当前位置:文档之家› 硅微机械谐振陀螺仪的非线性分析

硅微机械谐振陀螺仪的非线性分析

硅微机械谐振陀螺仪的非线性分析
硅微机械谐振陀螺仪的非线性分析

第14卷第6期中国惯性技术学报V ol.14No.6 2006年12月 Journal of Chinese Inertial Technology Dec. 2006

文章编号:1005-6734(2006)06-0060-03

硅微机械谐振陀螺仪的非线性分析

盛平,王寿荣,吉训生,许宜申

(东南大学 仪器科学与工程系,南京 210096)

摘要:给出了硅微机械谐振陀螺仪的结构,介绍了硅微机械谐振陀螺仪的工作原理,详细推导并给出了陀螺仪的输出频率和标度因数非线性的计算公式;基于影响谐振陀螺仪标度因数的参数,分析了由谐振器的振幅和

梳齿静电驱动力引起的硅微机械谐振陀螺仪的非线性特性,给出了振动幅度与谐振频率关系的表达式。实验结果表明,陀螺仪的整体性能主要取决于谐振器振动幅度的稳定性。

关键词:陀螺;谐振频率;非线性;双端音叉谐振器

中图分类号:U666.1 文献标识码:A

Nonlinear analysis on silicon micromachined resonant gyroscope

SHENG Ping, WANG Shou-rong, JI Xun-sheng, XU Yi-shen

(Department of Instrument Science and Engineering, Southeast University, Nanjing 210096, China )

Abstract: The operating principle of a silicon micro-machined resonant gyroscope was introduced and its structure was given. The output frequency of the gyroscope and the calculation expressions of scale factor nonlinearity were deduced. Based on the parameters that may influence the scale factor of the resonant gyroscope, the nonlinearity characteristic, which was caused by the resonator amplitude and electrostatic comb-finger driving-force, was analyzed.

Finally, the relationship between the resonance frequency and vibration amplitude was presented. The results indicated that the performance of the silicon micromachined resonant gyroscope was determined by the stabilization of the vibration amplitude of resonator.

Key words: gyroscope; resonance frequency; nonlinearity; double-ended tuning fork resonator(DETF)

0 引 言

谐振传感器输出的频率信号稳定性好,不易受噪声干扰,在传输和处理过程中也不易出现误差。近年来,基于谐振原理,利用表面微机械加工技术和体硅微机械加工技术研制的谐振器件已有报道,但关于硅微机械谐振陀螺仪的鲜有报

道。当硅微机械谐振陀螺仪具有较高的Q值时,陀螺仪非线性将导致谐振频率

点的漂移。因此,研究硅微机械谐振陀螺仪非线性特性,对提高陀螺仪的性能

很有必要[1]。

1 硅微机械谐振陀螺仪工作原理

硅微机械谐振陀螺仪的结构示意图如图1所示,主要由三部分构成:陀

螺仪敏感质量块部分、杠杆传递部分、双端音叉谐振器(DETF)部分。其中,

陀螺仪敏感质量块部分用于敏感输入角速度,杠杆传递部分用来放大哥氏(Coriolis)力,谐振器部分主要是将陀螺质量块输出给它的轴向哥氏力转化

成相应的频率输出[2]。

基金项目:国家863资助项目(编号:2002AA812038)

收稿日期:2006-08-19;修回日期:2006-09-26

作者简介:盛平(1977—),男,博士研究生,研究方向为微型仪表及微系统技术。电子邮箱:pshengcn@https://www.doczj.com/doc/be10077397.html, 梳齿质量块

锚驱动方向

杠杆

61 盛平等:硅微机械谐振陀螺仪的非线性分析 第6期

在静电梳齿电压的驱动下,敏感质量块部分和双端音叉谐振器部分发生谐振,当有角速度输入时,敏感质量块在Y 方向上产生哥氏力,并通过杠杆结构放大哥氏力,被放大了的哥氏力作用在谐振器的输出轴向上,使谐振器的谐振频率发生变化,敏感梳齿检测频率的改变量,测出输入角速度。

2 硅微机械谐振陀螺仪的非线性分析

2.1 标度因数非线性分析

当谐振器的谐振梁在轴向力c F 的作用下,采用双端差动输出时,频率变化量为[3][4]:

r r f f f ?= (1)

式(1)中,0r f =

221r r C L S C EI =,c F 为每根梁受到的轴向力,E 为杨氏模量,r I 为梁的

截面惯矩,r L 为梁的长度,r M 为梁的等效质量,1C 、2C 为取决于谐振梁振动模态的常量。

式(1)展开并忽略高次项可得:

301

[()]8

r c c f f SF SF ?=+ (2)

由硅微陀螺仪的静电梳状驱动工作原理可知[1],力c F 与输入角速度?关系为:

11

1

2πc AF Q F f =

? (3) 式(3)中,A 为杠杆的放大系数,1F 、1Q 、1f 分别为陀螺仪敏感质量块的静电驱动力的幅值、品质因数、谐振频率,?为输入角速度。将式(3)代入式(2),整理得:

223211211

01111

1[()]2π82πr r r r r C L AF Q C L AF Q f f C EI f C EI f ???=+ (4)

