当前位置:文档之家› 转向架构架有限元疲劳分析系统的研究

转向架构架有限元疲劳分析系统的研究

转向架构架有限元疲劳分析系统的研究
转向架构架有限元疲劳分析系统的研究

机车转向架构架强度的有限元分析

机车转向架构架强度的有限元分析 作者:郁炜江海兵 构架是机车转向架最关键的零部件之一,也是转向架其它各零部件的安装基础,在机车的牵引运行中起传递牵引力、制动力、横向力及垂向力的作用,因此,机车转向架构架的可靠性对机车的性能和安全性有重大影响。传统的转向架构架强度的可靠性评价大多通过物理样机的某些试验,再通过金属探伤、磁电探伤等方法来检验…,成本高,开发周期长。所以,使用有限元的理论对转向架构架建模,并利用有限元分析软件对其进行应力分析和强度计算来确保机车转向架构架的可靠性有重大意义,本文在此进行了尝试。 目前,国外几家著名的公司研制的有限元分析软件如MSC、ANSYS、I-DEARS等在国内许多设计中得到了较为广泛的应用。MsC公司提供的有限元软件在有限元建模、结构分析(静态、瞬态动力学)、热、电磁场、流体问题等及其耦合问题、接触、强非线性、碰撞等方面都有独到的处理方法,本文详细介绍了其中的前后处理软件MSC/PATRAN和结构分析软件MSC/NASTRAN在机车转向架构架强度计算与分析中的应用。 1 有限元强度计算模型的建立 机车转向架构架一般为箱型梁结构,有限元计算模型可以采用薄板单元按照设计图纸上的实际尺寸建模,并根据构架各部分是否承受载荷确定网格的疏密程度,在MSC/PATRAN 软件中生成有限元计算网格模型。文中选择一例已通过物理样机测试实验、强度合格的机车转向架构架进行分析。它是由两根侧梁、一根横梁和两根端梁组焊成的"日"字形结构,整个构架计算模型共有20 225个薄板单元和27 848个节点,如图1。

2有限元强度计算的载荷和边界条件 在机车转向架构架的有限元计算分析过程中,施加约束和载荷的原则是在构架主动施力处施加载荷,被动受力处施加约束: 机车运行时,作用在构架上的载荷可以归纳为静载和动载两大类。静载荷在运行过程中具有确定不变的数值和方向,包括机车上部重量、转向架自重以及安装在转向架上各种装置的重量、电传动内燃机车与电力机车的牵引电机的重量、液力传动内燃机车的中问齿轮箱重量等;动载荷是在运行过程中方向和大小都随时间变化的载荷,包括由于车体振动产生的附加垂向动载荷、机车牵引运行时作用在构架上的纵向力、机车通过曲线时作用在构架上的侧向力、牵引电机作用于构架的振动载荷以及工作时的反扭矩或电阻制动反扭矩、齿轮箱工作时的反扭矩、制动力、由于线路及其它原因使构架产生的扭曲力等。机车转向架载荷的大小和方向根据具体的设计要求和实际情况确定。本文研究对象的计算载荷值如表1所示。

转向架结构及常见故障分析

第一节:转向架的作用 转向架是承载车体重量和传递走行动力的导向部件,是大型养路机械的重要组成部分,其主要作用如下: 1)承载车体重量 转向架作为一个独立的走行装置,它直接支撑车体,承受和传递车架以上各部分(车体,车架,动力传递装置及作业装置等)的重量; 2)传递走行动力 把轮轨接触处产生的轮轴牵引力,以及通过曲线时轮轨之间的横向作用力传至转向架构架,经过减震环节再传向车体,同时,转向架引导车辆在线路上运行; 3)曲线通过 转向架可相对车体回转,其固定轴距也较小,故能使车辆顺利通过半径较小的曲线,并大大减少车辆的运行阻力。 4)提高车辆的运行平稳性 转向架的结构要便于弹簧减振装置的安装,使之具有良好的减振特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,使车体在各振动方向上的位移量减小,提高车辆运行平稳性和安全性。 5)保证必要的粘着力和制动力

充分利用轮轨之间的粘着,传递牵引力和制动力,放大制动缸所产生的制动力,使车辆具有良好的制动效果,以保证在规定的距离之内停车。 6)便于检修 转向架是车辆的一个独立部件,在转向架于车体之间尽可能减少联接件。易于从车辆底架下推进,推出,便于检修,有利于劳动条件的改善和检修质量的提高。

