当前位置:文档之家› 9.2平面应力状态分析 -解析法

9.2平面应力状态分析 -解析法

9.2平面应力状态分析 -解析法

9.2平面应力状态分析 -解析法

《材料力学》第7章应力状态和强度理论习题解.

第七章应力状态和强度理论习题解 [习题7-1] 试从图示各构件中A点和B点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a)] 解:A点处于单向压应力状态。 2 2 4 4 1 2 d F d F F A N Aπ π σ- = - = = [习题7-1(b)] 解:A点处于纯剪切应力状态。 3 3 16 16 1d T d T W T P Aπ π τ- = = = MPa mm mm N 618 . 79 80 14 .3 10 8 16 3 3 6 = ? ? ? ? = [习题7-1(b)] 解:A点处于纯剪切应力状态。 = ∑A M 4.0 2 8.0 2.1= ? - - ? B R ) ( 333 .1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa mm mm mm N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa mm mm mm N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa mm mm N W M z A A 064.502014.332 1103.39333=????==σ MPa mm mm N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x =σ;0=y σ;0=x τ 004590cos 90sin 2 0x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/3003002 2 ==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于 060~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切 应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 , A τ B τ B σA τA σ

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

带孔平板拉伸作业

带孔平板有限元分析 本文采用有限元法,对带圆孔的矩形平板进行了弹塑性受力分析,分析了圆孔处的应力集中现象,为其设计和应用提供了参考依据。 1. 研究问题概述 本文研究带圆孔矩形平板在轴对称拉力作用下的平面应力问题。平板开孔的应力问题是弹塑性力学平面中的一个经典的问题,也是实际工程中常见的问题。平板长200mm ,宽50mm ,厚8mm ,具体几何参数及受力见图1。 图1 平板几何参数及受力 2.弹性力学方法解答 由弹性力学知识知,在距圆孔圆心()r ρρ>处的径向正应力、环向正应力、切应力分别为: 222222 1c o s 211322p r p r r ρσψρρρ?????? =-+-- ? ????????? 22221cos 21322p r p r ?σψρρ????=+-+ ? ???? ? 2222sin 21132p r r ρψψρ ττψρρ???? ==--+ ?????? ? 沿着y 轴,90ψ=。,环向正应力为: 242413122r r p ?σρρ?? =++ ???

max 3q ?σ=由上表可知: ()max = 3K q ψ σ=故应力集中因子: 可见孔边最大应力比无孔时提高了3倍,应力集中系数k=3,如图2所示。 图2 孔边应力集中 3.有限元分析 3.1模型建立 图3 有限元模型 3.2边界条件和载荷 为避免在计算时平板产生移动引发计算问题,必须对试件的外部边界条件进行限定。对平板左侧进行铰接约束,示意图如下

图4 平板约束示意图 由于我们只关注孔附近的应力分布情况,根据圣维南原理,载荷的具体分布只影响载荷作用区附近的应力分布。故我们用均布力代替集中力施加在平板右侧的作用面上,其大小为225P MPa ,为负值。 图5 平板载荷示意图 3.3材料 平板的弹性模量为200GPa ,泊松比为0.3。其塑性的应力应变参数见下图 图6 塑性应力应变参数 3.4有限元网格划分 网格划分是非常重要的过程,它会对计算速度、精度、可靠性产生重要影响。网格划分主要包括两方面:尺寸、单元类型。