从式(4)可知,输出频率有两部分组成,第一项反映了陀螺仪的标度因数,第二项反映了标度因数的非线性,可用来对标度因数的非线性进行估算。对式(4)的第一项求导,可得:

0()r f f ???=? (5)

从式(5)中可知,陀螺仪的标度因数取决于DETF 谐振器的梁长、等效质量、截面惯矩、振动模态、材料的杨氏模量,与杠杆的放大系数、质量块的静电驱动力幅度、质量块谐振器的1Q 值成正比,与质量块谐振器的频率成反比。 2.2 谐振器振幅引起的非线性分析

考虑谐振器振幅引起的非线性时,弹性恢复力的高阶小量不能忽略,其动态特性可以由下述动力学方程来表示[5]:

33,r r r

r r er r

M x M x

K x K x F Q ω+++= (6) 式(6)中,223,3

12r

r

r C EA K L =

为三阶弹性系数,er F 为谐振器的梳齿静电驱动力,r A 为梁的截面积,r ω为谐振器的固有谐振频率,r Q 为谐振器的品质因数。

由式(6

)可知,谐振器的谐振频率可写成:ω=。展开成级数并忽略高次项,简化为: 3,23(1)8r r r

K X K ωω≈+

(7)

式(7)指出,谐振器振的幅导致谐振频率的偏移,偏移量大小跟振幅的平方成近似的线性关系。对梳齿驱动的谐振器来说,振幅X 分别与交流驱动电压幅度V i 、直流偏置电压V d 成正比,当谐振器的非线性效应不可忽略时,交流驱动电压幅度和直流偏置电压的增加会造成谐振频率的增加。

2006年12月 中国惯性技术学报 62 2.3 梳齿静电驱动力引起的非线性分析

图2为梳齿电容驱动结构示意图。对梳齿电容求导,可得[1]:

()

00

2

2(21)C

h bh n n x g a x εε?=+??? (8) 式(8)中,n 为梳齿的齿数,0ε为真空介电常数,h 为齿厚,b 为齿宽,a 为静止时动(静)齿端与静(动)齿的间距,x 为动齿在某一瞬时的位移,g 为齿间隙。

梳齿电容动静齿之间存在静电吸引力,考虑式(8)中C /x ??的非线性项,则外加驱动电压后动静齿之间的静电吸引力为:

()

22002

11(2(21))22C h bh

F V V n n x g a x εε?==+???静电

(9) 式(9)中,V 为动静梳齿之间所加的驱动电压。当a>>x ,将式(9)展开,并忽略高次项:

220

03(21)h bh

F V n V n x g a

εε≈+?静电 (10) 将式(10)代入式(6),整理可得:

23203,03((21))r r r

r r bh h

M x M x

K V n x K x V n Q

g

a ωεε++??+= (11) 由式(11)可看出,梳齿电容的非线性使谐振器的等效刚度减小,造成谐振频率的漂移。

3 实验数据分析

直流偏置电压值V d =19 V ,交流驱动电压的幅值V i =7.5 V 、8.5 V 和9.5 V 时,输出信号幅频特性曲线如图3,其中曲线1、曲线2、曲线3分别为交流

驱动电压幅值取7.5 V 、

8.5 V 和9.5 V 时输出信号幅频曲线。谐振器的谐振频率分别为46.725 kHz 、46.827 kHz 、46.965 kHz 。由图3可以看出,交流驱动电压幅值增加时,振动幅度增加,谐振频率点产生偏移。振动幅度越大,幅频曲线不对称越明显。振动幅度随频率增加慢慢增高,到某一点时突然降低。这是典型的非线性振动特性,是由于振幅过大所引起的,这时弹性恢复力的三阶弹性系数3,r K 不能忽略。

4 结束语

本文介绍了硅微机械谐振陀螺仪的工作原理,详细分析了硅微机械谐振陀螺仪的非线性特性,给出了陀螺仪标度因数非线性的估算公式,指出谐振器振幅会导致谐振频率的偏移,偏移量与振幅的平方成近似的线性关系。梳齿电容的非线性使谐振器的等效刚度减小,造成谐振频率的漂移。实验验证了理论分析结果。在实际应用中,选择并稳定谐振器振动幅度对陀螺仪的整体性能具有重要影响。

参考文献:

[1] 王寿荣. 硅微型惯性器件理论及应用[M]. 南京:东南大学出版社,2000.

[2] Seshia A A, Howe R T, Montague S. An integrated micro electromechanical resonant output gyroscope[C]//15th IEEE Micro electromechanical Systems Conference. Jan. 2002: 20-24.

[3] Raymond J. Roark, Warren C. Young. Formulas for stress and strain[M]. 5th ed. McGraw Hill, 1975. 147-172.

[4] Hopkins R E, Borenstein J T, Antkowiak B M, et al.. The Silicon oscillating accelerometer: A MEMS instrument for strategic missile guidance][C]//The Missile Sciences Conference(held in Monterey). CA, Nov. 2000. 7-9.

[5] Roessing T A. Integrated MEMS tuning fork oscillators for sensor application[D]. Ph.D Thesis, University of California,

Berkeley, 1998: 58-68.