第二节转向架的主要技术要求 转向架是大型养路机械的主要组成部分之一,它用来传递车辆的各种载荷,并利用轮轨间的粘着作用保证牵引力的产生。转向架结构性能的好坏,直接影响大型路养机械的牵引能力、运行品质、轮轨磨耗和运行安全。 转向架应具有的技术要求是: (1)强度和刚度 转向架各部分必须保证足够的强度和刚度,特别是转向架构架对刚度的要求较高,因为它是转向架的基础,若刚度不足,会影响转向架各部分之间的相对位置。 (2)运行横向稳定性 在直线地段运行,应有良好的横向稳定性,也即大型养路机械达到最高运行时速时,绝不容许发生蛇行失稳。若发生剧烈蛇行,会产生很大的横向轮轨作用力,造成车轴轴承过热及对线路的破坏,同时影响横向运行品质和运行安全。 (3)运行平稳性 运行平稳性表示人所感觉到的运行品质,即通常说的舒适度。运行平稳性就表示舒适度,容易使人疲劳,降低机组人员作业的熟练程度。因此,对于大型养路机械转向架的垂向与横向振动,都有明确的限度要求。

某型地铁车辆转向架构架强度及模态

第5期(总第174期) 2012年10月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.5 Oct. 文章编号:1672-6413(2012)05-0024-0 3某型地铁车辆转向架构架强度及模态分析 杜子学,徐道雷,刘建勋 (重庆交通大学,重庆 400074 )摘要:通过CATIA软件建立某型地铁车辆转向架构架的三维实体模型,采用HyperWorks建立了该型地铁转向架构架结构强度分析的有限元模型,参照铁路相关标准,计算得到其强度分析应力结果,验证了该构架结构设计的合理性。通过模态分析,获得该构架的各阶模态频率及模态振型,为构架的动态特性设计提供参考。关键词:构架;强度分析;模态分析;转向架中图分类号:U260.331 文献标识码:A 收稿日期:2012-03-13;修回日期:2012-05-2 5作者简介:杜子学(1962-) ,男,河北邯郸人,教授,博士,研究方向为现代车辆设计方法与理论、载运工具运行品质、交通安全。0 引言 地铁转向架是地铁车辆的重要组成部件,是支承车体并负担车辆沿着轨道走行的支承走行装置,其结构是否合理直接影响车辆的运行品质、动力性能和行车安全。地铁转向架构架在运动过程中不但要承受车体传递的载荷、 牵引电机部分载荷,而且需要传递牵引力、车钩冲击力、制动力和车辆通过曲线时的横向载荷 等各种垂向、纵向、横向力[1] 。因此,其结构安全是转 向架结构强度设计的首要目标。 1 地铁车辆转向架构架结构强度分析 1.1 构架结构分析有限元建模 本文研究的地铁车辆转向架属于无摇枕转向架,具有结构简单、零部件少、重量轻、噪声低、维修工作量少等优点。该转向架主要由构架、轮对轴箱装置、轴箱定位装置、二系悬挂及牵引装置、空气弹簧、横向油压减震器和横向橡胶缓冲止挡、基础制动装置以及传动装置等组成。其构架主要由侧梁、横梁、纵梁、托板、弹簧支座等组成,构架的主要连接形式为焊接。该转向架构架三维建模采用CATIA软件完成,如图1所示。将几何模型转换为ig es格式后导入有限元软件Hyp ermesh中进行前处理,经过修补缺失的几何信息及几何简化后,对各焊接薄板抽取中面,划分二维壳单元网格,各支座采用六面体网格模拟。构架材料为16 MnR,其弹性模量E=2.09×105  MPa,密度ρ=7.9× 103  kg /m3,泊松比v=0.28,屈服极限为396MPa,强度极限为566MPa,许用应力为345MPa 。边界条件的正确与否对有限元计算结果影响重 大。在空气弹簧座处施加弹性边界元约束,而与六面 体单元相连接的是板壳单元,两者自由度不同,所以约 束这8个支座X、Y、Z平动方向的三个自由度[2] 。构架有限元分析模型如图2所示。 图1 构架三维模型 图2 构架有限元分析模型 构架所受载荷计算参照TB1335-1996《 铁道车辆强度设计及试验鉴定规范》 。该型地铁转向架构架载荷计算参数见表1。 表1 构架载荷计算参数 垂向静载荷Ps包括自重、载重和整车重量,Ps= 342kN。垂向动载荷Pd由垂向静载荷乘以垂向动载