最新平板应力分析

平板应力分析

第四节平板应力分析 3.4平板应力分析 3.4.1概述 3.4.2圆平板对称弯曲微分方程 3.4.3圆平板中的应力 3.4.4承受对称载荷时环板中的应力 3.4.1概述 1、应用:平封头:常压容器、高压容器; 贮槽底板:可以是各种形状; 换热器管板:薄管板、厚管板; 板式塔塔盘:圆平板、带加强筋的圆平板; 反应器触媒床支承板等。 2、平板的几何特征及平板分类 几何特征:中面是一平面厚度小于其它方向的尺寸。 分类:厚板与薄板、大挠度板和小挠度板。

t/b≤1/5时(薄板) w/t≤1/5时(小挠度)按小挠度薄板计算 3、载荷与内力 载荷:①平面载荷:作用于板中面内的载荷 ②横向载荷垂直于板中面的载荷 ③复合载荷 内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形 ②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形 ◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所 以,大挠度分析要比小挠度分析复杂的多。 ◆本书仅讨论弹性薄板的小挠度理论。 4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f ①板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面 法线w的挠度。只有横向力载荷

②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线 上各点间的距离不变。 类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且 仍然垂直于变形后的梁轴线。 ③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 ◆研究:弹性,薄板/受横向载荷/小挠度理论/近似双向弯曲问题 3.4.2圆平板对称弯曲微分方程 分析模型 分析模型:半径R,厚度t的圆平板受轴对称载荷P z,在r、θ、z圆柱坐标系中,内力M r、Mθ、Q r三个内力分量 轴对称性:几何对称,载荷对称,约束对称,在r、θ、z圆柱坐标系中,挠度w只是r的函数,而与θ无关。

7-第七章 应力状态分析 强度理论

第七章应力状态分析强度理论 7.1 应力状态概述 一、工程实例 1. 压缩破坏 2. 弯曲拉伸破坏 3. 弯曲剪切破坏 4. 铸铁扭转破坏 5. 低碳钢扭转破坏 二、应力状态的概念 1. 点的应力状态 过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。2. 一点应力状态的描述 以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。 3. 求一点应力状态 (1)单元体三对面的应力已知,单元体平衡 (2)单元体任意部分平衡 (3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。 三、应力状态的分类 1. 单元体:微小正六面体 2. 主平面和主应力:

主平面:无切应力的平面 主应力:作用在主平面上的正应力。 3. 三种应力状态 单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零 四、应力状态分析的方法 1. 解析法 2. 图解法 7.2 应力状态分析的解析法 一、解析法 图示单元体,已知应力分量x σ、y σ 、xy τ和yx τ。 x x x

(一)任意截面上的正应力和切应力: 利用截面法,考虑楔体bef 部分的平衡。设ef 面的面积为dA , ∑=0 F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy ∑=0F t sin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy 根据切应力互等定理: y x xy ττ= 三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2 αα-=,?=cos sin 22sin αα 解得: ατασσσσσα2sin 2cos 2 2 x x xy y y --+ += (7-1) ατασστα2cos 2sin 2 x xy y +-= (7-2) (二)主应力即主平面位置 将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。 令0αα=时,0d d =α σα 即: y x xy xy y x σσταατασσασα -- ==?? ????+--=22tan 02cos 2sin 22d d 000 将0α和ο 900+α代入(8-1),求出最大及最小的正应力为: 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=??? (三)最大切应力及其作用平面的位置 将式(8-2)对α取一次导数,并令其等于零可确定切应力的极值和它所在平面的位置。

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

第八章 应力状态和强度理论

第八章 应力状态和强度理论 8.1 图示矩形截面简支梁中的1、2、3、4、5、6点所对应的单元体。 1: ;2: ;3: ; 4: ;5: ;6: 。 图8.1 ( C ) 8.2由A3钢制成的圆杆受力如图所示。与危险截面A 上a 、b 、c 、d 点分别对应的单元体应是a : ;b : ;c : ;d : 。 ( D ) ( C ) ( B ) ( A ) 8.3分别写出与图示平面应力状态单元体上1、2、3、4斜截面对应的方位角:1α: ;2α: ;3α: ;4α: 。 8.4在图示四个切应力中,切应力为负的是( )。 图8.4 ( D ) ( C ) ( B ) ( A ) x

