(B )当1p <时,绝对收敛;当1p ≥时,条件收敛;

(C )当1p ≤时发散;当1p >时收敛; (D )当0p >时,绝对收敛. 5.设有两个数列{}{}n n a b ,若lim 0n n a →+∞=,则( C ) (A )当1

n n b +∞

=∑收敛时,1

n n n a b +∞

=∑收敛; (B )当1

n n b +∞

=∑发散时,1

n n n a b +∞

=∑发散;

(C )当1

n n b +∞=∑收敛时,22

1

n n

n a b +∞=∑收敛; (D )当1

n n b +∞=∑发散时,221

n n n a b +∞

=∑发散。

6.若级数0

n n a +∞

=∑收敛,则级数( D )

(A )0

n n a +∞=∑收敛;(B )0

(1)n

n n a +∞=-∑收敛;(C )10

n n n a a +∞

+=∑收敛;(D )1

2n n n a a +∞

+=+∑

7.设1

n n u +∞

=∑收敛,则以下级数中收敛的是( D )

(A )1(1)n

n n u n +∞

=-∑;(B )2

1n n u +∞=∑;(C )2121()n n n u u +∞+=-∑;(D )11

()n n n u u +∞

+=+∑。

8.设1

n n a +∞

=∑为正项级数,则下列命题正确的是( B )

(A )若lim 0n n na →+∞

=,则级数1

n n a +∞

=∑收敛;

(B )若存在非零常数λ,使得lim n n na λ→+∞

=,则级数1

n n a +∞

=∑发散;

(C )若级数1n n a +∞

=∑收敛,则2lim 0n n n a →+∞

=; (D )若级数1

n n a +∞

=∑发散,则存在非零常数λ,使得lim n n na λ→+∞

=。 9.设0n u ≠,(1,2,n =L ),且lim

1n n

n

u →+∞=,则级数11111(1)()n n n n u u +∞

+=+-+∑( C ) (A )发散(B )绝对收敛(C )条件收敛(D )不能判定

二.填空题

1.若11

=∑∞=n n a ,则111

()2n n n a a a ∞

+=+=-∑.

2.2

2

13

14n n ∞

==-∑

. 3.设}{n S 为级数∑∞

=1

n n a 的部分和数列,且∑∞

=1

n n S 收敛,则1

0n n a ∞

==∑.

4.

2____________

111111

()123234(2)(1)22n n n n n

+++=-????-?-?-L 5.2

_______________

1

ln(1)ln(1)1

[(1)ln(1)][ln ]2ln 2

n

n n n n n n n ∞

=+++=

++∑

三.计算题

1.判别下列正项级数的敛散性: (1)(1)112

n

n n ∞

+-=∑

解:1

)1(212

1--+≤

n n n

Θ

,∴级数收敛.

(2)1111n n

n

+=∑

解:

1111

11

:

1n

n

n

n

n +=→ 因为11n n ∞

=∑发散,所以1111

n n

n

+=∑也发散。

(3)1tan

3

n

n n π

=∑.

解:n

n n n

n n n n u u 3tan 3tan

1

lim lim

11ππ+∞→+∞→?+=Θn

n n n n 331lim 1ππ

+∞→?+=13

1<=,∴级数收敛.

(4)1

1

[ln(1)]n

n n ∞

=+∑

. 解:10)

1ln(1

lim lim <=+=∞

→∞→n u n n n n Θ,∴级数收敛.

(5)13!

n n n n n

=∑.

解:()13

1113lim 13lim lim 1>=??

? ??+=+=∞→∞→+∞→e n n n u u n n n n n n

n n Θ,∴级数发散.

(6)1

(1)!n n

n ∞

=+∑

解:1(1)!n n

n ∞

=+∑=∑∑==∞→∞→+-+=+n k n k k n k k k k 11)!1(1)1(lim )!1(lim ∑=∞→+-=n

k n k k 1))!1(1!

1(lim 1))!

1(1

1(lim =+-

=∞

→n n ,故级数收敛,其和为1. 另解:1(1)!n n n ∞

=+∑∑∑∞

=∞=????

??+-=+-+=11)!1(1!

1)!1(1)1(n n n n n n (∑∞=1!1n n 与∑∞=+1)!1(1n n 都收敛) ∑∑∞

=∞=+-=11)!1(1!1n n n n ∑∑∞

=∞=-=12!1!1n n n n 1=.

(7)1

11cos n n n α∞

=??

- ??

?

解:211cos 12n n n αα-?

?- ???→ ,所以111cos n n n α∞=??- ???∑与21

1n n α

-=∑同敛散。 所以1α<时,原级数收敛, 1α≥ 时,原级数发散。 (8)∑

=+++1

2

2)2()1(1

2n n n n 解:因为

22

2

21(1)(2)01n n n n +++→ 又因为21

1

n n ∞

=∑收敛, 所以∑∞

=+++12

2)

2()1(1

2n n n n 也收敛。 (9)

21

1ln 1n n

=?