转向架的作用及组成

. 一、转向架的作用及组成 作用: 1.采用转向架是为了增加车辆载重,长度,容积,提高运行速度,满足铁路运输发展。 2.在正常运行条件下,车体能可靠的坐落在转向架上,通过轴承装置是车轮沿钢轨的 滚动转化为车体沿轨道线路运行的平动。 3.支承车体,承受并传递从车体至轮对之间的各种载荷及作用力,并使轴重均匀分配。 4.保证车辆运行安全,灵活的沿直线线路运行和顺利通过曲线。 5.转向架结构要便于弹簧减震装置的安装,使之具有良好的减震特性,以缓和车辆和 线路之间的相互作用,减小振动和冲击,减小应力,提高车辆运行平稳性和安全性。 6.充分利用轮轨之间的黏着,传递牵引力和制动力,放大制动缸所产生的制动力,是 车辆具有良好的制动效果。 7.转向架为车辆一个独立部件,便于转向架的拆装,单独制造和检修。 组成 1、轮对轴箱装置 2、弹性悬挂装置(两系悬挂,弹簧减振装置) 3、构架 4、基础制动装置 5、转向架支撑车体的装置 6、牵引电机与齿轮变速传动装置

. 二、转向架的分类 1.轴数与类型 按轴数分为二轴、三轴、多轴转向架 按轴型分B、C、D、E型轴转向架 2.轴箱定位方式:约束轮对于构架之间相对运动的机构,称轴箱定位装置 形式有:①固定定位 ②导框式定位 ③摩擦导框式定位 ④油导桶式定位 ⑤拉板式定位 ⑥拉杆式定位 ⑦转臂式定位 ⑧橡胶弹簧定位 3、按弹簧悬挂装置分类 一系弹簧悬挂:车体主轮对之间,只设有一条弹簧减振装置 二系悬挂 4、对心盘集中承载的转向架,根据摇枕悬挂装置中的弹簧的横向跨距的不同,悬挂形式分为: 1.内侧悬挂:弹长度<车长度(横向)

2.外侧悬挂:> 3.中心悬挂:= 中央弹簧横向跨距大小,对于车体在弹簧上的稳定性效果显著,增加其跨距可以增加车体倾覆的复原力矩,提高车体在弹簧上的稳定性,各种型号转向架的主要区别: 橡胶弹簧定位:南京地铁使用 转臂式定位:广州地铁 四、按垂向载荷的分类方式 (一)车体与转向架之间的载荷传递 1.心盘集中承载 2.非心盘集中承载 3.心盘部分承载 (二)转向架中央悬挂装置的载荷传递 1.具有摇动台装置的转向架(缓解横向振动) 2.无摇动台装置的转向架(内有空气弹簧,符合轻量化要求) (三)构架与轴箱之间的载荷传递 1、转向架侧架直接置于轴向轮对上,无轴箱弹簧装置 2、支悬于均衡弹簧之上 3、由轴箱顶部弹簧支撑

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

支座的有限元分析

支座的有限元分析 —基于UG8.0与ANSYS Workbench 摘要:采用三维软件UG8.0建立的支座模型,并将三维模型导入到ANSYS Workbench,在Workbench中,对其进行结构强度、刚度校核以及模态分析,得到其在工作载荷下的变形、应力和模态频率,并在结构尺寸上进行优化设计,使其在结构强度上得到改进与加强。关键词:支座;UG8.0;ANSYS Workbench;有限元 Abstract: using 3d software UG8.0 established contact ball bearing model, and the three dimensio nal model is imported to ANSYS Workbench, the Workbench, its structural strength, rigidity and modal analysis, get it under the working load of the deformation, stress and modal frequency, and carries on the optimization design on the structure size, in the structure strength is improved and st rengthened. Keywords:contact ball bearing;finite element ;UG8.0;ANANSYS Workbench 0引言 支座作为多向活动部件的连接装置,主要受来自复杂部件的随机变化载荷的作用力,由于载荷力复杂多变,且局部应力集中地现象存在,导致球形接触面产生不规则破坏。以前的设计方案基本是粗略的,对于结构尺寸不能做到很精确的设计,使用效果不怎么好。本文利用UG8.0三维设计软件对支座进行参数化建模,并运用UG与ANSYS Workbench软件间的接口,将模型导入到ANSYS Workbench中,对其进行结构强度、刚度校核以及模态分析。有限元是一种在工程分析工程中常用的解决复杂问题的近似的数值分析方法,ANSYS程序中加入了许多新的技术,非线性、子结构以及更多的单元类型被加入程序,从而使程序具有更强的通用性。同时,ANSYS还提供了强大和完整的联机说明系统详尽的联机帮助系统,使用户能够不断深入学习并完成一些深入的课题。并因在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用。本文将分析在载荷的作用下,支座的变形,应力等,并显示强大的ANSYS的求解结果。