MEMS陀螺仪参数校准方法研究

MEMS陀螺仪参数校准方法研究 摘要:针对陀螺仪标定成本与精度之间矛盾的问题,建立了陀螺仪的误差模型,探索了一组最佳标定位置,提出了针对陀螺仪的零偏、标度因数和安装误差角等参数引起测量数据出现偏差的4位置标定方法。并将该方法应用于机载系统的姿态测量单元,估计出了陀螺的标定参数,并对标定后的陀螺仪进行试验测试。测试结果表明,标定后陀螺仪的性能满足预期试验要求,验证了该标定方法的正确性和有效性。 关键词:陀螺仪;标定;4位置;零偏;标度因数;安装误差 引言 三轴陀螺仪常用来测量物体三个方向的角速率信息,及估计设备姿态信息。相对于传统陀螺仪,采用MEMS集成制造工艺的陀螺仪具有重量轻、体积小、成本低、可靠性高等优点,在机载导航及车载导航等领域得到了广泛应用。系统姿态测量的精度除了与姿态解算算法有关外,还与MEMS陀螺仪的加工工艺及安装精度相关。因而,对MEMS陀螺仪误差估计和标定的研究具有重要意义[1-2]。 陀螺仪的标定方法主要有基于转台的多位置角速率试验标定方法[3]和现场多位置标定方法[4-5]。传统的标定方法以高精度转台为测试基础,标定过程非常复杂。现场标定能够降低工作量,但标定精度相对较差。文献[6]在陀螺速率试验和24位置实验的基础上,提出一种无需基准北向的陀螺标定方法,消除了不对北误差影响。文献[7,8]结合传统的静态多位置和速率标定方法,提出基于双轴旋转机构的6位置标定方法,该方法求解标度因子和安装误差较为方便,但在求解常值漂移时步骤繁琐。文献[9]分别采用24位置、12位置和8位置对陀螺仪进行标定试验,表明标定位置减少,能够降低标定成本,但标定精度随之降低。因而要探究有效的标定位置,在降低标定成本的同时提高标定精度。 本文对陀螺仪的误差源进行分析,建立了测量误差的数学模型,提出了一种新型4位置陀螺仪标定方法,补偿了零偏,安装误差及标度因子对陀螺仪的影响,并进行相关实验测试。测试结果表明,该方法简化了现有标定步骤,节约了标定时间;标定结果满足预期试验要求,标定方法合理、可行。 1 陀螺仪的误差模型 在三轴陀螺仪中,三个轴向的陀螺分别安装于三个正交面上,构成右手坐标系。由于陀螺仪自身工作原理、结构,以及集成制造、安装等因素影响,导致陀螺仪的输入轴坐标系之间不能正交,存在一定的安装误差。陀螺仪标定的目的就是补偿输出值与测量值之间的偏差,补偿测量值为零而实际输出值不为零的零偏,补偿由加工精度、装配工艺等原因引起的安装耦合误差,因此MEMS陀螺的输出模型可以表示为: 其中,为敏感轴测量的角速度,为真实角速度,?啄?棕为线性刻度因子误差矢量,N为非正交因子矢量,为常值漂移(零偏),为陀螺噪声误差。考虑到陀螺噪声误差对标定结果的影响较小,忽略噪声误差对测量结果影响。令K=1+S+N,则上述公式可以变换为: 其中,Ky x、Kz x为敏感轴x对应的安装误差耦合系数;Kx y、Kz y为敏感轴y对应的安装误差耦合系数;Kx z、Ky z为敏感轴z对应的安装误差耦合系数;Kx x、Ky y 、Kz z 为3个敏感轴对应的标定因数;D x 、D y 、D z是陀螺敏感轴x、y、z的常值漂移(零偏)。 2 4位置标定方案

