当前位置:文档之家› 采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析
采用ABAQUS进行齿轮接触应力分析

Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

abaqus接触问题技巧整理

接触问题技巧整理 1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M. 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.02 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact 的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。一般情况下不必设置此参数,如果在msg 文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。 8、桩头掉在了地表下,说明接触定义得不正确。可能接触面的距离还是大于*contact pair 中的adjust=0.02, 可改为adjust=0.2 9、原则上,90度的圆弧应该划分10个单元,适当少一些可能也行。 *contact pair中的adjust=0.005,还是太小,在后处理时可以看到,接触面之间的距离大于0.005。把adjust设置大一些没关系,比如adjust=0.1。 10、网格不好也可能产生过约束问题,不要只考虑边界条件啊! 11、NUMERICAL SINGULARITY WHEN PROCESSING NODE 15294 D.O.F. 2 RATIO = 2.48305E+11", 说明NODE 15294 所在的实体在方向2上出现无限大的刚体位移。 可以在此实体上的任意一点和地面之间定义一个很软的弹簧,以消除刚体位移。方法是:interaction模块,菜单special / springs-dashpots / create, 选connect points to ground, 选节点,Degree of freedom 设为出现了刚体位移的自由度,spring stiffness为一个较小的值(太小则不足以消除刚体位移,太大则会影响变形)。 如果多个方向上出现了刚体位移,就要分别在相应的方向上各定义一个弹簧。spring 所在的节点在弹簧方向的位移乘以spring stiffness,就是弹簧所分担的载荷,它应该远远小于在此方向上的外载荷。如果模型位移很小,我常常把spring stiffness设为1.

ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。此实例中使用国际单位制。 1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0) (0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0) 使用creat Fillet功能对模型倒角处设置0.005的倒圆角。倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。 2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。所不同的是,热分析还需 要指定热传导系数以及比热。在Thermal里输入参数,热铲刀系数25.96,比热451。 3、创建截面属性以及装备部件,和普通的静力分析设置一样。 4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。在Edit Step窗 口中,使用默认的瞬态分析(Transient),时长设置为3s。切换到Incrementatin进行相应的设置,如下图。

5、Load模块中,设置左边温度为100度,右边及上边温度为20度。Creat BC,类型选择 Other>Temperature。在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。 6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的 Heat Transfer,查看下面确保使用的单元为DCAX4。使用结构化的全四边形网格划分方法。 7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。

Abaqus Explicit 接触问题

1. Abaqus/Explicit 中的接触形式 双击Interactions,出现接触形式定义。分为通用接触(General contact)、面面接触(Surface-to-Surface contact)和自接触(Self-contact)。 1. 通用接触General contact 通用接触用于为多组件,并具有复杂拓扑关系的模型建模。 General contact algorithm ?The contact domain spans multiple bodies (both rigid and deformable) ?Default domain is defined automatically via an all-inclusive element-based surface ?The method is geared toward models with multiple components and complex topology。 ?Greater ease in defining contact model 2. Surface-to-Surface contact Contact pair algorithm ?Requires user-specified pairing of individual surfaces ?Often results in more efficient analyses since contact surfaces are limited in scope 3. 自接触(Self-contact) 自接触应用于当部件发生变形时,可能导致自己的某两个或多个面发生接触的情况。如弹簧的压缩变形,橡胶条的压缩。

abaqus有限元分析

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

abaqus接触动力学分析

部件模态综合法 随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。 部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。 对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。 考虑阻尼的振型叠加法 振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。 振型叠加法的使用条件: ?(1)系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。 ?(2)响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。 ?(3)载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。 ?(4)由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。 ?(5)系统的阻尼不能过大。

abaqus后处理中各应力解释个人收集修订版

a b a q u s后处理中各应力 解释个人收集修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变) LEij---真应变 ... 应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力 PS stress in the plastic-viscous

abaqus接触分析的常见问题

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surfac e-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersur face)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

abaqus螺栓连接的接触分析(网络软件)