转向架构架疲劳计算方法的分析

转向架构架疲劳计算方法分析 1112A.Cera ,G.Mancini ,V.Leonardi ,L.Bertini Trenitalia S.p.A, Florence,1Italy ; Pisa University - Mech. Engng. Dept., Pisa,2 Italy 摘要 本文主要进行了转向架构架强度评定的关键分析,尤其着重于焊接节点。特别分析了针对不同焊接节点的疲劳分析技术。疲劳分析技术中包含的两种方法(疲劳极限和Goodman 曲线)是由欧洲标准EN 13749提出的。通过分析,我们可以知晓方法的准确性和可行性,从而选择最合适的转向架构架分析方法。通过成熟的商业有限元软件(ANSYS ),我们可以对挑选的标准的可靠性和安全性进行严格地比较。本文研究调查了疲劳分析方法,关注了其中有限元方法的使用。 一、引言 欧洲标准EN 13749,作为欧洲标准化进程的产物,于2005年4月由欧洲标准委员会CEN 提出。规范制定的目的在于定义完整的转向架设计过程。其中包括设计步骤、评定方法、验证以及加工质量要求。 EN 13749编撰了静态和疲劳下载荷的假设和计算。同时标准也定义了转向架构架静态和疲劳阻抗的测试方法。在转向架的章节中,标准针对疲劳预测特别定义了一系列的载荷工况和作用在构架上的不同类型的力。 随着新的数值计算方法的发展(有限元方法),疲劳完整性评估已经发展到较高的水平,尤其是在精确度和细节仿真方面。 即使在近期有了更新,标准仍未解决和定义某些重要部分。仍需要研究的问题主要有两点。首先缺少用于焊接节点的有限元仿真和疲劳评定方法。其次尚未定义多轴应力状态下(特别在铁路应用)疲劳强度评估的标准计算方法。 由于上述未解决的问题,同样的转向架设计用不同的疲劳分析方法可能得到不一样的结果。 从2006年起,意大利铁路(意大利国有铁路运营商)的工程部门和比萨大学机械工程部展开了关于转向架疲劳行为的公共研究项目。项目旨在通过使用有限元仿真建立经证实的、适用于疲劳完整性评估的方法。 在疲劳强度分析技术中,主要采用如下的选择和核对方法:

转向架构架强度试验标准对比.

文章编号:1002-7602(2011)09-0012- 06转向架构架强度试验标准对比 刘德刚1,刘宏友2,李庆升1 (1.南车青岛四方机车车辆股份有限公司国家工程实验室,山东青岛266111; 2.青岛四方车辆研究所有限公司技术研究部,山东青岛266031 )摘要:从试验内容、试验载荷、试验工况组合和试验结果评定等方面对比了UIC、EN和JIS关于转向架构架强度试验的标准, 并针对我国进行转向架构架强度试验给出了一些建议。关键词:构架;静强度试验;疲劳试验;UIC515;UIC615;EN 13749;对比中图分类号:U270.331+ .8文献标识码:B 转向架构架是车辆系统上一个至关重要的承载部 件,疲劳破坏是其主要的失效形式,抗疲劳强度设计是转向架的设计重点。针对构架的静强度和疲劳强度,国外高速铁路发达国家有设计规范和试验规范,用以指导构架的设计和生产,保障其强度特别是疲劳强度的可靠性。 我国铁路经过6次大规模提速,车辆运行速度有了大规模的提高,转向架构架承受的动态载荷越来越剧烈, 其疲劳可靠性是摆在每位从事铁道车辆疲劳强度研究人员面前的一个重要课题。作为其疲劳强度研究的一个重要方面,本文将对国外高速铁路发达国家的试验标准进行对比研究。这些标准包括:

UIC 515—4—1993《铁路客车—拖车转向架—传动齿轮转向架构架结构强度试验》(以下称UIC515—4);UIC 615—4—2003《动力单元—转向架和走行装置—转向架构架的结构强度试验》(以下称UIC615—4);EN 13749—2005《铁路应用—转向架结构要求的规定方法》(以下称EN13749);JISE 4207—2004《铁路车辆—转向架—转向架构架设计通则》(以下称JISE4207);JISE 4208—2004《铁路车辆—转向架—载荷试验方法》(以下称JISE4208)。UIC515—4、UIC 615—4均是单一叙述转向架构架静强度和疲劳强度试验的标准,其中,UIC515—4针对无动力转向架,而UIC 615—4针对有动力的机车和动车转向架。 EN 13749是关于转向架构架强度设计、计算、试验和生产制造的标准,在其附录C、D中叙述了试验载荷计算方法,附录F叙述了静强度试验方法,附录G 收稿日期:2011-02- 21-,男。叙述了疲劳试验方法。该标准根据用途和特点将转向架划分为7种类型,其中类型B—I和B—II转向架的试验方法适用于客车、动车和拖车,本文的对比也是基于这2类转向架。 JISE4207、JISE

