当前位置:文档之家› 数项级数经典例题大全 (1)

数项级数经典例题大全 (1)

数项级数经典例题大全 (1)
数项级数经典例题大全 (1)

第十二章 数项级数

1 讨论几何级数 ∑∞

=0n n q 的敛散性.

解 当1||

110

∞→-→--==∑=n q q q q S n n

k k

n . 级数收敛;

当1||>q 时, , =n S 级数发散 ;

当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()

n n S )1(12

1

-+=

, ) (∞→n , 级数发散 . 综上, 几何级数

∑∞

=0

n n q 当且仅当 1||

q

-11

( 注意n 从0开始 ).

2 讨论级数

∑∞

=+1)1(1n n n 的敛散性.

解 用链锁消去法求.

3

讨论级数∑∞

=12

n n

n 的敛散性.

解 设 ∑=-+-++++==

n

k n n k n n n k S 1

1

322212322212 ,

=n S 211432221 232221++-++++n n n

n , 1322

212121212121+-++++=-=n n n n n n S S S

12

2

11211211

→--?

?? ??-=

+n n n ,

) (∞→n . ? n S →2, ) (∞→n .

因此, 该级数收敛.

4、

讨论级数∑

=-1352n n n 的敛散性.

5

2

, 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散.

5、 证明2-p 级数

∑∞

=121

n n

收敛 .

证 显然满足收敛的必要条件.令 21

n

u n =

, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p

k p

k p n n n n p n n k n k n k n u u u 112

2

1 ,1

11)

)(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |

∑=+p

k k

n u

1

|不失真地放大成只含n 而不含p 的式子,

令其小于ε,确定N .

6、

判断级数∑∞

=1

1

s i n n n n 的敛散性.

(验证 0→/n u .

级数判敛时应首先验证是否满足收敛的必要

条件) 7、

证明调和级数∑

=11n n 发散.

证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n

n ln 1 1

211 )1ln(+<+++

<+ . 即得+∞→n S ,) (∞→n . )

注: 此例为0→n u 但级数发散的例子.

8、 考查级数

∑∞

=+-1

2

11

n n n

的敛散性

.

解 有 , 2 11 012222n

n n n n <+-?>+- 9、 判断级数

()()

+-+??-+??++????+??+)1(41951)1(32852951852515212n n

的敛散性.

解 1 43

4132lim lim

1<=++=∞→+∞→n n u u n n

n n ?∑+∞<.

10、 讨论级数∑>-)

0( 1

x nx

n 的敛散性.

解 因为) ( , 1

)1(1

1∞→→+?+=-+n x n n x nx

x n u u n n n n . 因此, 当10<

∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.

11、

判断级数∑+n

n n n !

21的敛散性

.

注: 对正项级数

∑n u ,若仅有

11<+n

n u u ,其敛散性不能确定. 例如对级数∑n 1

∑2

1

n , 均有 11<+n

n u u ,但前者发散, 后者收敛. 12、 研究级数

∑-+n

n 2) 1 (3的敛散性 .

解 12

12)1(3l i m l i m <=-+=∞→∞→n

n

n n n

n u ?∑+∞<. 13、

判断级数∑??

?

??+2

1n n n 和∑??

?

??+2

1n n n 的敛散性 .

解 前者通项不趋于零 , 后者用根值法判得其收敛 .

14、 讨论

-p 级数∑∞

=11n p

n 的敛散性.

解 考虑函数>=p x

x f p ,1

)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分

?+∞

1

)(dx x f

当1>p 时收敛, 10≤

∑∞

=1

1

n p n 当1>p 时收敛,当10≤

01

→/p

n , 级数发散. 综上,-p 级数

∑∞

=11

n p

n

当且仅当1>p 时收敛.

15、 判别级数∑∞

=>-1)0( ) 1 (n n

n

x n x 的敛散性.

解 当10≤

收敛;

当1>x 时, 通项0→/,

发散.

16、 设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈?x 收敛.

证 ++??? ??-+=??

?

??+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k

x n x n x n ) 2

1

sin() 21

sin() 21 sin(+=??

???

?

--++,

) 2 , 0 (π∈x 时,02sin ≠x ?∑=+=

+n k x x

n kx 1

2

sin

2) 21

sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数

∑kx cos 的部分和有界. 由

Dirichlet 判别法推得级数

∑nx a

n

cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .

17、若∑∞

=1

n n

a 收敛,证明

∑∞

=12

n n n a 也收敛。

证明:由于∑∞

=1

n n a 收敛,因而,{}n a 收敛于0,故,存在N ,使得n>N 时,

||1n a £,

因而,n>N 时,

2

21n

n a n ≤, 故,由比较判别法得:

∑∞

=12

n n

n

a 收敛。

18、证明:若∑∞

=--1

1||n n n a a 收敛,则}{n a 收敛。

证明:由于∑∞

=--1

1||n n n a a 收敛,则由Cauchy 收敛准则,对0e >

,存在N ,

当n>N 时,对任意的正整数p ,成立

11||||n n n p n p a a a a e +++--++-

因而,

11||||||n p n n n n p n p a a a a a a e ++++--?++-

再次用数列收敛的Cauchy 收敛准则得:}{n a 收敛。

19、若∑∞

=1

n n a 收敛,则∑

=+1|

|11

n n a 发散。

分析 证明级数的发散性,首选工具是级数收敛的必要条件。 证明:由于∑∞

=1n n a 收敛,故

lim 0n n a ?

?

=,

因而, l i m (1||)n n a ?

?

+=,

故,∑

=+1|

|11

n n a 发散。

20、判断下列具体级数的敛散性

1、0 , 111>+∑∞

=a a n n ; 2、0, ][ln 1

1

>∑∞

=p n n p

; 3、∑∞

=-1!!)!12(n n n ; 4、∑∞=??? ??+112n n

n n ;

5、∑∞

=+110)!1(n n

n ; 6、∑∞=12

2

n n n 。 分析 对具体的级数,按照判别敛散性的一般程序,先考察通项的极限,

在通项极限为0的情形下,考虑比较判别法,常用的作为比较的级数的形式为

1

1p n n ¥

=?

、1

n

n q ¥

=?,通过对通项的结构分析,选择合适的对比级数,此时,已经学习过的数列的速度关系或阶的关系,有利于我们确定对比级数;对通项中含有n 幂次或n !形式的级数常用Cauchy 判别法或D ’Alembert 判别法,更复杂的题

目则需选用更精细的判别法。

解、1)、]1,0(∈a , }11

{n

a +不收敛于0,此时,级数发散;

1>a 时,n

n a a 1

11<+ ,由比较判别法得收敛。 2、分析结构,发现对比级数为1

1k

n n ¥

=?

的形式,只需比较通项收敛于0的速

度。

由于对任意的p >0,

(ln )lim 0p

n n n

??=, 故 ,由比较判别法可知:1

1

[ln ]p

n n ¥

=?发散。

3)、通项含有阶层形式,故采用比值判别法。

记(21)!!

!n n u n -=,则

121

lim lim 211n n n n

u n u n +?ギ+?+==>+,

故,该级数发散。

4)、由通项结构为n 幂次形式,采用Cauchy 判别法。

记(

)21

n

n

n u n =+,则

1l i l i m 1212

n n

n n ?

+?=

=<+,

故,由Cauchy 判别法知该级数收敛。

5)、由通项结构可知用D ’Alembert 判别法。

记(1)!10

n n

n u +=,则

1

2

l i m l i m 10

n n n

n

u n u +?ギ+?+==+?,

故,该级数发散。

6)、用Cauchy 判别法。

记2

2

n n n u =,则

1

l i 2

n ??=, 故,该级数收敛。

21、判断下列具体级数的敛散性。

1)、

2(1)2

1

s i n n n n x

dx x

p

p

+=?ò

2)

、∑?∞

=-1

1

1n n dx x

x

3)、∑?∞=+1

1

)1l n (n n dx x

分析 通项为积分形式的级数敛散性的判别,通常有3种方法:

1、利用积分判别法,转化为广义积分的敛散性,此时通项常具有形式

} { , 0)( , )(1

n a a n a x f dx x f u n n

>=?

+递增趋于∞+。

2、直接计算积分转化为一般形式的数项级数。

3、通过对积分进行估计,用比较判别法判断,此时通项常具有形式?=n

a n dx x f u 0)(,

其中}{n a 单减趋于0。在上述3种方法中,常用1、3两种方法,这是考点。

解:1)、从类型看,适用于第一种方法。此级数与广义积分?∞

dx x x

2

2sin 具相同的敛散性,由于

21dx x

p

+?

ò

收敛,因而由比较方法,?∞+π

dx x x

22sin 收敛,故,该级数也收敛。

2)、典型的第3种方法处理的题型。由于积分上限趋于0,考察被积函数在0点附近的性质,由于0→x 时,

x x

x ~1-,因而,

?

?

-=n n n n

dx x dx x

x u 1

2

310

1

~

~1,

故此级数应收敛。

上述可以视为结构特征分析,知道了结构特征,具体的验证方法可以灵活选 择,下面的方法属于直接比较法。

对充分大的n ,当n x 1

0<

<时,

211≤-x

,故 23

10

1

3420n

dx x u n n =

≤≤?