硅微型两自由度振动轮式陀螺仪原理分析

第29卷第6期1999年11月 东 南 大 学 学 报JOURNAL OF SOUTHEAST UNIVERSITY Vol 29No 6Nov.1999 收稿日期:1999-03-16. 第一作者:男,1967年生,讲师. 硅微型两自由度振动轮式陀螺仪原理分析 苏 岩 王寿荣 周百令 (东南大学仪器科学与工程系,南京210096) 摘 要 首次提出了2种两自由度振动轮式陀螺仪新结构.详细分析了陀螺仪工作原理,推导了陀螺仪动力学方程.介绍了电容信号器和力矩器的工作原理. 关键词 振动轮式陀螺仪;梳状谐振器;电容信号器 分类号 U666 123 国内外硅微型陀螺仪的研究方兴未艾.各种新的设想、新的结构、新的工艺层出不穷.目前,国内各研究单位所研究的微机械陀螺仪为单自由度陀螺仪.因此,研制、开发两自由度微机械陀螺仪是一项有意义的探索性工作. 本文提出了2种新的陀螺仪结构,这2种结构均可以实现两自由度输入敏感[1].由于环式陀螺仪的外环可以做的较大,因而动量矩较以往的陀螺仪为大,精度将得到很大提高.1 两自由度振动轮式陀螺仪的结构 双环振动轮式陀螺仪的结构如图1所示.该陀螺仪由上下两层构成.下层为引线和电容极板层,该层与仪表壳体相固连;上层为陀螺仪主体结构.陀螺仪外环通过一对挠性轴和内环相连;内环通过两对辐条和一对挠性轴与固定支架相连.外环与底板上的镀金层分别构成两对电容.这两对电容构成信号器和力矩器.用于敏感x 、y 轴的输入角速度和平衡输入力矩.内环设计成梳状谐振器,整个环等分成4部分,分别构成4个谐振器.各谐振器产生的静电力矩用于驱动内、外环绕回转轴振动.内环通过一对外挠性轴带动外环振动. 三环振动轮式陀螺仪的结构如图2所示.该陀螺仪亦由上下两层构成.下层为引线和电容极板层,该层与仪表壳体相固连;上层为陀螺仪主体结构.陀螺仪由3个圆环通过挠性轴相连.外环通过一对扁平状挠性轴与中环相连;中环通过另一对与外环挠性轴相垂直的扁平状挠性轴和内环相连;内环通过十字型挠性轴与圆柱形固定支架相连.外、中环可以分别绕各自的挠性轴扭转.同时,外、中环与底板上的镀金层分别形成两对电容.这两对电容构成信号器和力矩器.用于敏感x 、y 轴的输入角速度和平衡输入力矩.内环设计成梳状谐振器,整个内环等分成4部分,分别构成4个谐振器.各谐振器产生的静电力矩用于驱动内、中、外环振动.内环通过两对挠性轴带动中环和外环振动. 图3所示的陀螺仪结构为图2所示陀螺仪结构的另一种变型.其主要区别在于,图2所示陀螺仪的谐振器的固定叉指为外结构.中环与内环之间挠性轴的长度较长,结构设计时的难度

微陀螺仪的设计与制造过程

微陀螺仪的设计与制造 学校:华中科技大学 专业:机械设计制造及其自动化 姓名:潘登 班级:1104班 学号:U201110689 指导老师: 廖广兰 来五星

中文摘要 随着科学技术的发展以及科研技术的逐渐成熟。陀螺仪也逐渐进入了各个领域。现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。 文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。 关键词: 微机械陀螺仪,MEMS工艺,制作过程,关键技术

Abstract With the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solid micro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future. The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion. Keywords: Micromechanical gyroscopes, MEMS technology, production process, key technologies

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.doczj.com/doc/be10077397.html,/subject/zhiliudianliuchuanganqi.html

注塑结构及工作原理

(一)注塑机结构分析及其工作原理 0…… 一、注塑机的工作原理 注塑成型机简称注塑机。 注塑成型是利用塑料的热物理性质,把物料从料斗加入料筒中,料筒外由加热圈加热,使物料熔融,在料筒内装有在外动力马达作用下驱动旋转的螺杆,物料在螺杆的作用下,沿着螺槽向前输送并压实,物料在外加热和螺杆剪切的双重作用下逐渐地塑化,熔融和均化,当螺杆旋转时,物料在螺槽摩擦力及剪切力的作用下,把已熔融的物料推到螺杆的头部,与此同时,螺杆在物料的反作用下后退,使螺杆头部形成储料空间,完成塑化过程,然后,螺杆在注射油缸的活塞推力的作用下,以高速、高压,将储料室内的熔融料通过喷嘴注射到模具的型腔中,型腔中的熔料经过保压、冷却、固化定型后,模具在合模机构的作用下,开启模具,并通过顶出装置把定型好的制品从模具顶出落下。 注塑机作业循环流程如图1所示。 图1 注塑机工作程序框图 二、注塑机的分类 按合模部件与注射部件配置的型式有卧式、立式、角式三种 (1)卧式注塑机:卧式注塑机是最常用的类型。其特点是注射总成的中心线与合模总成的中心线同心或一致,并平行于安装地面。它的优点是重心低、工作平稳、模具安装、操作及维修均较方便,模具开档大,占用空间高度小;但占地面积大,大、中、小型机均有广泛应用。 (2)立式注塑机:其特点是合模装置与注射装置的轴线呈一线排列而且与地面垂直。具有占地面积小,模具装拆方便,嵌件安装容易,自料斗落入物料能较均匀地进行塑化,易实现自动化及多台机自动线管理等优点。缺点是顶出制品不易自动脱落,常需人工或其它方法取出,不易实现全自动化操作和大型制品注射;机身高,加料、维修不便。 (3)角式注塑机:注射装置和合模装置的轴线互成垂直排列。根据注射总成中心线与安装基面的相对位置有卧立式、立卧式、平卧式之分:①卧立式,注射总成线与基面平行,而合模总成中心线与基面垂直;②立卧式,注射总成中心线与基面垂直,而合模总成中心线与基面平行。角式注射机的优点是兼备有卧式与立式注射机的优点,特别适用于开设侧浇口非对称几何形状制品的模具。