转向架构架技术设计强度计算分析

2006年用户年会论文 转向架构架技术设计强度计算分析 张开林 肖守纳 [西南交通大学机车车辆研究所] 转向架构架的强度计算依据UIC 515VE 标准,并参照《高速试验列车技术条件》有关规范进行的。 1. 构架计算模型: 构架结构为中间加横梁的柜形结构,由两根侧梁、横梁、牵引横梁及前后端梁组成,构架结构示意图见图1。 构架的强度计算采用ANSYS 5.31软件完成。针对构架结构特点对构架计算模型均采用板单元进行离散。构架有限元分析计算模型的节点数为22921个,单元总数24845个,计算模型质量为3414.5kg,构架结构模型离散图见图2。 2. 计算载荷及计算工况 2.1构架基本载荷 垂向静载荷 (1) 其中:Fz-构架一侧垂向静载荷(kN) Mc-动力车总质量(t) Mb-转向架质量(t) (2) 其中: -左侧电机座垂向静载荷(kN) -电机质量(t) 模拟营运横向载荷 (3) 其中:Fy-构架模拟营运横向载荷(kN) Fz-构架一侧垂向静载荷(kN) 最大可能横向载荷 (4) g m m F b c z )2(4 1 ?= g m F d z 10 7' =)5.0(5.0g m F F b z y ?+=) 1210(0.2max g m F c y +='z F d m

2006年用户年会论文 其中:Fymax-构架最大可能横向载荷(kN) 模拟运营纵向载荷 机车以250km/h 的速度运行时的牵引力。 模拟纵向冲击载荷 (KN) (5) 由基本参数计算各载荷值如下: 2.2构架载荷组合工况 根据上述基本载荷对构架的计算工况进行组合,其组合工况见表一。 对于作用在侧梁上的垂直÷向载荷按面力考虑; 对于作用在电机座上的垂向载荷按面力考虑; 对于纵向载荷,按线载荷作用于相应的位置; b s m g F ?=3KN F KN F KN F KN F KN F KN F s y x y y z 0.721,5.120,5.746.245,2.169,3.218max max ======

转向架的作用及组成

一、转向架的作用及组成 作用: 1.采用转向架是为了增加车辆载重,长度,容积,提高运行速度,满足铁路运输发展。 2.在正常运行条件下,车体能可靠的坐落在转向架上,通过轴承装置是车轮沿钢轨的滚动转化为车体沿轨道线路运行的平动。 3.支承车体,承受并传递从车体至轮对之间的各种载荷及作用力,并使轴重均匀分配。 4.保证车辆运行安全,灵活的沿直线线路运行和顺利通过曲线。 5.转向架结构要便于弹簧减震装置的安装,使之具有良好的减震特性,以缓和车辆和线路之间的相互作用,减小振动和冲击,减小应力,提高车辆运行平稳性和安全性。 6.充分利用轮轨之间的黏着,传递牵引力和制动力,放大制动缸所产生的制动力,是车辆具有良好的制动效果。 7.转向架为车辆一个独立部件,便于转向架的拆装,单独制造和检修。 组成 1、轮对轴箱装置 2、弹性悬挂装置(两系悬挂,弹簧减振装置) 3、构架 4、基础制动装置 5、转向架支撑车体的装置 6、牵引电机与齿轮变速传动装置 二、转向架的分类 1.轴数与类型 按轴数分为二轴、三轴、多轴转向架 按轴型分B、C、D、E型轴转向架 2.轴箱定位方式:约束轮对于构架之间相对运动的机构,称轴箱定位装置 形式有:①固定定位 ②导框式定位 ③摩擦导框式定位 ④油导桶式定位 ⑤拉板式定位 ⑥拉杆式定位 ⑦转臂式定位 ⑧橡胶弹簧定位 3、按弹簧悬挂装置分类 一系弹簧悬挂:车体主轮对之间,只设有一条弹簧减振装置 二系悬挂