, 且级数

31

2

1n n

+?=?

收敛,因而,原级数收敛。

当然,用比较方法的极限形式更直接,如 由于

30

2

2

lim

n n t u n

t

?

-=

02

2l i 332

t t ?==, 因而,原级数收敛。 注、我们选择

31

2

1n n

+?=?

作为对比级数,是由于结构特征分析为选择判断标准

提供了依据,而数列极限的连续化处理使得我们能够利用高级的极限计算方法如L ’Hospital 法则。

3)、与2)类似,当n 充分大时,??=+=n n n n

xdx dx x u 10

2

1021~)1ln(,故收敛。或者计算方法

21

111)11(~1|)1l n ()1(n

n n n n x x u n n =-+-

++= 或者

2

12)1ln(lim )1ln(lim 1

)1ln(lim

02

02

10

=+=+=++

→+

→+∞

→??t t t dx x n

dx x t t

t n n ,

都可以得到级数的收敛性。

22、判断敛散性

1)、∑∞

=3ln ln ln 1n n n n 2)、∑∞

=2

1

s

i n ln 1

n n

n 分析 典型的积分判别法处理的题型结构。 解:1)、由于

+∞→=∞

++∞?33|ln ln ln ln ln ln 1x dx x

x x , 因此,由积分判别法,该级数发散。

2)、分析结构特点,n n n n n n ln 1

1ln 1~1sin ln 1=

,由积分判别法

∑∞

=1

ln 1

n n n 发散,故原级数发散。

事实上,由于

11sin ln lim

111

ln n n n n n ??=,

故,∑∞=21

sin ln 1n n n 和21ln n n n

¥=?具有相同的敛散性,由于 22

1ln ln |ln dx x x x

+?

+?

=??

ò

因而,由积分判别法,原级数发散。

24、判断敛散性

1)、∑∞

=-11)c o s

(2

n n n e

π

; 2)、∑∞

=+-1

)1

ln 1(n n n n ;

3)、∑∞

=++++

-1

)]!

1

!21!111([n n e 。 分析 这类题目较难,因为所用到的是分析学中最难的“阶”的比较或函数

展开理论。注意,展开过程中选择适当的展开项。

解:1)、先作“阶”的分析。由于

2

122221111cos [1()][1()()]2n e o o n n n n n

p p -=++--+

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数函数经典例题和课后习题

百度文库 - 让每个人平等地提升自我 指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

考研级数典型例题完美版讲析

内容要点 一, 概念与性质 (一) 概念由数列 u 1,u 2, ,u n , 构成的式子 称为无穷级数,简称为级数 . u n 称为级数的一般项, s n 级数的部分和 二)性质 3, 级数增减或改变有限项,不改变其敛散性 . 4, 若级数收敛,则任意加括号后所成的级数仍收敛 5(收敛的必要条件 ), 若 u n 收敛,则 lim u n 0. n 1 n 注意:若 l n im u n 0.则 u n 必发散. 而若 u n 发散, n n n 1 n n 1 n lim u n 0. n (三) 两个常用级数 1, 等比级数 1, 若 u n 收敛,则 ku n 1 n 1 k u n . n1 2, 若 u n , v n 收敛,则 n1 n 1 u n v n1 u n1 v n . n1 n u i 称为 i1 如果 lim s n s , 则称级数 u n 收敛, s 称为该级数的 和 n1 . 此时记 u n n1 s . 否则称级数发散 则不一定

2, p 级数 二,正项级数敛散性判别法 ( 一 ) 比较判别法 设 u n , v n 均为正项级数,且 u n v n (n 1,2, ), 则 n 1 n1 v n 收敛 u n 收敛; n1 n 1 u n 发散 v n 发散 n1 n 1 ( 二) 极限判别法 如果对 p 1, l n im n p u n l(0 l ), 则 n1u n 则收敛 . ( 三 ) 比值判别法 设 u n 为正项级数,若 n1 二, 交错级数收敛性判别法 莱布尼兹判别法:设 1n 1u n (u n 0)为交错级数,如果满足: n1 1, u n u n 1(n 1,2, )2, lim u n n 则此交错级数收敛 . 三, 任意项级数与绝对收敛 (一) 绝对收敛如果 u n 收敛,则称 u n 绝对收敛 . n 1 n 1 二) 条件收敛如果 u n 收敛,但 u n 发散,则称 u n 条件收 n 1 n 1 n 1 敛. (三) 定理若级数绝对收敛,则该级数必收敛 . 函数项级数 一、主要内容 1、基本概念 函数列(函数项级数)的点收敛、一致收敛、内闭 如果 lim nu n l(0 l n ),则 u n 发散; n1