?

+ ???

解:因为22

1ln 111n n ?

?+ ?

??→

又因为21

1

n n ∞

=∑

收敛, 所以21

1ln 1n n ∞

=??

+

??

?

∑也收敛

(10)121(1)(1)(1)n n a a a ∞

=+++∑L ,其中lim 0n n a →+∞

>

解:12121(1)(1)(1)

lim

1lim 1(1)(1)(1)

n n n n n a a a a a a a →∞

→∞-+++=+>+++L L 所以121

(1)(1)(1)n n a a a ∞

=+++∑L 发散。

(11)∑∞

=++1

)(n a n n

n a n

解: ()11n

n

n a a a n a a n e n n

++??=+→ ??? 所以 ∑∞

=++1

)(n a n n

n a n 与

1

1

a n n ∞

=∑ 同敛散,即 1a >时, ∑∞

=++1

)(n a n n

n a n 收敛;反之,发散。

数学分析 数项级数

第十二章数项级数 教学目的:1.明确认识级数是研究函数的一个重要工具;2.明确认识无穷级数的收敛问题是如何化归为部分和数列收敛问题的;3.理解并掌握收敛的几种判别法,记住一些特殊而常用的级数收敛判别法及敛散性。 教学重点难点:本章的重点是级数敛散性的概念和正项级数敛散性的判别;难点是一般级数敛散性的判别法。 教学时数:18学时 § 1 级数的收敛性 一.概念: 1.级数:级数,无穷级数 ; 通项 ( 一般项 , 第项 ), 前项部分和等概念 ( 与中学的有关概念联系 ). 级数常简记为 . 2.级数的敛散性与和 : 介绍从有限和入手, 引出无限和的极限思 想 . 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的 和、余和以及求和等概念 . 例1讨论几何级数的敛散性.(这是一个重要例题!)解时, . 级数收敛 ; 时, 级数发散 ;

时, , , 级数发散 ; 时, , , 级数发散 . ( 注意从 综上, 几何级数当且仅当时收敛, 且和为 0开始 ). 例2讨论级数的敛散性. 解(利用拆项求和的方法) 例3讨论级数的敛散性. 解设, , = , . , . 例4 讨论级数的敛散性.

解, . 级数发散. 3.级数与数列的关系 : }, 收敛 {}收敛; 对应部分和数列{ }, 对应级数, 对该级数, 有=. 对每个数列{ }收敛级数收敛. 于是,数列{ 可见 , 级数与数列是同一问题的两种不同形式 . 4. 级数与无穷积分的关系 : , 其中. 无穷积分可化为级数 ; 对每个级数, 定义函数 , 易见有 =.即级数可化为无穷积分. 综上所述 , 级数和无穷积分可以互化 , 它们有平行的理论和结果 . 可以用其中的一个研究另一个 . 级数收敛的充要条件——Cauchy准则:把部分和数列{} 二. 收敛的Cauchy准则翻译成级数的语言,就得到级数收敛的Cauchy准则 . 和N, Th ( Cauchy准则 ) 收敛

教案1无穷级数概念与性质

高等数学教案1 第十一章 无穷级数 编写人:吴炯圻 I. 授课题目: 第一节 常数项级数的概念和性质 Ⅱ.教学目的与要求 1、了解常数项级数的概念及其产生的背景; 2、掌握收敛级数的基本性质; 3、会采用级数敛散的定义或收敛级数的基本性质判断较简单级数的敛散性; 4、了解柯西审敛原理。 Ⅲ.教学重点与难点: 重点:级数收敛与发散的定义; 收敛级数的基本性质。 难点:无穷个数量求和与有限个量求和的差别。 关键: 1.会把级数的问题转化为部分和序列来处理; 2.熟悉数列的收敛与发散的判别. Ⅳ.讲授内容: 第一节 常数项级数的概念和性质 一、常数项级数的概念及其产生的背景 1.古代人如何求圆的面积? 我国古代数学家刘徽已经利用无穷级数的思想来计算圆的面积. 在半径为1的圆内作内接正六边形, 其面积记 为1a , 它是圆面积A 的一个近似值. 再以这正六边 形的每一边为底边分别作一个顶点在圆周上的等腰 三角形 (图1-1) , 算出这六个等腰三角形的面积之 和2a . 那么21a a (即内接正十二边形的面积)也是 图1-1