微机械陀螺仪的温度误差分析和模型研究

微机械陀螺仪的温度误差分析和模型研究 摘要:微机械陀螺仪是一种用于测量物体运动角速度的新型惯性器件。这种新型陀螺仪具有体积小、重量轻、可靠性高、抗冲击、易于数字化和智能化、能大批量生产等优点,是未来惯性技术向民用领域大量推广应用最有前途的仪表。但环境温度是对其性能有重大影响。本文主要对微机械陀螺仪的温度误差原因进行分析,并对现有温度误差分析补偿模型进行了介绍。 关键词:微机械陀螺仪;温度误差;灰色模型;最小二乘法;小波网络法 The research on error analysis and model of microelectron-mechanical gyroscope (College of Aerospace Engineering, Nanjing University of Aeronautics &Astronautics, Nanjing, 210016, China) Abstract:Micro mechanical gyroscope is a new inertial component, which is used for measuring the velocity object movement. This new type of gyroscope has characteristics such as small size, light weight, high reliability, impact resistant, easy to digital and intelligent, and mass production, so it is the future technology to civil field large inertia popularization and application of the most promising instrument. But environmental temperature has a major impact on its performance. This paper mainly to analyz the micro mechanical inner temperature error reason, and the error analysis of existing temperature compensation models are introduced in this paper. Key words:microelectron-mechanical gyroscope;temperature error;gray model;wavelet network 陀螺仪又称角速度计,可以用来检测旋转角速度和角度。传统的机械陀螺、精密光线陀螺和激光陀螺等已在航空航天等军事领域得到广泛应用。但是无论从尺寸还是成本上,都不能满足微型武器的应用要求[1]。近年来,随着半导体技术集成电路微细加工技术的迅速发展,MEMS(Micro-Electro-Mechanical System)惯性器件得到快速发展,微机械陀螺仪也得到快速发展,它具有体积小,抗冲击,可靠性高,寿命长,成本低等特点,在军事和民用等领域应用前景广阔[2]。据各国研究成果表明,随着器件精度的不断提高,微机械陀螺仪技术必将在未来的军用及民用的相关领域中发挥越来越重要的作用[3]。但是由于性能限制,MEMS陀螺主用于中低精度导航。在微机械陀螺中的众多误差因素中,环境温度的影响是不可忽视的。因此对微机械陀螺仪的温度特性进行分析,并进行温度误差的建模和补偿是提高精度的有效手段,也是当前MEMS陀螺研究的热点之一。 1.微机械陀螺仪的温度误差分析 微机械陀螺仪的精度是决定惯性系统精度的核心因素,陀螺仪的精度较低,对姿态测量系统的动态性能影响很大。由于其对温度敏感度大,温度漂移成为其主要的误差源之一。首先分析微机械陀螺仪的工作原理,然后分析温度对微机械陀螺仪的影响。 1.1微机械陀螺仪的工作原理 微机械陀螺仪利用了哥氏力现象,其原理如图1.1所示。图中的物体沿X轴做周期性振

内框驱动式硅微型角振动陀螺仪灵敏度研究

The S en sitivity Study of an Angular Vibratory Microme chanical Gyro s cope Driven by the Inner Frame F A NY u e-m i n g1,2,M A O Pan-s o n g2 1.D e pa rt m e nt o f In fo r matio n e n g in e er in g,N an jin g U n i v er s it y of Po st s an d T e le c o m m u n ic atio n,N an jin g210003,C h ina 2.D e pa rt m e nt o f E le ctr o n ic e n gi n e e r in g,S o u th e ast U ni v e r sit y,N an ji n g210096,C h in a () Ab stra ct: T hi s pa pe r de v el o p s d y na m ic a n d s en sit i ve eq u ati o n s o f a n g ula r v i br at or y m ic r o m e ch an ic al g yr o s c o p e w ith d u-al-g i m b al dri v en b y t he i n ne r g i m bal f r a m e,a n d pr ese nt s t w o s i m p le an d f ea si ble m et h o d s t o e n ha nc e t he g yr o sc o pe’s sen s iti v it y.T he f re q ue nc y o f t he i n ne r g i m bal f ra m e an d th e nat ur al f r eq u en c y o f th e o ute r g i m bal f ra m e a re e q ual.T h e dri v en si g n al co n si sts o f t w o s in e-w a v es an d th eir fr e q ue ncies a r e s ele cted t o eq u al t o th e nat ur al f re q ue nc y o f in n e r an d o ute r f r a m e.in de si g ni n g g yr o s co pe s y ste m. Ke y w ord s: 7630m icr o m e ch an ic al g y ro sc o p e;d o u b le g i m b als;se n siti v it y EEACC: 内框驱动式硅微型角振动陀螺仪灵敏度研究① 方玉明1、2,茅盘松2 1.南京邮电学院信息工程系,南京210003; 2.东南大学电子工程系,南京210096. () 摘要:建立了内框驱动式硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应选为框架的固有频率。 关键词:微机械陀螺仪;双框架;灵敏度 中图分类号:1?249.122文献标识码:A文章编号:1005-9490(2004)01- 众所周知,微陀螺仪技术对国防建设和国民经济建设具有极其重要的意义。它广阔的应用前景使得这方面的课题成为热门的跨世纪的研究领域之一。硅微型双框架式角振动陀螺仪首先由美国C S-D L实验室1988年研制成功。它有两个框架,一为驱动,一为检测。按驱动框是内框还是外框,可分为内框驱动式和外框驱动式。对于内框驱动,施加于内框架的驱动力矩可以被挠性杆隔离,不会引起外框架振动,从而可以提高信噪比。故本文按内框驱动式,建立了硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应分别选为内、外框架的固有频率。 1内框驱动式硅微型角振动陀螺仪的结构组成及工作原理[1] 如图1所示,陀螺仪由内、外两个框架组成,内 第27卷第1期2004年3月 电子器件 C h in ese J o urn al o f E le ctr o n D e v ic es V o l.27,N o.1 M a r ch.2004 ①收稿日期:2003-02-24 基金项目:江苏省高校自然科学研究计划项目资助(项目编号:03K J B510089) 作者简介:方玉明(1952-),女,南京邮电学院信息工程系讲师,现在东南大学电子工程系微电子专业攻读博士学位,研究方向为微电子学及M E M S系统研究,f an g y m@nj u p t.ed https://www.doczj.com/doc/be10077397.html,.