8.5在图示单元体中,x σ: ;y σ: ;x τ: ;y τ: 。 8.6图示平面应力状态的单元体及其应力圆如图所示。在图(b )所示的应力圆上与ab 斜截面对应的点是 ,在图(c )所示的应力圆上与ac 斜截面对应的点是 。 ( c ) ( b ) x ( a ) 图8.6 8.7单元体及其应力圆分别如图(a )、(b )所示,试在应力圆上标出与ab 、bc 斜截面所对应的点。 ( a ) 图8.7 x 8.8平面应力状态的单元体及其应力圆如图所示。ef 斜截面上的正应力和切应力应是( )。 (A )与1D α对应,15MPa ασ=-,8.66MPa ατ= (B )与2D α对应,25MPa ασ=-,8.66MPa ατ= (C )与3D α对应,25MPa ασ=-,8.66MPa ατ=- (D )与4D α对应,15MPa ασ=-,8.66MPa ατ=- 8.9作出图示单向应力状态单元体的应力圆。利用应力圆得出图示α斜截面的应力为ασ= ,ατ= ,以及max τ= ,max τ的作用面和x x

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

第九章 应力、应力状态分析(习题解答)

8-9 矩形截面梁如图所示,绘出1、2、3、4点的应力单元体,并写出各点的应力计算式。 解:(1)求支反力R A =1.611KN,R B =3.914KN (2)画内力图如图所示。 x Pl (-)(+) Pl x σ x σ (4) M kN ·m) P P P '-P P ' P' a a l-2a A y τττσ x x σ B y (-) (-) (+) (1) (2) h /4 P b P z h 1 2 34 V kN) 题8-9图 (3) 求梁各点的正应力、剪应力: (4)画各点的应力单元体如图所示。 9-1 试用单元体表示图示构件的A 、B 的应力单元体。 (a )解:(1)圆轴发生扭转变形,扭矩如图所示。 111max 222222333333max 442330,22(')[()]448 11 4()12 12 00(0, 0) 16 Z Z Z Z z V p A b h h h h P P b M V S Pl h y I I b b h b h b M S M Pl W b h σττστστστ==-=-? =-??-?? ?-?= ?=? = =??????=====- =- =??

9-1a ττ y A y τ τ y τ τ A B τ τ y τ τ y B y τ τ80kN ·m B A 160kN ·m A B - + 160 80 200 80kN ·m 240kN ·m A T (kN ·m ) B (2)绘制A 、B 两点的应力单元体: A 、 B 两点均在圆轴最前面的母线上,横截面上应力沿铅垂方向单元体如图所示: 331601020.216 80510.216 A A t b B t T Pa kPa W T Pa kPa W τπτπ= ==?===-? (b )解:(1)梁发生弯曲变形,剪力、弯矩图如图所示。 z y 160kN 0.5m 0.5m 0.5m 0.5m 80kN ·m 50 50 120kN 40kN 120 200 - + 120 V kN) 40 M kN ·m) + 120 4020 60 x στx τA B A A σx x ττx x στx τσx B B 题9-1(b )

第八章 应力状态和强度理论

建 筑 力 学 刘国华 阚小妹主编 电子工业出版社

第八章应力状态和强度理论 【知识目标】 ●了解平面及空间应力状态的概念 ●熟悉平面应力状态的分析方法 ●熟悉空间应力状态最大剪应力的大小及分布 ●掌握强度理论的概念及其适用范围 【能力目标】 ●能熟练运用解析法和应力圆法求解一点处的应力状态 ●能求解空间应力状态下一点处的最大剪应力 ●能写出四个强度理论的相当应力及强度条件 ●能正确选择强度理论对构件危险点处进行强度校核 第一节平面应力状态下的应力分析 一、平面应力状态的概念 由构件的应力分析可知,在受力构件的同一截面上不同点的应力是不同的,一般都既有正应力,又有切应力(如对称弯曲中,构件横截面上距中性轴为某一距离的任一点处)。受力构件内一点处不同方位截面上应力的集合,称为一点处的应力状态。 为了研究受力构件内某一点处的应力状态,可以围绕该点取出一个单元体。例如,研究图8—1(a)所示矩形截面悬臂梁内A点处的应力状态,可用三对相互垂直的平面,围绕 图8—1 若单元体有一对平面上的应力等于零,即不等于零的应力分量均处于同一坐标平面内,则称为二向或平面应力状态。如受扭圆轴除轴线以外各点处及横力弯曲梁上下边缘以外各点