A 的一个近似值, 其近似程度比正六边形的好. 同样 地, 在这正十二边形的每一边上分别作一个顶点在圆周上的等腰三角形, 算出这十二个等腰三角形的面积之和3a . 那么321a a a ++(即内接正二十四边形的面积)是A 的一个更好的近似值. 如此继续进行n 次, 当n 是较大的整数时,得到的正多边形的面积 n n a a a s +++=Λ21就很接近A 的值了. 2.常数项级数的概念 古代数学家刘徽时代,人们只懂求有限个量之和,没有极限的概念,仅能把求圆面积的步骤和准确性停留在有限的数n 上。 随着科学的进步,人们认识的提高,人们自然认为,当n 无限增大时,则 n n a a a s +++=Λ21的极限就是圆的面积A ,即 )(lim lim 21n n n n a a a s A Λ++==∞ →∞ →. (1.1) 这时,上式右边括号中的项数无限增多,出现了无穷个数量累加的式子。 一般地, 给定一个数列 ΛΛ,,,,,321n u u u u , 则由这数列构成的表达式 ΛΛ+++++n u u u u 321 (1.2) 叫做(常数项)无穷级数, 简称(常数项)级数, 记为 ∑∞ =1 n n u , 即 ∑∞ =1 n n u ΛΛ+++++=n u u u u 321, 其中第n 项u n 叫做级数的一般项或通项. 上述级数的定义只是一个形式的定义,怎样理解无穷级数中无穷多个数量相加呢? 联系上面计算圆的面积的例子,即(1.1)式,用有限项的和S n 的极限来定义无穷多个数量相加的“和”,我们自然要问,对一般的级数是否也可以这样做? 这个思路是对的。 为此,我们把级数(1.2)的前n 项之和s n = u 1+u 2 +…+u n 称为级数(1.1)的部分和, n 依次取 1,2,L 时得数列 s 1, u 2 ,…, u n … 称为级数的部分和数列. 在上面求面积的例子中,部分和数列收敛(为什么?),并由此求得面积, 即求得无穷多个量之和12....n a a a A ++++=L 。 但是,能否由此推断, 所有级数的部分和数列收敛都收敛? (提问, 允许各种猜测.) 事实上, 正像一般的数列未必收敛一样,部分和数列也未必收敛。例如 1+(-1)+ 1+(-1)+ 1+(-1)+ 1+(-1)+……=1 1(1)n n -∞ =-∑. 其部分和数列是:1,0,1,0,…….,它显然不收敛。

第十二章数项级数31263

第十二章 数项级数 1 级数问题的提出 1.证明:若微分方程"'0xy y xy ++=有多项式解 2012,n n y a a x a x a x =+++ + 则必有0i a i n = ( =1,2, ,) . 2.试确定系数01,, ,, ,n a a a 使0n n n a x ∞ =∑满足勒让德方程 2(1)"2'(1)0.x y xy l l y --++= 2 数项级数的收敛性及其基本性质 1.求下列级数的和: (1) 1 1 ;(54)(51)n n n ∞ =-+∑ (2) 2 11 ;41 n n ∞ =-∑ (3) 1 1 1(1);2 n n n -∞ -=-∑ (4) 1 21 ;2n n n ∞ =-∑ (5) 1sin ,n n r nx ∞ =∑||1;r < (6) 1 cos ,n n r nx ∞ =∑|| 1.r < 2.讨论下列级数的敛散性:

(1) 1;21n n =-∑ (2) 111( );23n n n ∞ =+∑ (3) 1cos ;21n n π ∞ =+∑ (4) 1 1 ;(32)(31)n n n ∞ =-+∑ (5) 1 n ∞ = 3.证明定理10.2. 4.设级数 1 n n u ∞ =∑各项是正的,把级数的项经过组合而得到新级数 1 ,n n U ∞ =∑即 1112,n n n n k k k U u u u ++++=++ +0,1,2, n =, 其中001210,.n n k k k k k k +=<<<<<< 若1 n n U ∞ =∑收敛,证明原来的级数也收敛. 3 正项级数 1.判别下列级数的收敛性: (1) n ∞ = (2) 21 11 ;(21)2 n n n ∞ -=-∑ (3) 1n ∞ = (4) 1 sin ;2 n n π ∞ =∑

幂级数概念

§ 11. 3 幂 级 数 一、函数项级数的概念 函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x )+ ? ? ? 称为定义在区间I 上的(函数项)级数, 记为∑∞ =1)(n n x u . 收敛点与发散点: 对于区间I 内的一定点x 0, 若常数项级数∑∞ =1 0)(n n x u 收敛, 则称 点x 0是级数∑∞ =1)(n n x u 的收敛点. 若常数项级数∑∞ =1 0)(n n x u 发散, 则称 点x 0是级数∑∞ =1 )(n n x u 的发散点. 收敛域与发散域: 函数项级数∑∞ =1)(n n x u 的所有收敛点的全体称为它的收敛域, 所 有发散点的全体称为它的发散域. 和函数: 在收敛域上, 函数项级数∑∞ =1)(n n x u 的和是x 的函数s (x ), s (x )称为函数项级数∑∞=1 )(n n x u 的和函数, 并写成∑∞ ==1 )()(n n x u x s . ∑u n (x )是∑∞ =1 )(n n x u 的简便记法, 以下不再重述. 在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和: 函数项级数∑∞ =1)(n n x u 的前n 项的部分和记作s n (x ), 函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x ).