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

陀螺仪认识入门

谈谈对陀螺仪和加速度传感器的感性认识 前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎 啊 加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS 技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加 速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器 来估计自己的姿态是很危险而不可取的 加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也 就是横滚角和俯仰角计算公示如下俯仰角

水性印刷机机械结构及工作原理

水性印刷机机械结构及工作原理——课程小结 一、水性印刷机的种类 1、水性印刷机的组成:主要由送纸单元、印刷单元、开槽单元、模切单元、堆叠单元组成。 2、水性印刷机的种类:低档型、中档型、高档型。 二、水性印刷机各部位名称及功能 ◆中档上印带开槽模切机构造原理图 1、工作原理: 此类型机是采用后踢式送纸(或前缘吸附滚轮摩擦方式),利用每个机组单元的带纸压轮传送瓦楞纸板;在纸板传送过程中,纸板的面纸与印刷滚筒上的印版相接触,通过压印辊和印版的压力印刷出图文后,进入压线开槽和模切单元作业,最终成纸箱未接合形状。 2、送纸单元各部位名称及功能: 送纸单元主要由:前、后、左、右挡板,推板,吸风装置,除尘毛刷和上、下送纸胶辊构成。 3、印刷单元各部位名称及功能: 印刷单元主要由:胶辊、网纹辊、印刷辊、底压辊、带纸压轮和输墨装置构成。 4、开槽单元各部位名称及功能: 开槽单元主要由:预压线轮、压线轮和开槽刀轮构成。 5、模切单元各部位名称及功能: 模切单元主要由:模版辊、砧垫辊、修磨装置和带纸压轮构成。 6、堆叠单元各部位名称及功能: 堆叠单元主要由:接纸臂、输送台和收纸台构成。 ◆高档下印带开槽模切机构造原理图 1、工作原理: 此类机型是采用前缘吸附滚轮摩擦方式送纸,利用每个印刷单元的真空吸附系统,将所要生产的瓦楞纸板背面平整的吸附在传送小轮上,在纸板传送过程中,纸板的面纸与印刷滚筒上的印版相接触,通过压印辊和印版的压力印刷出图文后进入干燥单元,干燥单元配有的干燥装置将对纸板表面的水墨进行干燥,最后进入压线开槽和模切单元作业成纸箱未接合形状。 2、送纸单元各部位名称及功能:

送纸单元主要由:前、后、左、右挡板,前缘送纸机构,吸风装置,除尘毛刷和上、下送纸胶辊构成。 3、印刷单元各部位名称及功能: 印刷单元主要由:腔式刮刀(或胶辊)、网纹辊、印刷辊、压印辊、真空吸附机构、传送小轮和输墨装置构成。 4、干燥单元各部位名称及功能: 干燥单元主要由:真空吸附机构、传送小轮和干燥装置(热风装置、红外线装置等)构成。 5、开槽单元各部位名称及功能: 开槽单元主要由:预压线轮、压线轮和开槽刀轮构成。 6、模切单元各部位名称及功能: 模切单元主要由:模版辊、砧垫辊、修磨装置和带纸压轮构成。 7、堆叠单元各部位名称及功能: 堆叠单元主要由:震动接纸臂、输送台和收纸台构成。 三、揭开网纹辊的神秘面纱 1、网纹辊的作用:定量均匀的向印版传递油墨。 2、网纹辊分为“金属网纹辊”和“陶瓷网纹辊”两大类。 3、金属网纹辊的特点: ①制造成本低;②适合印刷普通文字、线条和实地;③加工速度慢,加工精度低;④网墙宽阔,网孔形状一般为菱形;⑤网穴排列角度为45°;⑥网纹辊线数较低;⑦耐磨性差、使用寿命短。 4、陶瓷网纹辊的特点: ①陶瓷层化学稳定性好,辊面耐腐蚀性佳,使用寿命长;②网穴平滑,载墨量大,传墨性好;③蜂巢形网穴排布,且网穴墙壁薄细坚硬,可获得较均匀的水墨墨层,图文色调再现性好;④能加工成高网线数,改善印刷精美度,并可抑制网点扩大现象。 5、网纹辊网穴的形状: 网穴(也称网孔)是指在网纹辊辊体表面上,雕刻出形状一致、分部均匀的细小凹孔。其形状有斜齿形、四棱锥形、六棱锥形、四棱台型和六棱台型等。目前被广泛采用的网穴形状多是六棱台形的。 6、网纹辊网穴结构: ◆单个网穴的结构: 网穴开口:表示网纹辊表面单个细小网孔的宽度; 网穴深度:表示网纹辊表面单个细小网孔的深度; 网墙:表示相邻两个网孔之间的隔离距离。 7、载墨量:网纹辊网穴储存水墨的能力,单位为BCM/in2。 8、传墨量:水墨自网纹辊网穴中转移到印版的能力,单位为BCM/in2。 9、网纹辊的线数与传墨性能的关系:网纹辊的线数是指单位长度里的网线的线数,单位为线/英寸(LPI 或Lin)或线/厘米(LPCM或L/cm)。网纹辊的线数决定着:传墨量的大小;传墨量的均匀性。 10、网纹辊的日常保养技巧 ◆要注重的细节 ①保持设备的清洁干净;②使用干净的水性油墨;③保证擦版布的干净;④注意原纸的质量;⑤严禁对网纹辊进行刮、碰、撞。 ◆做好网纹辊的清洁工作 1)、日常清洗 ①要有足够的清洗时间;②用铜刷(金属网纹辊)或钢刷(陶瓷网纹辊)进行清洗;③用洗机水或专用网纹辊清洗液清洗。 2)、定期清洗 ①使用网纹辊专用清洗液进行清洗;②低压喷射清洗法;③超声波清洗法;④化学溶剂浸泡法。3)、其他方面 ①使用干净的水清洗网纹辊;②定期清洁夹持刮刀的金属板;③防止网纹辊靠近热源。 11、网纹辊的检查方法:①外观检查②用放大镜检查网穴