4、对心盘集中承载的转向架,根据摇枕悬挂装置中的弹簧的横向跨距的不同,悬挂形式分为: 1.内侧悬挂:弹长度<车长度(横向) 2.外侧悬挂:> 3.中心悬挂:= 中央弹簧横向跨距大小,对于车体在弹簧上的稳定性效果显著,增加其跨距可以增加车体倾覆的复原力矩,提高车体在弹簧上的稳定性,各种型号转向架的主要区别:橡胶弹簧定位:南京地铁使用 转臂式定位:广州地铁 四、按垂向载荷的分类方式 (一)车体与转向架之间的载荷传递 1.心盘集中承载 2.非心盘集中承载 3.心盘部分承载 (二)转向架中央悬挂装置的载荷传递 1.具有摇动台装置的转向架(缓解横向振动) 2.无摇动台装置的转向架(内有空气弹簧,符合轻量化要求) (三)构架与轴箱之间的载荷传递 1、转向架侧架直接置于轴向轮对上,无轴箱弹簧装置 2、支悬于均衡弹簧之上 3、由轴箱顶部弹簧支撑 三.轮对 轮对组成及基本要求 1.轮对:一根车轴,两个车轮组成,轮轴接合采用过盈配合,保证车轮、车轴 无任何松动。 2.对车轴轮对的要求:①足够的强度②弹性③阻力小,耐磨性好④直线,曲线 运行,抵抗脱轨的安全性。 车轴 1车轴各部分名称及作用 车轴绝大多数是圆截面实心轴,高铁是圆截面空心轴,车轴为全锻压成形a.轴颈(安装轴承,精加工) b.轮座(装车轮) c.防尘板座(防止灰尘进入轴箱,防止轴箱油脂甩出油箱 d.轴身 e.制动盘座(盘形制动) 2车轴材质及要求 ①质碳素钢加热

基于确保疲劳强度和减轻重量的转向架构架设计-外文资料翻译

Bogie frame design in consideration of fatigue strength and weight reduction B H Parkand K Y Lee School of Mechanical Engineering,Yonsei University,Seoul,Republic of Korea The manuscript was received on 8 April 2005 and was accepted after revision for publication on 25 November 2005. DOI: 10.1243/09544097F01405 Abstract: In the development of a bogie, the fatigue strength of a bogie frame is an important design criterion. In addition, weight reduction is required in order to save energy and material .In this study, the fatigue analysis of a bogie frame by using the finite-element method is performed for various loading conditions according to the UIC standards and it is attempted to minimize the weight of the bogie frame by artificial neural network and genetic algorithm. Keywords: bogie, strength, fatigue analysis, neural network, optimization. 1 INTRODUCTION A bogie in a train is a very important structural component loaded by various forces in the rail way vehicle motion. The motion of a railway vehicle is affect by the geometry of the track, the interaction between wheels and rails, the suspension, and the inertias of component part s. In the meantime, the weight of a bogie structure should be as light as possible at higher running speed. Therefore, the strength of the bogie should be carefully calculated and analysed by the international standards such as UIC [1] and JIS [2], in order to obtain a reasonable design scheme. In the past design process, the steps of many experiments, field tests, and prototypes to improve and obtain a reasonable design required much time and high costs. In the computer-aided engineering (CAE) product design step, however,the practical use of finite- element (FE) analysis can reduce the costs and time. The FE analysis of the bogie frame was studied several times [3,4]. In addition, the bogie has a large proportion of the total weight of a vehicle. Savings of energy and material are currently design drivers towards lightweight vehicle constructions. In

机械结构有限元分析课程大作业要求(2013年)

“机械结构有限元分析”课程结业要求 1.选题 每位同学可根据本人的情况,选择下面三种方案之一(只选一种): 1)提交课程读书笔记。 2)完成老师布置的大作业。 3)撰写论文 2.成绩评定 1)完成“读书笔记”的,成绩为:及格; 2)完成“大作业”的,成绩为:及格~良; 3)完成“论文”的,成绩为:良~优; 4)不交任何书面材料的,成绩为:不及格 3.要求 1)读书笔记必须是手写,字数不低于4000字,要求字迹工整,不得抄袭同学的笔记。内容不限,可以是对课程的总结、心得,也可以是对某一章的叙述。2)论文的题目不限,鼓励同学们自已发现问题,自已命题。论文的问容一般为:题目,作者,所在班级,摘要(不少于100字),关键词(3-5条),前言,正文内容,结论,参考文献。正文字数在3000-4000之间,论文要求打印。论文格式可以参照学术期刊上发表的论文。 3)大作业手算部分要求手写,Ansys计算部分要求打印,最后合订。 4)上交的材料(读书笔记,大作业,论文)都应装订,封面见附页 5)打印部分均为A4页面。 5)最后上交的日期为:2013年4月25日,下午4:00,地点7教213。