数项级数和函数项级数及其收敛性的判定

学号 数项级数和函数项级数及其收敛性的判定 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 姓名: 指导教师: 2012年5月

数项级数和函数项级数及其收敛性的判定 摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。 关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法. Several series and Function of series and the judgment of their convergence Abstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method. Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method 前 言 在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。 1 正项级数及其收敛性 一系列无穷多个数123,,,,, n u u u u 写成和式 123n u u u u +++ + 就称为无穷级数,记为1 n n u ∞ =∑。如果()0,1,2,3, n u n ≥=,那么无穷级数1 n n u ∞ =∑,就称为正项 级数。

数项级数经典例题大全 (1)

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

数学分析:第章数项级数

数学分析:第章数项级数 The Standardization Office was revised on the afternoon of December 13, 2020

第十二章 数 项 级 数 目的与要求:1.使学生掌握数项级数收敛性的定义和收敛级数的性质,掌握等比级数与调和级数的敛散性;2. 掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别法和积分判别法. 重点与难点:本章重点是数项级数收敛性的定义,基本性质和判别正项级数敛散性的各种方法;难点则是应用柯西收敛准则判别级数的敛散性. 第一节 级数的收敛性 一 级数的概念 在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论无限多个实数相加所可能出现的情形及特征.如 +++++n 2 1 21212132 从直观上可知,其和为1. 又如, +-++-+)1(1)1(1. 其和无意义; 若将其改写为: +-+-+-)11()11()11( 则其和为:0; 若写为: ++-++-+]1)1[(]1)1[(1 则和为:1.(其结果完全不同). 问题:无限多个实数相加是否存在和; 如果存在,和等于什么. 1 级数的概念 定义1 给定一个数列{}n u ,将它的各项依次用加号“+”连接起来的表达式 +++++n u u u u 321 (1)

称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项. 级数(1)简记为:∑∞ =1n n u ,或∑n u . 2 级数的部分和 n n k k n u u u u S +++==∑= 211 称之为级数∑∞ =1 n n u 的第n 个部分和,简称部分和. 3 级数的收敛性 定义2 若数项级数∑∞ =1n n u 的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项 级数∑∞=1 n n u 收敛 ,称S 为数项级数∑∞ =1 n n u 的和,记作 =S ∑∞ =1 n n u = +++++n u u u u 321. 若部分和数列{}n S 发散,则称数项级数∑∞ =1 n n u 发散. 例1 试讨论等比级数(几何级数) ∑∞ =--+++++=1121n n n aq aq aq a aq ,)0(≠a 的收敛性. 解:见P2. 例2 讨论级数 ++++?+?+?) 1(1431321211n n

级数求和的常用方法

1.7方程式法 (3) 1.8原级数转化为子序列求和 (3) 1.9数项级数化为函数项级数求和 (3) 1.10化数项级数为积分函数求原级数和 (4) 1.11三角型数项级数转化为复数系级数 (4) 1.12构造函数计算级数和 (5) 1.13级数讨论其子序列 (5) 1.14裂项法求级数和 (6) 1.15裂项+分拆组合法 (7) 1.16夹逼法求解级数和 (7) 2函数项级数求和 (8) 2.1方程式法 (8) 2.2积分型级数求和 (8) 2.3逐项求导求级数和 (9) 2.4逐项积分求级数和 (9) 2.5将原级数分解转化为已知级数 (10) 2.6利用傅里叶级数求级数和 (10) 2.7三角级数对应复数求级数和 (11) 2.8利用三角公式化简级数 (12) 2.9针对2.7的延伸 (12) 2.10添加项处理系数 (12) 2.11应用留数定理计算级数和 (13) 2.12利用Beta函数求级数和 (14) 参考文献 (15)

级数求和的常用方法 级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题. 由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性. 1数项级数求和 1.1等差级数求和 等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和. 11((1) 22 n n a a n n s na d +-=+ = ),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +== 所以1(2 n n a a s += ) 此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法 此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21 )n n n n n c c c n c +++++. 解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:210 12(22)(...)(1)2n n n n n n s n c c c c n +=++++=+?,即: 01235...(21 )(1)2n n n n n n c c c n c n +++++=+. 1.3等比级数求和 等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和. 当q =1,1s na =;当q ≠1,1(1) 1n a q s q -=-,其中1a 为首项,q 为公比. 证明:当q =1,易得1s na =, 当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4

第十二章-无穷级数(整理解答)