*HEADING 定义装配载荷,例子使用的是实体单元 *NODE 可选定义预紧节点 *SURFACE,NAME=名字 数据行:指定单元和相应的面来定义预紧截面 *PRE-TENSION SECTION,SURFACE=名字,NODE=预紧节点** *STEP ** 预紧截面的使用 *STATIC 控制时间增量步的数据行 *CLOAD 预紧节点,1,预紧力的值 或者 *BOUNDARY,AMPLITUDE=amplitude 预紧节点, 1, 1,紧固调整 *END STEP *STEP ** 保持紧固调整并施加新的载荷 *STATIC 或*DYNAMIC 控制时间增量步的数据行 *BOUNDARY,FIXED pre-tension_node, 1, 1 *BOUNDARY 定义其他边界条件的数据行 *CLOAD 或*DLOAD 定义其他载荷条件的数据行 … *END STEP

abaqus螺栓连接的接触分析 2012-02-13 19:09:34| 分类:ABAQUS | 标签:|举报|字号大中小订阅 NO.1 螺栓连接的简化 由于螺纹处的应力应变不是关心的重点,因此,为简化建模,避免收敛困难,在螺钉和螺孔内表面之间建立绑定约束(tie)。这样得到的模型会比实际结构刚硬。 建立绑定约束的两个面在整个分析过程中都会紧密连接在一起,不会分开,如同一个整体。 Tie绑定约束,Position Tolerance(位置误差限度)设为Specify distance:XXX. 含义:与主面距离小于此限度的从面节点都会受到绑定约束。对于在位置误差限度内的从面节点,ABAQUS将调整其初始坐标,使其与主面的距离为0。注意不要将值设太大,以免由于调整从面节点位置,而造成较差的单元形状。 NO.2 预紧力的模拟 在abaqus中模拟螺钉预紧力的两种方式:1、施加螺栓载荷(bolt load); 2、定义过盈接触(contact interference)。 1、施加螺栓载荷(bolt load) 可以模拟螺钉的预紧力和各种均匀预应力。定义螺栓载荷时,需要指定螺钉上的一个受力截面。施加螺栓载荷的方式三种:A、Apply force:指定预紧力。B、Adjust length:调整螺钉长度。C、Fix at current length:保持螺钉当前长度。 注意:螺栓载荷为正值时表示使受力部件缩短;螺栓载荷为负值时表示受力部件伸长。 在做螺栓接触分析时,可以设好几个分析步,已达到平稳接触。在前几步使用Apply force,在后几步用Fix at current length。含义:在该分析步的开始,去除螺钉的预紧力,让螺钉保持上一步结束时的长度。在该步分析结束后,如果有其他外载荷,螺钉长度会发生变化。 2、定义过盈接触(contact interference)。

基于ABAQUS的热应力分析

1.1基于ABAQUS的热应力分析 1.1.1 温度场数据处理 (1)打开INP_Generator.exe,出现如下软件界面: 图1.数据处理软件 (2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图 所示: 图2.路径选择 (3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的 ABAQUS输入文件ABAQUSinputfile.inp。 图3.生成包含连续温度场INP文件

1.1.2 复材工装模板热应力分析 (1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”, 如下图所示。检查是否有名为“PID6”的set,若没有则创建一个名为 “PID*”的set,set为模板整体。(“*”为任意数字或字母) 图4.创建SET (2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。 在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺 层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用 ABAQUS/CAE自身功能完成剩余分析工作。 (a)

(b) (c) 图5.定义材料及铺层 (3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。选择“Tools” 菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。 图6.定义模板局部坐标系 (4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。

接触分析注意问题

1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是 你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误 差限度“,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2. 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、 msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意 思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念 来源:机械工业出版社《ABAQUS有限元分析常见问题解答》 CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis- cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

abaqus有限元建模例子

问题一:工字梁弯曲 1.1问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H-96.182*70000-97*70000-6.9165=-70000*98.807 -1/2H95.789*7000092*70000 6.9165