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注 2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一 的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2 .∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

数项级数的敛散性的练习题及解析

数项级数的敛散性的练习题及解析 一、单项选择题(每小题4分,共24分) 1.若lim 0n n U →∞=则常数项级数1n n U ∞=∑( D ) A .发散 B.条件收敛 C .绝对收敛 D .不一定收敛 解:1lim 0n n →∞=,但11n n ∞=∑发散;21lim 0n n →∞=,但211n n ∞=∑收敛 选D 2.设 1n n U ∞=∑收敛,则下列级数一定收敛的是( B ) A . 1n n U ∞=∑ B.()12008n n U ∞=∑ C .()10.001n n U ∞ =+∑ D .11n u U ∞=∑ 解: ()12008n n U ∞=∑=20081n n U ∞=∑ 1 n n U ∞=∑收敛∴由性质()12008n n U ∞ =∑收敛 3.下列级数中一定收敛的是…( A ) A .21014n n ∞ =-∑ B .10244n n n n ∞=-∑ C .101n n n n ∞=?? ?+?? ∑ D +… 解:214n U n =- 0n ≥21n = lim 1n n n U V →∞=,且2101n n ∞=∑收敛,由比较法21014n n ∞=-∑收敛 4.下列级数条件收敛的是……( C ) A .11n n n ∞=+∑n (-1) B .()211n n n ∞=-∑ C .1n n ∞=- D .()1312n n n ∞=??- ???∑ 解:( 1 )n ∞∞=n=1发散(112p =<)( 2)1 1n n ∞=-为莱布尼兹级数收敛,选C 5.级数() 1 11cos n n k n ∞=??-- ???∑ (k>0)…( B ) A .发散 B .绝对收敛 C .条件收敛 D .敛散性与K 相关 解:11(1)(1cos )1cos n n n k k n n ∞ ∞-=??--=- ???∑∑

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

考研级数典型例题完美版讲析

常 数项级数 内容要点 一, 概念与性质 (一)概念由数列ΛΛ,,,,21n u u u 构成的式子 称为无穷级数,简称为级数.n u 称为级数的一般项,∑==n i i n u s 1称为 级数的部分和. 如果s s n n =∞ →lim ,则称级数∑∞ =1n n u 收敛,s 称为该级数的和.此时记 =∑∞ =1 n n u s .否则称级数发散. (二)性质 1,若∑∞=1n n u 收敛,则.11 ∑∑∞ =∞ ==n n n n u k ku 2,若∑∞ =1 n n u ,∑∞ =1 n n v 收敛,则().1 1 1 ∑∑∑∞ =∞ =∞ =±=±n n n n n n n v u v u 3,级数增减或改变有限项,不改变其敛散性. 4,若级数收敛,则任意加括号后所成的级数仍收敛. 5(收敛的必要条件),若∑∞ =1n n u 收敛,则.0lim =∞ →n n u 注意:若.0lim ≠∞ →n n u 则 ∑∞ =1 n n u 必发散.而若∑∞ =1 n n u 发散,则不一定 .0lim ≠∞ →n n u (三)两个常用级数 1,等比级数

2,-p 级数 二,正项级数敛散性判别法 (一) 比较判别法 设∑∑? =∞ =1 1 ,n n n n v u 均为正项级数,且),2,1(Λ=≤n v u n n ,则 ∑∞=1n n v 收敛?∑∞ =1n n u 收敛; ∑∞ =1 n n u 发散?∑∞ =1 n n v 发散 (二) 极限判别法 如果)0(lim +∞≤<=∞ →l l nu n n ,则∑∞ =1n n u 发散; 如果对,1>p )0(lim +∞<≤=∞ →l l u n n p n ,则∑∞ =1 n n u 则收敛. (三) 比值判别法 设∑∞ =1n n u 为正项级数,若 二, 交错级数收敛性判别法 莱布尼兹判别法:设())0(111>-∑∞ =-n n n n u u 为交错级数,如果满足: 1,),2,1(1Λ=≥+n u u n n 2,0lim =∞ →n n u 则此交错级数收敛. 三, 任意项级数与绝对收敛 (一) 绝对收敛如果∑∞ =1n n u 收敛,则称∑∞ =1 n n u 绝对收敛. (二) 条件收敛如果∑∞ =1 n n u 收敛,但∑∞=1 n n u 发散,则称∑∞ =1 n n u 条件收

相关主题
文本预览
相关文档 最新文档