处均为平面应力状态。平面应力状态的普遍形式如图8—2(a)所示,即在其它两对平面上分别有正应力和切应力(σσxx,ττxx和σσyy,ττyy)。现研究在普遍形式的平面应力状态下,根据单元体各面上已知的应力分量来确定其任一斜截面上的未知应力分量,并从而确定该点处的最大正应力及其所在截面的方位。 二、解析法 (一)斜截面上的应力 已知一平面应力状态单元体上的应力为σσxx,ττxx和σσyy,ττyy,如图8—2(a)所示。如前所述,由于其前、后两平面上没有应力,可将该单元体用平面图形来表示(图8—2(b))。为求该单元体与前、后两平面垂直的任一斜截面上的应力,可应用截面法。设斜截面eeee的外法线nn与xx轴间的夹角(方位角)为α(图8—2(b)),简称为α截面,并规定从xx轴到外法线nn逆时针转向的方位角α为正值。截面上的应力分量用σσαα和τταα表示。 图8—2 利用截面法,沿斜截面eeee将单元体切成两部分,并取其左半部分eeeeee为研究对象。设斜截面eeee的面积为dA,则截面eeee和eeee的面积分别为ddddddddddαα和ddddddss nnαα。这样,微体eeeeee的受力如图8—2(c)所示,由该微体沿斜截面法向和切向的平衡方程,即∑FF nn=0和∑FF tt=0可得 σσααdddd+(ττxx ddddddddddαα)ddss nnαα?(σσxx ddddddddddαα)ddddddαα+ ?ττyy ddddddss nnαα?ddddddαα??σσyy ddddddss nnαα?ddss nnαα=0 ττααdddd?(ττxx ddddddddddαα)ddddddαα?(σσxx ddddddddddαα)ddss nnαα+ ?ττyy ddddddss nnαα?ddss nnαα+?σσyy ddddddss nnαα?ddddddαα=0 由切应力互等定理可知,ττxx和ττyy的数值相等(其指向已表示在图8—2(c)中)。由此可得任一斜截面(α截面)上的应力分量为 σσαα=σσxx+σσyy2+σσxx?σσyy2dddddd2αα?ττxx ddss nn2αα (8—1)

带孔平板的应力集中分析

有限元方法 Finite Element Method ——基于ANSYS的有限元建模与分析 姓名吴威 学号20100142 班级10级土木茅以升班2班 西南交通大学 2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述 计算带孔平板的应力分布及应力集中系数。 二、模型的建立与计算 在ANSYS中建立模型,材料的设置属性如下 分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。 建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。 然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。 (1) 完整模型的计算 ①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm) 约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。 对模型进行分析求解得到: 节点应力云图(最大值222.112)

单元应力云图(最大值256.408) 可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。 ②细网格 单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

第九章应力状态理论基础(讲稿)

第九章应力状态理论基础 一、教学目标 通过本章学习,掌握应力状态的概念及其研究方法;会从受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。 二、教学内容 1、应力状态的概念; 2、平面应力状态分析--数解法 3、平面应力状态分析—图解法 4、三向应力状态下的最大应力; 5、广义胡克定律?体应变; 6、复杂应力状态的比能; 7、梁的主应力?主应力迹线的概念。 三、重点难点 重点: 1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大