热应力分析

ABAQUS可以求解以下类型的传热问题: 1.非耦合传热分析:温度场不受应力应变场或电场的影响。应用ABAQUS/Standard可以求 解导热问题、强制对流、边界辐射和空腔辐射问题,其分析类型可以是瞬态或稳态的,也可以是线性或非线性的。 2.顺序耦合热应力分析:应力应变场受温度场的影响,但温度场不受应力应变场的影响。 此类问题用ABAQUS/Standard求解的步骤为:先求解温度场,然后以其作为已知条件,进行热应力分析,得到应力应变场。分析传热问题和热应力分析可以使用不一样的网格,abaqus会自动进行差值处理(此类问题称为热应力分析)。 3.完全耦合热应力分析:温度场和应力应变场之间有着强烈的相互作用。 4.绝热分析:在此类分析中,力学变形会产生热,而且整个过程中时间极短,不发生热扩 散。 5.热电耦合分析:用来求解电流产生的温度场。 7.1热应力分析中的主要问题 设定线胀系数、模型的初始温度场,并可以修改分析步中的温度场。 7.2带孔平板的热应力分析 学习: 在LOAD功能模块中,使用预定义场(predefined field)来定义温度场。 在此模块中可以直接指定温度场或读入分析结果文件中的温度场,可以指定并精确读入某个分析步中某个增量步的温度场 7.3法兰盘感应淬火的残余应力模拟 学习: 使用热应力来模拟残余应力;在LOAD功能模块中,为模型的各个区域定义不同的温度场 表面感应淬火:常用的热处理工艺,使用感应器对工件表面进行局部加热,然后迅速冷却,在工件内部产生残余压应力。它可以提高工件的弯曲疲劳抗力和扭转疲劳抗力,工件表面的

马氏体具有良好的耐磨性。 Abaqus可以完整的模拟淬火的全过程,即通过分析工件和感应器之间以及工件与冷却液之间的热场过程来确定工件的温度场,从而得到相应的塑性应变场和冷却后的残余应变场。 比较简单的模拟方法:先设定整个模型的初始温度场,在分析过程中令淬硬层区域的温度升高至某个温度值,其余区域的温度保持不变。经过几次试算,找到合适的淬硬层温度值,使得法兰盘内圆角处的表面压应力与实验结果吻合。施加工作载荷,保持上述温度场不变,就可以模拟在残余应力作用下的应力场。 优点:通用性强,可以模拟不同工艺所产生的残余应力场 缺点:精确度不高 改进方法:参淬硬层的不同区域设定不同的温度值

ABAQUS后处理中各应力解释(个人收集)

ABAQUS中的壳单元S33代表的是壳单元法线方向应力, S11S22代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到 的S33应力均为0。 S11 S22 S33实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变)LEij---真应变...应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses Strain Force/Reactions RF reaction forces and moments反应力和力矩RT reactionforces反应力 1、弹塑性分析中并不一定总要考虑几何非线性。“几何非线性”的含义是位移的大小对结构的响应发生影响,例如大位移、 大转动、初始应力、几何刚性化和突然翻转等。 2、等效塑性应变PEEQ与塑性应变量PEMAG,这两个量的区别在于,PEMAG描述的是变形过程中某一时刻的塑性应变,与加载历史无关;而PEEQ 是整个变形过程中塑性应变的累积结果。等效塑性应变PEEQ大于0表明材料发生了屈服。在工程结构中,等效塑性应变大凡不应超过材料的破坏应变(failurestrain)。 3、在定义塑性材料时应严格按下表原则输入对应的真实应力与塑性应变: 真实应力

<屈服点处的真实应力> <真实应力> ……塑性应变0<塑性应变> …… 注意: 塑性材料第一行中的塑性应变必须为0,其含义为: 在屈服点处的塑性应变为0。 4、定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的应力和应变值。 5、对于塑性损伤模型,其应力应变曲线中部能有负斜率。 通常都是通过其他软件数据导入到abaqus,比如Etabs,Midas,satwe等中建模,然后把网格数据作为abaqus有限元模型。 那么abaqus的cae是做什么的?其实用cae来建模实体模型还是可行的,可以油点变线,由线变面,由面变体,并可做布尔运算,然后把多个部件组装为整体结构,统一划分网格。从这方面来说cae是可以的。 abaqus最蛮横的方面显然是它的求解器,abaqus分隐式求解器和显式求解器。隐式求解器里可实现模态分析、瞬态分析、时程分析、屈曲分析等,内嵌了改进型NewMark隐式算法和Wilson算法,求解非线性问题非常安定,大凡只要计算通过就能得到较好的结果。显式求解器不仅是abaqus的特色求解器,而且有极高的效率,能够快速的进行非线性求解,并且也能有较好的安定性,也能完成静力和动力计算。另外,同样模型数据可以在两个求解器中计算。 abaqus另一方面,它提供大量的单元,丰盛的材料,可以模拟混凝土、金属等硬质材料,或岩土、泡沫、塑料等软质材料,而且提供了自定义材料接口和自定义单元,有了给研究者、应用者丰盛的空间。对于我们做结构的人来说,结构设计是不可少的,既然abaqus是通用有限元软件,我就不可能去苛求