大作业题目 题目一. 设一平面桁架结构,如图所示1所 示,由7根钢管铰接而成,每根钢管长度均 为1000mm ,桁架两端为固定支承,每根钢管 的横载面均为外径160mm ,内径120mm 。已 知钢管材料的弹性模量E=2.1×105N/mm 2, 许用应力[σ]=190MPa, 载荷F1=30000N, F2=20000N, F3=10000N,试校核强度。 (本题要求用手算或编程计算) 题目二. 有一支座,如下图所示所示(铸造),底板上有四个直径为14mm 的圆孔,其圆面受到全约束,已知材料的弹性模量E=1.7×105N/mm 2,泊松比μ=0.3,许用应力[σ]=150MPa ,右端φ60的孔端面(A-B )受到水平向左的分布力作用,分布力的合力大小为20000N ,试分析支座内部的应力分布,并校核强度。(本题目用Ansys 建模求解,要求写出每一步的操作及结果) 图 1

转向架结构原理及基本部件

转向架结构原理及基本部件 1.转向架的作用 采用转向架可增加车辆的载重、长度和容积 转向架相对车体可自由回转,使较长的车辆能自由通过小半径曲线,减少运行阻力与噪声,提高运行速度 安装了弹簧减振装置,保证车辆具有良好的动力性能和运行品质 支承车体,承受并传递从车体至轮轨的各种载荷及作用力,使各轴重均匀分配 安装了制动装置,传递制动力,满足运行安全要求 安装了牵引电机及减速装置,提供动力,驱动轮对(或车轮),使车辆沿着轨道运行 转向架为车辆的一个独立部件,便于转向架的互换和制造、维修 2.转向架的组成及功能 轮对轴箱装置 弹簧悬挂装置 构架或侧架 基础制动装置 电机及齿轮箱装置 附件---传感器、撒砂装置、空气管路等 轮缘润滑装置 2.1轮对轴箱装置 轮对分为动力轮对和非动力轮对,动力轮对组成包括:车轮、车轴、轴箱组成、齿轮箱和牵引电机;非动力轮对包括:车轮、车轴、轴箱组成及动车驱动装置。 其作用: 轮对:引导车辆沿钢轨的运动,传递车辆的重量外,以及轮轨之间的各种作用力 轴箱与轴承装置:联系构架和轮对的活动关节,使轮对的滚动转化为车体沿着轨道的平动 2.2弹性悬挂装置

减少线路不平顺和轮对运动对车体各种动态影响 2.2.1轴箱悬挂装置(也称一系悬挂装置)-在轮对与构架之间 由三个主要零部件组成:二个圆锥形弹性橡胶弹簧单元及一个基座型轴箱。一系悬挂有三个主要功能: 1.保护转向架及车辆以防从轨道上传递过多的振动荷载 2.保护车辆在指定的轨道状况下操作时不会出轨 3.达到良好的曲线性能,同时保证转向架在整个工作速度范围内的动态稳定 性。 弹簧单元安装在轴箱上,一系悬挂的纵向及横向运动由弹簧单元高径向刚度控制。起吊止挡和缓冲挡相结合限制轮对垂向偏转。橡胶弹簧具有一定的减振性能,因此不需要安装一系垂向减振器。 2.2.1 中央悬挂装置(也称二系悬挂装置)-构架与车体(摇枕)之间 二系悬挂装置由空气弹簧、高度阀及减振器等零部件组成。 二系悬挂的作用: 1.保证乘客及车体的乘坐舒适度良好 2.保证车辆轮廓在指定的、所有车辆的动态状况下保持不变。 2.3构架或侧架 转向架的基础,把转向架各零、部件组成一个整体 承受、传递各作用力及载荷 满足各零、部件的结构形状及组装的要求 2.4基础制动装置 包括带停放制动缸、手柄、闸线。 传递和放大制动缸的制动力,使闸瓦与轮对之间产生的转向架的内摩擦力转换为轮轨之间的外摩擦力(即制动力)