MEMS陀螺仪原理

mems陀螺仪 mems陀螺仪即硅微机电陀螺仪,绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。MEMS (Micro-Electro-Mechanical Systems)是指集机械元素、微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。 目录 ?mems陀螺仪的原理 ?mems陀螺仪的特点 ?mems陀螺仪的构成 ?mems陀螺仪的选用 ?mems陀螺仪的安装 mems陀螺仪的原理 ?MEMS 陀螺仪(gyroscope)的工作原理传统的陀螺仪主要是利用角动量守恒原理, 因此它主要是一个不停转动的物体, 它的转轴指向不随承载它的支架的旋转而变化. 但是MEMS 陀螺仪(gyroscope)的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事.MEMS 陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力. 下面是导出科里奥利力的方法. 有力学知识的读者应该不难理解. 在空间设立动态坐标系(图一).用以下方程计算加速度可以得到三项,分别来自径向加速,科里奥利加速度和向心加速度. 如果物体在圆盘上没有径向运动,科里奥利力就不会产生.因此,在MEMS 陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90 度.

MEMS 陀螺仪通常有两个方向的可移动电容板.径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式) ,横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度) .因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度. mems陀螺仪的特点 ?MEMS陀螺仪是利用coriolis 定理,将旋转物体的角速度转换成与角速度成正比的直流电压信号,其核心部件通过掺杂技术、光刻技术、腐蚀技术、LIGA技术、封装技术等批量生产的,它主要特点是 1. 体积小、重量轻,其边长都小于1mm,器件核心的重量仅为1.2mg。 2. 成本低 3. 可靠性好,工作寿命超过10 万小时,能承受1000g 的冲击。 4. 测量范围大,目前我公司生产的MEMS 陀螺仪测量范围可扩展到7560?/s。 mems陀螺仪的构成 ?MEMS 陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS 陀螺仪均采用振动物体传感角速度的概念. 利用振动来诱导和探测科里奥利力而设计的 MEMS 陀螺仪没有旋转部件, 不需要轴承, 已被证明可以用微机械加工技术大批量生产. 绝大多数MEMS 陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力. 振动物体被柔软的弹性结构悬挂在基底之上. 整体动力学系统是二维弹性阻尼系统, 在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式. 通过改进设计和静电调试使得驱动和传感的共振频率一致, 以实现最大可能的能量转移, 从而获得最大灵敏度.大多数MEMS 陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感, 而这些系统参数会改变振动的固有频率, 因此需要一个好的控制架构来做修正.如果需要高的品质因子(Q) ,驱动和感应的频宽必须很窄.增加1%的频宽可能降低20%的信号输出.还有阻尼大小也会影响信号输出. 一般的MEMS 陀螺仪由梳子结构的驱动部分和电容板形状的传感部分组成. 有的设计还带有去驱动和传感耦合的结构. mems陀螺仪的选用 ?陀螺仪在选用时,必须注意被测参数的物理环境和必要的性能指标。具体要求分列如下: 1.性能要求 ⑴ .随机漂移、随机游走系数、输出噪声 不同结构形式、不同原理的陀螺仪的对漂移率定义和要求不同,机械式陀螺仪精度使用的是随机漂移,光纤陀螺仪使用的随机游走系数。 随机漂移——指由随机的或不确定的有害力矩引起的漂移率。 随机游走系数——由白噪声产生的随时间累计的陀螺仪输出误差系数。 单位: ?/h1/2、?/s1/2。 输出噪声的单位:?/h/Hz1/2、?/s /Hz1/2 。