abaqus热残余应力分析实例

利用Abaqus的Moldflow接口进行翘曲分析和残余应力分析 Abaqus关键特征和优势 1.力学性质、有限元网格以及残余应力数据都能从Moldflow很简便地传递到Abaqus 2.包含了成型工艺残余应力的Abaqus分析使得注塑模具产品的仿真更加精确 分析方法 对一个注塑模具产品的翘曲和应力分析的过程来说,一开始是利用Moldflow对注塑成型过程进行仿真。Moldflow的分析结果包括材料性质的描述以及固化零件中的残余应力分布。Abaqus的Moldflow接口此时用来将这些数据转换成Abaqus可以应用的格式。特别强调的是,接口产生的文件包含了塑料的网格信息、残余应力结果以及材料的性质。这些数据会在接下来的Abaqus分析中用来进行翘曲和残余应力影响的建模。椅子和手机外壳塑模的离散化模型如图1所示。对于这两个模型,Moldflow分析在模型厚度上分了21层并使用了壳体网格元素。翘曲的仿真运用Abaqus/Standard的静态分析功能分析完成。 图1:椅子和手机外壳模型的网格 结果和讨论 运用Abaqus/Standard进行翘曲分析后,椅子模型和手机外壳模型的变形如图2及图3所示。

图2:椅子模型的翘曲位移[米]分布云图 图3:手机外壳模型的翘曲位移[米]分布云图 由Abaqus/Standard翘曲分析所得到的椅子模型和手机外壳模型的Mises应力分布云图如图4及图5所示。很明显可以看出,由于翘曲引起了变形,原来零件中所储存的Mises 应力大小降低了。

图4:椅子模型的Mises应力[帕]分布分布—翘曲前[左]和翘曲后[后] 图5:手机外壳模型的Mises应力[帕]分布—翘曲前[左]和翘曲后[后] 结论 Abaqus为进行细致的结构分析提供了强大的能力。Moldflow为注塑模具产品提供了运算残余应力和材料性质的能力。Abaqus的Moldflow接口通过提供Moldflow分析结果向Abaqus分析过程传送的方法,使得更加精确、更加高效的设计过程得以实现。

基于有限元软件ABAQUS的过盈接触分析

基于有限元软件ABAQUS的过盈接触分析 如下图所示,将轴缓缓压入轴毂中,轴和毂之间在径向有8mm的过盈量,轴毂固定,两者的材料均为钢,弹性模量为2.06E11Pa,泊松比为0.3,摩擦系数为0.2。分析装配过程中轴和轴毂的应力应变情况。 问题分析 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。 (2)本题由于为过盈配合,属于大变形,故应考虑几何非线性的影响。 (3)模型具有轴对称性,所以可以采取轴对称模型来进行分析,这样可以节省计算时间。 (4)为了方便收敛,分析步可以分成两步,第一步建立两者间的接触关系,第二步完成过盈装配。 (5)接触面之间有很大的相对滑动,所以模型要使用有限滑移(Finite sliding)。 ABAQUS/CAE分析过程如下: (1)进入Part模块,创建Name为Axis的部件

在草图环境中输入(0,0),(0.1,0),(0.1,0.12),(0.13,0.12),(0.13,0.28),(0,0.28),(0,0)同时为轴部件端部切割出一78度角的倒角 同样再创造一Name为Hub的部件,设置与Axis一样,在草图环境中输入利用Rectangle工具创建一矩形,两角点为(0.09992,0)和(0.19992,-0.12)

(2) 进入property 模块,定义材料属性

(3)进入Assembly模块,创建两者间的装配关系

(4)进入step模块 定义名为Make-Contact和Press-Axis-Down的两个分析步,,将Nlgeom设置 为on,详细信息如下:

