当前位置:文档之家› 考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题
考虑如下线性规划问题

考虑如下线性规划问题:

Min z=60

x+402x+803x

1

s.t. 3

x+22x+3x≥2

1

4

x+2x+33x≥4

1

2

x+22x+23x≥3

1

x,2x,3x≥0

1

要求:(1)写出其对偶问题;

(2)用对偶单纯形法求解原问题;

(3)用单纯形法求解其对偶问题;

(4)对比(2)与(3)中每步计算得到的结果。

解:(1)设对应于上述约束条件的对偶变量分别为

y,2y,3y;则由原问

1

题和对偶问题,可以直接写出对偶问题为:

Max Z’=2

y+42y+33y

1

s.t 3

y+42y+23y≤60

1

2

y+2y+23y≤40

1

y+32y+23y≤80

1

y,2y,3y≥0

1

(2)用对偶单纯形法求解原问题(添加松弛变量

x,5x,6x)

4

MaxZ= -60

x-402x-803x+04x+05x+06x

1

s.t -3

x-22x-3x+4x=-2

1

-4

x-2x-33x+5x=-4

1

-2

x-22x-23x+6x=-3

1

x,2x,3x≥0

1

建立此问题的初始单纯形表,可见:

从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。

换出变量的确定,计算min(-2,-4,-3)=-4,故

x为换出变量。

5

换入变量的确定,计算得15,40,80/3,故

x为换入变量。

1

由表可知,

x为换出变量。2x为换入变量。然后继续画单纯形表:

6

可得

x为换出变量,3x为换入变量。继续做单纯形表:

4

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3.

(3)MaxZ’=2

y+42y+33y+04y+05y+06y

1

s.t 3

y+42y+23y+4y=60

1

2

y+2y+23y+5y=40

1

y+32y+23y+6y=80

1

y,2y,3y,4y,5y,6y≥0

1

然后建立单纯形表,可得

由此可知,

y为换出变量,2y为换入变量。继续画单纯形表,

4

由此可知,

y为换出变量,3y为换入变量。继续画单纯形表,

5

由此可得最后一行的检验数都已经为负或是零,这表示目标函数值已不可能再增大,于是得到最优解为

Y=(0,20 /3,50/3,0,0,80/3)

目标函数值为230/3

(4)比较第二问和第三问,主要是换出变量和换入变量的关系:

第(2)问里,

x为换出变量,1x为换入变量;6x为换出变量。2x为换

5

入变量;

x为换出变量,3x为换入变量!

4

第(3)问里,

y为换出变量,2y为换入变量;5y为换出变量,3y为

4

换入变量!

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 已知z=3x+y ,x ,y 满足?? ? ??≥≤+≥m x y x x y 32,,且z 的最大值 是最小值的3倍,则m 的值是 A. 61B.51C.41D.3 1 2.设实数y x ,满足不等式组?? ? ??≤++≤≥020k y x x y x ,若y x z 3+= 的最大值为12,则实数k 的值为. 二.目标函数中设计参数,已知线性约束条件 求目标函数中的参数的取值或取值范围问题例4、已知x 、y 满足以下约束条件5 53x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)取得最小值的最优解有无数个则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件553x y x y x +≥?? -+≥??≤? 使z=x+ay(a>0)取得最小值的最优解有无数个则a 的值( ) A 、-3 B 、3 C 、-1 D 、1

若使z=x+ay(a<0)取得最小值的最优解有无数个,则a 的值( ) 若使z=x+ay 取得最小值的最优解有无数个,则a 的值( ) 例 2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x ,目标 处取得最大值,求实数a 的取值范围. 直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)右侧的点P(x 0,y 0) 使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)右侧的点P(x 0,y 0) 使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

《简单的线性规划问题》教案

《简单的线性规划问题》教学设计 (人教A版高中课标教材数学必修5第三章第3.3.2节) 祁东二中谭雪峰 一、内容与内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法. 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想. 通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力. 二、教学目标 一)、知识目标 1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 2.理解线性规划问题的图解法 3. 会用图解法求线性目标函数的最优解. 二)、能力目标 1.在应用图解法解题的过程中培养学生的观察能力、理解能力. 2.在变式训练的过程中,培养学生的分析能力、探索能力.