剪应力的计算。 2、广义胡克定律及其应用。 难点: 1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。 2、斜截面上的应力计算公式中关于正负符号的约定。 3、应力主平面、主应力的概念,主应力的大小、方向的确定。 4、广义胡克定律及其应用。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、计划学时 6学时 六、实施学时 七、讲课提纲 本章与前几章在研究对象上的不同之处。 回顾:内力图:N F 、n M 、Q F 、M --一根(杆、轴、梁) 强度计算??? ??一面(危险截面)一段—、—、max max max max M F M F Q n N 本章:应力状态— 一点。

(一)应力状态的概念 一、为什么要研究一点的应力状态? 简单回顾: 拉压: 图9-1 强度条件:[]?????=≤= n n A F b s N σσσσ 扭转: 图9-2 强度条件:[]?????=≤=n n W M b s n n ττττmax 弯曲: 图 11-3

《材料力学》第7章应力状态和强度理论习题解.

《材料力学》第7章应力状态和强度理论习题解.

第七章应力状态和强度理论习题解 [习题7-1] 试从图示各构件中A点和B点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a)] 解:A点处于单向压应力状态。 2 2 4 4 1 2 d F d F F A N Aπ π σ- = - = = [习题7-1(b)] 解:A点处于纯剪切应力状态。 3 3 16 16 1d T d T W T P Aπ π τ- = = = A σ A τ

MPa mm mm N 618.798014.3108163 36=????= [习题7-1(b )] 解:A 点处于纯剪切应力状态。 0=∑A M 04.028.02.1=?--?B R ) (333.1kN R B = ) (333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa mm mm mm N I y M z B B 083.21204012 130103.0333.14 36=??????==σMPa mm mm mm N b I QS z z B 312.0401204012 145)3040(1333433 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa mm mm N W M z A A 064.502014.332 1103.393 33=????==σ MPa mm mm N W T P A 064.502014.316 1106.78333 =????== τ A τ B τ B σA τA σ

根据MATLAB的有限元法分析平面应力应变问答刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) 2.LinearBarAssemble(K k I f) 3.LinearBarElementForces(k u)

4.LinearBarElementStresses(k u A) 5.LinearTriangleElementArea(E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa ,v=0.3,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵 通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = 210000000 >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1) k1 =

[2018年最新整理]弹性力学_第六章_平面问题的直角坐标解

第六章平面问题的直角坐标解知识点 平面应变问题 应力表示的变形协调方程应力函数 应力函数与双调和方程平面问题应力解法 逆解法 简支梁问题 矩形梁的级数解法平面应力问题 平面应力问题的近似性应力分量与应力函数 应力函数与面力边界条件应力函数性质 悬臂梁问题 楔形体问题 一、内容介绍 对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。 本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。 本章学习的困难是应力函数的确定。虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。 二、重点 1、平面应变问题; 2、平面应力问题; 3、应力函数表达的平面 问题基本方程;4、应力函数的性质;5、典型平面问题的求解。 §6.1 平面应变问题 学习思路: 对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。 平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线

长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。这种弹性体的位移将发生在横截面内,可以简化为二维问题。 根据平面应变问题定义,可以确定问题的基本未知量和基本方程。 对于应力解法,基本方程简化为平衡微分方程和变形协调方程。 学习要点: 1、平面应变问题; 2、基本物理量; 3、基本方程; 4、应力表 示的变形协调方程 1、平面应变问题 部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示 这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。 这类工程问题,我们可以认为柱体是无限长的。如果从中任取一个横截面,则柱形物体的形状和所受载荷将对此横截面是对称的。因此物体变形时,横截面上的各点只能在其自身平面内移动。 设纵向轴为z轴,则沿z方向的位移恒等于零,位移只能发生在Oxy面内。而且任一个横截面都是对称面,因此只要具有相同的x、y坐标,则有相同的位移。所以物体的位移为 2、基本物理量

应力状态分析

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )仅适用于脆性材料; (B )仅适用于塑性材料; (C )适用于材料为各向同性,且处于线弹性范围内;(D )适用于任何材料; 正确答案是 。 m A C τ (a) (b) (c)