第十二章 无穷级数 一. 常数级数的审敛,常数级数的性质 收敛: 12.3下列级数中收敛的是( ); A . ( ) ∑∞=-+1 1n n n B .∑ ∞ =+11 1n n C .n n n n ∑∞ =?? ? ??+123 D .∑∞ =??? ??+1211n n 1 2(1)n =≥≥+,所以( ) ∑∞ =-+11n n n 发散; ∑∞ =+111n n 发散,因为11n ∞=∑发散,所以∑∞ =??? ? ? +1211n n 发散,因此选C 。 12.7 下列级数中收敛的是( ) A. ∑ ∞ =+1 121n n B.∑∞ =+11 3n n n C.)1|(|1001<∑∞=q q n n D.∑∞=-1132n n n 解: 121n ≥+,∑∞=+1121n n 发散;1 lim 313n n n →∞=+,∑∞ =+1 13n n n 发散;||1q <时,100lim n n q →∞=∞,)1|(|1001<∑∞=q q n n 发散;2 13n =<,∑∞ =-1132n n n 收敛,所以选D 。 12.11 下列级数中收敛的是( ); A .∑∞ =-1121n n B .∑∞=122n n n C .11ln(1)n n ∞=+∑ D .∑∞ =??? ? ? +1311n n 解:1121lim 12n n n →∞-=,∑∞=-1121n n 发散; 2 12(1)12lim 122n n n n n +→∞+=<,∑∞=122 n n n 收敛;1ln(1)lim 11n n n →∞+=,11ln(1)n n ∞ =+∑发散;11n ∞=∑发散,∑∞=??? ??+1311n n 发散。所以选B 。 12.15 下列正项级数中收敛的是( ); A .∑∞ =-112n n n B .∑∞=12n n n C .)11ln(1 ∑∞=+n n D .∑∞=+1)1(2n n n n

电机级数的概念

电机极数的概念 三相异步电动机转速是分级的,是由电机的“极数”决定的。 三相异步电动机“极数”是指定子磁场磁极的个数。定子绕组的连接方式不同,可形成定子磁场的不同极数。选择电动机的极数是由负荷需要的转速来确定的,电动机的极数直接影响电动机的转速,电动机转速=60乘以频率再除以电动机极对数。电动机的电流只跟电动机的电压、功率有关系。 电机极数的分类 1. 极数反映出电动机的同步转速,2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。 绕组的一来一去才能组成回路,也就是磁极对数,是成对出现的,极就是磁极的意思,这些绕组当通过电流时会产生磁场,相应的就会有磁极。 三相交流电机每组线圈都会产生N、S磁极,每个电机每相含有的磁极个数就是极数。由于磁极是成对出现的,所以电机有2、4、6、8……极之分。 2. 若三相交流电的频率为50Hz,则合成磁场的同步转速为50r/s,即3000r/min.如果电动机的旋转磁场不止是一对磁极,进一步分析还可以得到同步转速n与磁场磁极对数p的关系:n=60f/p.f为频率,单位为Hz.n的单位为r/min。 ns与所接交流电的频率 (f)、电机的磁极对数(P)之间有严格的关系 ns=f/P。 在中国,电源频率为50赫,所以二极电机的同步转速为3000转/分,四极电机的同步转速为1500转/分,余类推。异步电机转子的转速总是低于或高于其旋转磁场的转速,异步之名由此而来。异步电机转子转速与旋转磁场转速之差(称为转差)通常在10%以内。由此可知,交流电机(不管是同步还是异步)的转速都受电源频率的制约。因此,交流电机的调速比较困难,最好的办法是改变电源的频率,而以往要改变电源频率是比较复杂的。所以70年代以前,在要求调速的场合,多用直流电机。随着电力电子技术的发展,交流电动机的变频调速技术已开始得到实用。 3.交流三相异步电动机极数为总线圈组数除以三。 4. 同步电动机的转速=60*频率/ 极对数(我国工频为50Hz)。 异步电动机转速=(60*频率/ 极对数)×转差率 另外,同等功率的电动机,转速越大,输出扭距越小。 5. 同步电机的极数 大容量的同步电机均为转极式,即转子为磁极,由励磁绕组通以直流电产生,而同步机的极对数就是转子磁极的对数。八极电机就是转子有8个磁极,2p=8,即此电机有4对磁极。一般汽轮发电机多为隐极式电机,极对数很少,一般为1、2对,而n=60f/p,所以他的转速很高,最高可达3000转(工频),而水轮发电机的极数相当多,转子结构为凸极式,工艺比较复杂,由于他的极数很多,所以它的转速很低,可能只有每秒几转! 识别极数方法 1、看转速比如1430r/min实际同步转速就是1500转,由转速公式:转速=时间(60秒)×频率(50HZ)除以磁极对数一个磁极对为2个极,由此就可以算出3000÷1500=2个磁极对也就是4极电动机。

第十二章 无穷级数(答案)