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

动车转向架构架疲劳强度分析

动车转向架构架疲劳强度分析 发表时间:2018-05-16T16:48:49.663Z 来源:《基层建设》2018年第3期作者:刘明伟刘永杰孙进发 [导读] 摘要:随着动车工程的不断进步与发展,研究动车转向架构架疲劳强度极为关键。 中车青岛四方机车车辆股份有限公司山东青岛 266000 摘要:随着动车工程的不断进步与发展,研究动车转向架构架疲劳强度极为关键。本文首先对相关内容做了概述,分析了构架结构和制造过程中的相关工艺,在探讨质量控制模式构建的基础上,结合相关实践经验,分别从构架制作等多个角度与方面就构架制作工艺运用遇到的难点和解决办法做了深入研究,望对相关工作的开展有所裨益。 关键词:动车转向架;构架;疲劳强度;分析 1前言 随着动车转向架应用条件的不断变化,对其构架疲劳强度分析提出了新的要求,因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与实践,并取得理想效果。基于此,本文从介绍架构制造相关内容着手本课题的研究。 2构架结构和制造过程中的相关工艺探究 2.1以地铁车辆为代表的“结合型”构架 2.1.1结构特点 (1)H型结构,横梁和侧梁大件组合。(2)侧梁为U型结构。(3)轴箱弹簧座为8处阶梯平面结构,通过一系橡胶弹簧与轮对轴箱组成联接。(4)横梁结构复杂,连接转向架其他系统。 2.1.2工艺特点 结合对地铁车辆结构特点的分析,可以进一步归纳出其工艺特点,分为三个部分:一是工序具有一定的分散性。针对较为关键的位置还需要对其进行整体加工;二是要实施“一面两销”定位统一工艺基准;三是对三坐标进行全尺寸检测。 2.1.3工艺流程 首先,需要做的就是实施一次划线;其次,进行正反实施精加工;然后对其他相关一系列的工序进行有效实施;最后,才能实施全尺寸检测。 2.2以动车组为代表的“转臂式”构架 2.2.1结构特点 对转臂式构架进行分析,其结构特点主要以动车组为代表进行探究,进一步提出该结构特点分为四个部分:一是H型结构组成的大件是由横梁和侧梁组成;二是侧梁属于U型结构;三是使用转臂式轴箱体以及轴箱弹簧将其架构和轮进行连接;四是横梁在结构上具有复杂性它不仅是转向架实施牵引的骨架,同时,也在一定程度上是驱动装置的骨架。 2.2.2工艺特点 (1)工序分散,关键部位整体加工。(2)“一面两销”定位,使工艺基准统一。(3)典型部位粗、精加工进行。(4)三座标全尺寸检测。 2.2.3工艺流程 首先,需要实施一次划线,其次,要实施粗加工,然后对其他相关一系列的工序进行正反加工,最后,才能实施全尺寸检测工作。 2.2.4结构对比 “转臂式”结构的构架最复杂且性能最好。鉴于结构的复杂性和生产效率要求,使加工技术必须不断地创新和改进。因此,以下重點探讨“转臂式”结构构架上典型部位的加工技术。 3质量控制模式的构建 3.1质量管理项目划分。以ISO9000标准质量体系为总体原则,细化并增加生产环节的程序文件,如《不符合产品管理程序》《采购产品首件鉴定控制程序》《自制件首件控制程序》等。 对于同一种转向架构架,在项目启动前期,编制质量目标控制计划,在质量目标控制计划中,建立必要的检查,控制和例行试验的总体计划方案,设置过程控制质量门、生产过程中的各个监督点、控制点,可以明确相关过程、特别是关键和特殊过程控制方法、质量标准、检验方法、检验文件和检验频次。 3.2采购产品质量控制。物资供应部门负责对原材料和组装件的采购,对供应商质量管理主要包括供应商资质审核、质量合同谈判、研发制造过程控制、首件检验等,(对于不合格品,有相应的程序文件规定了详细的处置方法)、过程审核、数据分析和现场监造、质量业绩评价。 对于钢板、钢管、锻铸件,要求供应商提供符合标准的相应合格证明,入厂检也要根据设计部门出具的采购技术条件抽样进行理化试验和成分检测。 对于焊接填充材料的入厂检,由焊接实验室将焊材按照其执行标准进行各项检验,合格后出具合格报告方可进入焊接工序。 3.3人员资质控制。对焊接操作工而言,实行严格的焊工资质考试和准入制度,不仅要求焊工具备相应等级欧洲证书,正式上岗之前,还要进行施焊所属部位的工作试件考核,全部通过才允许上岗,在岗期间,也会有随机的焊工考试。这种随机的考核和严厉的准入制度,保证焊工随时具备有焊接出高水平焊缝的能力。而在管理制度上,工资奖金均和焊工的考试成绩相挂钩。 4构架制作工艺运用遇到的难点和解决办法 4.1构架制作工艺在使用时遇到的难点 构架主要有两个构成部分,所以构架制作工艺在使用时候主要容易遇到两个方面的难点:一方面,测面梁各部分的零件焊接时有困难,主要就是上面的盖板、下面的盖板、内部立板和外部立板之间,需要采用人工焊接操作,如果操作失误,相互之间连接点紧密程度有时候会出现问题,甚至导致变形,这样的话难以保证构架功能的实现,机车容易出现故障;另一方面,横梁各部分焊接过程中会遇到困难,尤其是电机的卡条与垫板两者与构架主体连接的时候,要求非常精细,这需要上一点内容的保证,如果侧面梁出现问题,那么横梁也会出现问题,遇到的主要问题就是如何保障各部分位置的正确性和精准度,而又保证误差在规定范围内,这样才能保证构架功能的整体

相关主题
文本预览
相关文档 最新文档