硅微型陀螺仪

硅微型梳状线振动驱动式陀螺仪 硅微型振动陀螺仪在工作时,用微幅振动代替高速旋转 硅微型梳状线振动驱动式陀螺仪的工作原理: 结构图如图所示: 机械部分由基座,提供驱动力的定齿,动齿,活动质量和连接活动质量的弹簧,固定弹簧的固定端组成。固定端和定齿都固定在基座上,活动质量由弹簧连接在固定端上。动齿固定在活动质量上。该陀螺仪采用静电驱动技术,给固定在基座上的定齿梳状电极上加载带直流偏执的交流电压,活动质量上的动齿接地。这样动、静齿间便产生大小和方向周期性变化的静电吸引力,使整个活动质量和动齿一起在两定齿之间来回振动,此时若基座在惯性空间中作转动,由于哥氏力的作用,活动质量将在垂直于基座的方向上振动,这样就可敏感基座相对于惯性空间转动的角速度。 建坐标系:取将动作标系固连在硅微型梳状线振动驱动式陀螺仪的基座上,取动作标系的原点为活动质量质心的平衡位置,x轴为静电驱动力的方向,z轴为与基座垂直的方向,y轴由右手规则确定。 (1)只做x轴方向的转动时的结论: 1.该方向上的角速度不能测量; 2.随着静电引力的振动频率的增大,活动质量的振动的振幅会大大减小,该陀螺仪的灵敏度会降低。 3.x轴方向的角速度不能大于根号内K/m,否则陀螺仪将被损坏。陀螺仪损坏的临界值随尺寸的降低而迅速增加。 (2)只做z轴方向的转动时的结论:不能测量该方向上的角速度。 (3)陀螺仪的基座在y轴方向的转动角速度近似地与活动质量在z轴方向的这一振动频率为ω的振动的振幅成正比。比例系数为2δ/(mω3) 小结:该陀螺仪对y轴方向的角速度最敏感,即应当它作为输入量,把y轴作为输入轴。而对其影响最强烈的是活动质量在z轴方向频率为ω的振动的振幅,它可以作为输出量。而静

微机械陀螺仪的国内外发展概述

微机械陀螺仪的国内外发展概述 学号:07060441x28 姓名: 摘要:陀螺仪是一种用于测量旋转速度或旋转角的仪器。它在运输系统,例如:导航、刹车调节控制和加速度测量等方面有很多的应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种,现在工业控制、航空航天、军用技术都不可能离开惯性传感器:汽车、消费品和娱乐市场也开始依赖这些设备。许多市场调查一致认为微机械传感器市场将以每年15%-25%的年增长率增长。微机械陀螺仪的性能指标在很短的十几年内得到了迅速提高,目前正由速率级向战术级精度迈进。根据随机游走系数定义陀螺仪的性能指标,体微机械和表面微机械陀螺仪的性能在每2年便以10倍的速度得到提高,表面微机械陀螺仪和体微机械陀螺仪的性能的差距也越来越小。也正是由于微机械陀螺仪的广泛应用,使得世界各国都致力于对陀螺仪的研究和发展。 正文: 一、微机械陀螺仪的分类简介及用途。 陀螺是首先在火箭上得到应用的,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来并成功地获得应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种: (1)振动式微机械陀螺仪。 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质量,在被基座带动旋转时的哥氏效应感测角速度。多采用平面电极或是梳状电极静电驱动,并采用平板电容器进行检测。其分类如下:

陀螺仪(gyroscope)原理

内容 MID中的传感器 1 加速计 2 陀螺仪 3 地磁传感器 4

MID中的传感器——已商用的传感器 ◆触摸屏 ◆摄像头 ◆麦克风(ST:MEMS microphones……) ◆光线传感器 ◆温度传感器 ◆近距离传感器 ◆压力传感器(ALPS:MEMS气压传感器……) ◆陀螺仪(MEMS) ◆加速度传感器(MEMS) ◆地磁传感器(MEMS)

集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。 微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。 微机电系统(Micro Electro Mechanical Systems,MEMS)MEMS = 集成电路+ 微机械

陀螺仪(Gyroscope) ?测量角速度 ?可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑)加速度传感器(Accelerometer) ?测量线加速度 ?可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) ?测量磁场强度 ?可用于电子罗盘、GPS导航

陀螺仪+加速计+地磁传感器 ?电子稳像(EIS: Electronic Image Stabilization)?光学稳像(OIS: Optical Image Stabilization)?“零触控”手势用户接口 ?行人导航器 ?运动感测游戏 ?现实增强

1、陀螺仪(角速度传感器)厂商: 欧美:ADI、ST、VTI、Invensense、sensordynamics、sensonor 日本:EPSON、Panasonic、MuRata、konix 、Fujitsu、konix、SSS 国产:深迪 2、加速度传感器(G-sensor)厂商: 欧美:ADI、Freescale、ST、VTI、Invensense、Sensordynamics、Silicon Designs 日本:konix、Bosch、MSI、Panasonic、北陆电气 国产:MEMSIC(总部在美国) 3、地磁传感器(电子罗盘)厂商: 欧美:ADI、Honeywell 日本:aichi、alps、AsahiKASEI、Yamaha 国产:MEMSIC(总部在美国)

相关主题
文本预览
相关文档 最新文档