第十二章 无穷级数 (一) 1.解:∵( ) ∑ =∞→-+=+-+=n k n n k k S 12212,(∞→n ),∴原级数 发散。 2.解:∵() ∑∑==→??? ??+-=??? ??+-=+=n k n k n n k k k k S 1141 221212122121212221, (∞→n ),∴原级数收敛且和为 4 1。 3.解:∵41 215 11511513113113151315131 111+→-? ?? ?? -+-??? ??-= +=??? ??+=∑∑∑===n n n k k n k n k k k k n S 4 3= ,(∞→n ),∴原级数收敛且和为43。 4.解:∵()∞=++=∞→+∞→+∞→1001 lim !100100!1lim lim 11n n n U U n n n n n n n ,∴由比值判别法知原级 数发散。 5.解:∵()11 11lim 1lim lim 11<=??? ??+=+=∞→+∞→+∞→e n n e n e e n U U e n e n n e n n n n ,∴由比值判别法知,原级数收敛。 6.解:∵02 1 21lim lim ≠=+=∞ →∞ →n n U n n n ,∴原级数发散。 7.解:∵()()2332lim 1lim =++=∞→∞→n n n n n U n n n ,而∑∞ =11 n n 发散,∴由比较判别法知原级数发散。 8.解:∵13113lim 13lim lim <=+=?? ? ??+=∞→∞→∞→n n n n U n n n n n n n ,∴由比值判别法知,原级数收敛。 9.解:∑ ∑∞ =-∞ ==1 1 1 2 ||n n n n n U ,由正项级数的比值判别可知,此级数收敛,故原 级数绝对收敛。

数项级数的概念与基本性质

8.1数项级数的概念与基本性质 教学目的 理解级数的概念和基本性质 教学重点 级数的基本性质,收敛的必要条件,几何级数 教学难点 有穷项相加与无穷项相加的差异 教学过程 1.导入 以前我们学习的加法是将有限个数相加,这种加法易于计算但无法满足应用的需要.在许多技术问题中常要求我们将无穷多个数相加,这种加法叫做无穷级数.无穷级数是表示函数、研究函数性质以及进行数值计算的一种工具.无穷级数分为常数项级数和函数项级数,常数项级数是函数项级数的特殊情况,是函数项级数的基础. 2.讲授新课 2.1常数项级数的概念 定义8.1 设给定数列}{n a ,我们把形如 ∑∞ == ++++1 21n n n a a a a (8.1.1) 的式子称为一个无穷级数,简称级数.其中第n 项n a 称为级数 ∑∞ =1 n n a 的通项(或一般项). 如果级数中的每一项都是常数,我们称此级数为数项级数. 例如, 等差数列各项的和 +-+++++++])1([)2()(1111d n a d a d a a 称为算术级数. 等比数列各项的和 +++++-1 12 111n q a q a q a a 称为等比级数,也称为几何级数. 级数 1 1n n ∞ =∑ =111123n +++++ 称为调和级数. 级数(8.1.1)的前n 项和为: 121 n n k k k S a a a a ===+++∑ ,

称n S 为级数 ∑∞ =1 n n a 的前n 项部分和,简称部分和. 2.2常数项级数收敛与发散 定义8.2 若级数(8.1.1)的部分和数列}{n S 的极限存在, 即 S S n n =∞ →lim (常数) 则称极限S 为无穷级数 ∑∞ =1n n a 的和.记作 ++++==∑∞ =n n n a a a a S 211 此时称级数 ∑∞ =1 n n a 收敛;如果数列}{n S 没有极限,则称级数 ∑∞ =1 n n a 发散,这时级数没有和. 显然,当级数收敛时,其部分和n S 是级数和S 的近似值,它们之间的差 ++=-=++21n n n n a a S S r 叫做级数的余项.用近似值n S 代替S 所产生的误差是这个余项的绝对值,即误差为||n r . 例1 讨论几何级数 +++++=∑∞ =-n n n aq aq aq a aq 21 1 的敛散性,其中0≠a ,q 是公比. 结论:几何级数 ∑∞ =-1 1 n n aq ,当1||

第十二章无穷级数自测题(含答案)

第十一章练习题 一、 填空题 1.级数 )21)1(1(1 n n n n -+∑∞ =的和为( ) . 2.若∑∞ =1 n n u 为正项级数,且其部分和数列为{}n s ,则∑∞ =1 n n u 收敛的充要条件是( ). 3.级数∑∞ =1 22 sin 2n n n π 的敛散性为( ). 4.幂级数n n x n )3 2(11 -∑ ∞ =的收敛区间为( ). 5.幂级数∑∞ =-1 22) 1(n n n n x 的收敛域为( ). 6.将函数 2 ) 1(1x +展开成x 的幂级数为( ). 7.)(x f 满足收敛的条件,其傅立叶级数的和函数为S(x),已知f (x )在x=0处左连续,且)(lim ,2)0(,1)0(0 x f S f x +→=-=则=( ) . 8.设)(x f 是周期为2π的函数,在一个周期上可积.当)(x f 是奇函数时,它的傅里叶系数为 =n a ( ),=n b ( ). 二、 单项选择题 1. 若级数∑∞ =1 n n a 条件收敛,则下列结论不正确的是( ). A. 交换律成立; B.结合律成立; C.分配律成立; D.以上都不成立。 2.在下面级数中,绝对收敛的级数是( ). A. ∑ ∞ =+1121n n ; B.n n n )2 3()1(1 ∑∞ =-; C. 3 1 1) 1(n n n ∑ ∞ =-; D.n n n n 1) 1(1 --∑∞ =. 3. 在下列级数中,条件收敛的级数是( ).