平面应力状态开孔应力场的研究

平综述 摘要:在机械制造、航空、造船、建筑等领域, 开孔问题是十分普遍的。然而, 开孔必 然引起应力集中现象, 这一直是工程技术人员十分关心的问题。对平面应力状态开孔周边应力场的研究, 掌握应力场的变化规律, 在实际工程中具有十分重要的意义. 关键词:应力场开孔平面应力状态 1 前言 对于开口结构来说,特别突出的一个问题就是临界区域的孔边应力集中问题。准确的求解孔周围的应力是很困难的,特别是对于一些复杂孔型。就像人们所知道的,孔口附近往往也就是构件最薄弱的区域。因此,对开孔及其周边应力场的研究,对于机械及相关领域来说至关重要,这将是我们必须长期坚持和努力的研究领域。 2开孔周边应力场的研究历史及现状 2.1 复合材料开孔周边应力场研究 吴德隆[1]在对二维平面的复合材料结构开孔分析中,得出相应的结论:开孔引起的应力扰动项是局部的,随距离的增加而迅速衰减。最大应力集中发生在孔角处45°,并与开孔尺寸成反比。李成[2]等为了探索出一种方法,使得在实际设计中,计算含孔的复合材料板的应力、强度时,既可以避免级数法的繁琐,又可以提高其计算精度。于是他们以复变函数理论为基础,借助积分方程,采用多复变量应力函数对含圆孔形的复合材料板进行研究,得到了精确边界条件下的应力解析, 并用所得到的应力表达式对不同载荷的影响进行了分析、评价,同含有圆孔的均质材料板边的应力场进行比较。得出了含复杂孔形孔边应力的解析解法。并且得出了对带有圆形孔的复合材料板和均质材料板,在不同方向的载荷作用情况下的计算方法,这种计算方法在工程中有很高的实用价值。 2.2 平板开孔应力场的研究 张涛[3]等对开椭圆孔有限板的应力集中问题进行研究。应用弹性力学的复变函数理论,在各内边界上引入保角变换,在外边界上采用分段函数,通过傅立叶级数展开,计算整个弹性板的应力场,给出了开椭圆孔有限板的计算实例。突破了开

带孔平板模型有限元分析

带孔平板模型分析 一、问题重述 如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。 已知条件:F=20N/mm,L=200mm,b=100mm,圆孔半径r=20,圆心坐标为(100, 50),E=200Gpa。板的左端固定。 二、问题分析: 从题目中可知这是一个有限元结构分析中的线性静力分析问题,由于只承受薄板长度和宽度方向所构成的平面上的载荷时,厚度方向没有载荷,一般沿厚度方向应力变化可不予考虑,即该问题可转化为平面应力问题。虽然结构是对称的,但所加载荷不对称,所以不能使用对称模型。 三、问题求解: 有限元问题求解一般分为三大步骤: 1、建立有限元模型 ①建立或导入几何模型:结构比较简单,直接在ansys中建模既可。先建一个长方形然后再中间画一个圆,两者相减即可。 ②定义材料属性:主要设置材料的弹性模量以及泊松比:EX=200000,PRXY=0.3。 ③划分网格建立有限元模型:网格的划分对结果的影响很大。在此进行了多种不同方式的网格划分,以便对结果更好的进行分析比较。单元类型均为PLANE82。 A 采用用户自定义网格尺寸参数,将长方形四条边网格长度都设置为20mm,再进行自由分网。得到的网格如下图所示。可以看出这样的网格很不规整,有大有小,有规则的有不规则的。 B 对前一种网格进行了改进,使用映射分网,但由于整个图形不能进行映射分网,所以在建模时将由四个小长方形组成一个大的长方形,中间再减去一个圆。然后再将这四块用glue命令粘起来。分网时将四块单独分网,这样就可以使用映射分网。如下图所示。可以看出,这样分出来的网格很漂亮,网格大小比较一致,这样求出来的结果更加有信服力。

相关主题
文本预览
相关文档 最新文档