采用abaqus的cae进行力学问题的分析

采用abaqus的cae进行力学问题的分析,其对模型的处理存在很多的技巧,对abaqus的一些分析技巧进行一些概述,希望对大家有所帮助。 abaqus的多图层绘图 abaqus的cae默认一个视区仅仅绘出一个图形,譬如contor图,变形图,x-y曲线图等,其实在abaqus里面存在一个类似于origin里面的图层的概念,对于每个当前视区里面的图形都可以建立一个图层,并且可以将多个图层合并在一个图形里面,称之为Overlay Plot,譬如你可以在同一副图中,左边绘出contor图,右边绘出x-y图等等,并且在abaqus里面的操作也是很简单的。 1.首先进入可视化模块,当然要先打开你的模型数据文件(.odb) 2.第一步要先创建好你的图形,譬如变形图等等 3.进入view里面的overlay plot,点击creat,创建一个图层,现在在viewport layer里出现了你创建的图层了 4.注意你创建的图层,可以看到在visible 下面有个选择的标记,表示在视区里面你的图层是否可见,和autocad里面是一样,取消则不可见current表示是否是当前图层,有些操作只能对当前图层操作有效,同cad name是你建立图层的名称,其他的属性值和你的模型数据库及图形的类型有关,一般不能改动的。 5.重复2-4步就可以创建多个图层了 6.创建好之后就可以选择plot/apply,则在视区显示出所有的可见的图层 子结构的概述 1.什么是子结构 子结构也叫超单元的(两者还是有点区别的,文后会谈到),子结构并不是abaqus里面的新东东,而是有限元里面的一个概念,所谓子结构就是将一组单元组合为一个单元(称为超单元),注意是一个单元,这个单元和你用的其他任何一种类型的单元一样使用。 2.为什么要用子结构 使用子结构并不是为了好玩,凡是建过大型有限元模型的兄弟们都可能碰到过计算一个问题要花几个小时,一两天甚至由于单元太多无法求解的情况,子结构正是针对这类问题的一种解决方法,所以子结构肯定是对一个大型的有限元模型的,譬如在求解非线性问题的时候,因为对于一个非线性问题,系统往往经过多次迭代,每次这个系统的刚度矩阵都会被重新计算,而一般来说一个大型问题往往有很大一部分的变形是很小的,把这部分作为一个子结构,其刚度矩阵仅要计算一次,大大节约了计算时间。 3.哪些情况可以使用子结构 前面提到的非线性问题,包括了很小变形的或者线弹性部分可以使用子结构,特别是当模型中有很多相同的部分时,提到的最多的一个例子就是桌子的四条腿,四条腿作为子结构(因为基本时

Abaqus CAE中的分析步 接触和载荷

Abaqus/CAE中的分析步、接触和载荷 第五讲 ? Dassault Systèmes, 2008 L5.2概述 ?分析步 ?输出 ?接触 ?载荷、边界条件和初始条件 ?练习 Introduction to Abaqus/CAE ? Dassault Systèmes, 2008

分析步 ? Dassault Systèmes, 2008 L5.4分析步 ?分析步模块有下面四个用途: 1.定义分析步。 2.指定输出需求。 3.指定分析诊断。 4.指定分析控制。 Introduction to Abaqus/CAE ? Dassault Systèmes, 2008

? Dassault Systèmes, 2008 uction to Abaq us/CA E Step 3 = Natural frequency extraction 分析步 ?分析步 ?分析步为描述模拟历程提供了一种方便的途径。分析的结果取决于事件的顺序。?比如,右图中的弓和箭。整个分析过程包括四个分析步: Step 1: 预拉伸弓弦 (静态响应)。Step 2: 拉弓(静态响应)。 Step 3: 为加载的系统提取自然频率。Step 4: 放开弓弦 (动态响应)。 ? Dassault Systèmes, 2008 Introduction to Abaqus/CAE L5.6 分析步 ?在Abaqus/CAE 中定义分析步 General procedures Abaqus/Explicit procedures Linear procedures

分析步 ?分析步替换 ?任何分析步都可以用其它分析步替换 ?必需满足分析步的先后顺序。 ?Abaqus/CAE将保留载荷、边界条件、接触等属性Introduction to Abaqus/CAE ? Dassault Systèmes, 2008 输出 ? Dassault Systèmes, 2008

相关主题
文本预览
相关文档 最新文档