A. ∑∞ =+-1 1 ) 1(n n n n ;B.∑∞ =-1 1) 1(n n n ;C.∑∞ =-1 2 1) 1(n n n ;D.∑∞ =+-1 ) 1(1)1(n n n n 4. 已知级数∑∑∞ =∞ =--==-1 1 1 21 5, 2) 1(n n n n n a a ,则级数∑∞ ==1 n n a ( ) A. 3 ; B. 7 ; C. 8 ; D. 9 5.幂级数n x n n ∑ ∞ =1 的和函数是( ). A.)1ln(x --; B. )1ln(x -; C.)1ln(x +; D. )1ln(x +- 6. 函数2 )(x e x f -=展开成x 的幂级数为( ). A. ∑ ∞ =0 2! n n n x B.∑ ∞ =?-0 2! )1(n n n n x C.∑ ∞ =0 ! n n n x D.∑ ∞ =?-0 ! )1(n n n n x 7. 若∑∞ =-1 )1(n n n x a 在1-=x 处收敛,则此级数在2=x 处( ). A.条件收敛;B.绝对收敛;C.发散;D.收敛性不能确定。 8.已知级数∑∞ =1 2n n a 收敛,常数λ>0,则级数∑∞ =+-1 2 ) 1(n n n n a λ ( ). A. 发散 ; B.条件收敛; C.绝对收敛; D.收敛性与λ有关。 9.设),3,2,1(0 =≠n u n ,且1lim =∞ →n n u n ,则级数∑∞ =+++ -1 1 1 )11( ) 1(n n n n u u ( ). A.发散。B.绝对收敛。C.条件收敛。D.收敛性根据所给条件不能判定。 三、计算题 1. 判定下列级数的收敛性。 (1) ∑ ∞ =+1 3 2 ) 1(3cos n n n n λ, (2) )sin ( 1 ∑ ∞ =-n n n π π ; (3) ∑ ∞ =--1 1 2) 1 3( n n n n 2.讨论下列级数的敛散性 (1)∑ ? ∞ =+1 1 2 1n n dx x x (2)∑∞ =+ -1 )]11ln(1[ n n n 3.求幂级数∑ ∞ =1 22 n n n x n 的收敛域。

数项级数经典例题大全

第十二章数项级数 1 讨论几何级数∑∞ =0n n q 的敛散性. 解当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0n n q 当且仅当1||

4、讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、证明 2-p 级数∑∞ =12 1 n n 收敛 . 证显然满足收敛的必要条件.令21 n u n = , 则当2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、判断级数∑∞ =1 1 sin n n n 的敛散性. (验证0→ /n u . 级数判敛时应首先验证是否满足收敛的必要条件) 7、证明调和级数∑ ∞ =11 n n 发散. 证法一(用Cauchy 准则的否定进行验证) 证法二(证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解有 , 2 11 012222n n n n n <+-?>+- 9、判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

数学分析第12章数项级数

第十二章 数 项 级 数 目的与要求:1。使学生掌握数项级数收敛性的定义和收敛级数的性质,掌握等比级数与调和级数的敛散性;2. 掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别法和积分判别法. 重点与难点:本章重点是数项级数收敛性的定义,基本性质和判别正项级数敛散性的各种方法;难点则是应用柯西收敛准则判别级数的敛散性. 第一节 级数的收敛性 一 级数的概念 在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论无限多个实数相加所可能出现的情形及特征。如 +++++n 2 1 21212132 从直观上可知,其和为1. 又如, +-++-+)1(1)1(1. 其和无意义; 若将其改写为: +-+-+-)11()11()11( 则其和为:0; 若写为: ++-++-+]1)1[(]1)1[(1 则和为:1.(其结果完全不同)。 问题:无限多个实数相加是否存在和; 如果存在,和等于什么。 1 级数的概念 定义1 给定一个数列{}n u ,将它的各项依次用加号“+”连接起来的表达式 +++++n u u u u 321 (1)

称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项. 级数(1)简记为:∑∞ =1n n u ,或∑n u 。 2 级数的部分和 n n k k n u u u u S +++==∑= 211 称之为级数∑∞ =1 n n u 的第n 个部分和,简称部分和. 3 级数的收敛性 定义2 若数项级数∑∞ =1n n u 的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项级数 ∑∞ =1 n n u 收敛 ,称S 为数项级数∑∞ =1 n n u 的和,记作 =S ∑∞ =1 n n u = +++++n u u u u 321. 若部分和数列{}n S 发散,则称数项级数∑∞ =1 n n u 发散. 例1 试讨论等比级数(几何级数) ∑∞ =--+++++=1121n n n aq aq aq a aq ,)0(≠a 的收敛性. 解:见P2. 例2 讨论级数 ++++?+?+?) 1(1431321211n n

7.1 常数项级数的概念和性质

1.写出下列级数的一般项: ⑴ 1357 2468 ++++ ; 【解】分析级数各项的表达规律: 分子为奇数数列21n -,分母为偶数数列2n , 于是得级数的一般项为21 2n n u n -= ,1,2,3,....n =。 ⑵ 1111112349827 ++++++ ; 【解法一】分析级数各项的表达规律: 分子不变恒为1, 分母的变化中,奇数项为2的乘幂,幂指数为项数+1的一半,即12 2 n +,偶数项为3 的乘幂,幂指数为项数的一半,即2 3n , 于是有12 22, 21 3, 2n n n n k u n k +?=-?=??=? ,k J ∈,1,2,3,....n =。 也可为1 221(1)1(1)2322 n n n n n u +--+-=?+?,1,2,3,....n =。 【解法二】分析级数各项的表达规律: 分子不变恒为1,但分母的变化按奇数项和偶数项有不同的变化规律,可以视为两个 级数的和,也可以视为级数的一个项由两个分数的和构成, 若将级数的一个项看成由两个分数的和构成,则有 111 23 u = +, 21149u =+221123=+, 311827u =+ 3311 23 =+, ...... 于是得11 23 n n n u = +,1,2,3,....n =。 ⑶3456 22345 -+-+- 。 【解】分析数列各项的表达规律:

各项顺次正负相间,有符号函数,注意到第一项是正的,应为1 (1)n +-, 从第二项起,各项分式都是分子比分母大1,而分母恰为序数n 于是得1 1 (1) n n n u n ++=-,2,3,....n =, 检验当1n =时,11111(1)21 u ++=-=,说明第一项也符合上面一般项的规律, 从而得 11(1)n n n u n ++=-,1,2,3,....n =。 2.根据级数收敛与发散的定义判断下列级数的敛散性: ⑴ 1 1 (21)(21)n n n ∞ =-+∑; 【解】级数前n 项和为 11(21)(21)n n i S i i ==-+∑1111()221 21n n i i ==--+∑1111 ()22121n n i i ==--+∑ 11[(1)()(1152)]22113113n n =-+-+-+-+ 11 (1)221 n =-+, 由于lim n n S →∞11lim (1)221n n →∞=-+12 =,知级数收敛,收敛于1 2。 ⑵ 1 1 1n n n ∞ =++∑ ; 【解】级数前n 项和为 1 1 1n n i S i i ==++∑ 2211(1)()n i i i i i =+-=+-∑1 (1)n i i i ==+-∑ (1)()(123)2n n =-+-+++- 11n =+-, 由于lim n n S →∞ lim(11)n n →∞ =+-=∞,知级数发散。 ⑶ 1 1 ln n n n ∞ =+∑; 【解】级数前n 项和为 11ln n n i i S i =+=∑1 [ln(1)ln ]n i i i ==+-∑ ln 2ln 2ln3ln (ln1)()[ln(1)]n n =-+-+++- ln(1)ln1n =+-ln(1)n =+,

数项级数

CH 9 数项级数 1. 上、下极限 定义:对有界数列}{n a ,...},sup{lim }{sup lim lim 21++∞ →>∞→∞ →===k k k n k n k n n a a a a H ,...},inf{lim }{inf lim lim 21++∞ →>∞→∞ →===k k k n k n k n n a a a a H 如果对数列 }{n a 无上界,+∞==∞ →n n a H lim 。如果对数列}{n a 无下界,。 -∞==∞ →n n a H lim 。 性质1 设n n a H ∞ →=lim ,则 (1) 当H 是有限时,对H 的任何ε领域),(εε+-H H 在数列}{n a 中有无穷多项 属于这领域,而在),(+∞-εH 中只有有限多项。 (2) 当+∞=H 时,对0>?N ,在}{n a 中必有无穷多项大于N 。 (3) 当-∞=H 时,-∞=∞ →n n a lim 。 性质2 设n n a h ∞ →=lim ,则 (1) 当h 为有限时,对h 的任何ε领域),(εε+-h h ,在数列}{n a 中有无穷多项 属于这个领域,而只有有限项小于ε-h 。 (2) 当-∞=h 时,对0>?N ,在}{n a 中必有无穷多项小于N -。 (3) 当+∞=h 时,+∞==∞ →n n a h lim 。 性质3 设H 为}{n a 的上极限,那么H 必是}{n a 中所有收敛子列的极限中的最大值。 设h 为}{n a 的下极限,那么h 必是}{n a 中所有收敛子列的极限中的最小值。 推论:A a n n =∞ →lim (有限或无穷大)的充要条件是:A a a n n n n ==∞ →∞ →lim lim . 2.数项级数的概念及性质 定义: 若级数 ∑∞ =1 n n u 的部分和数列}{n S 收敛于有限值S ,即

相关主题
文本预览
相关文档 最新文档