3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想. 三)、情感目标 1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣. 2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神. 三、教学重点、难点 重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解. 难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系. 四、学习者特征分析 1. 已经掌握用平面区域表示二元一次不等式(组) 2. 初步学会分析简单的实际应用问题 3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示 本节课学生在学习过程中可能遇到以下疑虑和困难: 1.将实际问题抽象成线性规划问题; 2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化? 3.数形结合思想的深入理解. 五、教学与学法分析 本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等. 1.设置“问题”情境,激发学生解决问题的欲望; 2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划总结

线性规划总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

线性规划题型总结 知识点 (1)在坐标系中画不等式Ax+By+C>0(或<0)所表示的区域时,把直线Ax+By+C=0画成虚线以表示区域不包括边界直线;而画不等式Ax+By+C≥0(或≤0)所表示的平面区域时,要把直线画成实线以表示区域包括边界直线. (2)简单线性规划问题是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其解题步骤为:一是寻求线性约束条件与线性目标函数;二是由二元一次不等式表示的平面区域作出可行域;三是在可行域内求目标函数的最优解. (3).确定不等式Ax+By+C>0(<0,≥0,≤0)表示直线Ax+By+C=0的哪一侧时,常用下面的方法:先由等式定直线,然后在直线的某一侧任取一点(x0,y0),把它代入Ax+By+C>0,若不等式成立,则和(x0,y0)同侧的点都满足不等式,从而平面区域被找到,否则,直线的另一侧区域为不等式Ax+By+C>0所表示的区域,当C≠0时,常取特殊点(0,0)为代表,当C=0时,直线过(0,0),常选(1,0)或(0,1)加以判断.这种方法可称为“直线定界,特殊点定域”. (4).求在线性约束条件下的线性目标函数t=ax+by的最值问题时,应先作出线性约束条件所表示的平面区域即可行域,再作出直线ax+by=0,平移直线ax+by=0,此时,在经过可行域内

的点且平行于ax +by =0的直线中,找出对应于t 最大(或最小)时的直线,最后求其最值.生产实际中的许多问题都可以归结为线性规划问题来求解. 题型一:给出具体的变量,x y 满足约束条件,求线性目标函数的最值。常用的方法:(1)画出变量所满足的可行区域,将目标函数变形,平行移动找出目标函数的最值;(2)直接找出这几条线的的交点,直接代入即可,这个方法只适用于封闭区域,若非封闭区域,只能采用第一用方法,画图。 例1、已知变量,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) 【解析】选B 约束条件对应ABC ?边际及内的区域:53 (2,2),(3,2),(,)22 A B C 则3[8,11]z x y =+∈ 例2、若,x y 满足约束条件:02323x x y x y ≥?? +≥??+≤?;则x y -的取值范围为_____ 【解析】x y -的取值范围为_____[3,0]- 约束条件对应ABC ?边际及内的区域:3 (0,3),(0,),(1,1)2 A B C 则[3,0]t x y =-∈- 练习题: 1、设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为(D ). A .20 B .35 C .45 D .55 2、若,x y 满足约束条件10 30330x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 答案:1-

考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s.t. 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问 1 题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s.t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s.t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s.t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

6.2(问题)线性规划中的参数问题(原卷版)

2018届学科网高三数学成功在我 专题六不等式 问题二:线性规划中的参数问题 一、考情分析 线性规划是高考必考问题,常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值. 二、经验分享 (1)求平面区域的面积: ①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域; ②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可. (2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解. (3)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题. (4)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件,含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答,目标函数含参的线性规划问题,要根据z的几何意义确定最优解,切忌搞错符号. 三、知识拓展 常见代数式的几何意义: ①x2+y2表示点(x,y)与原点(0,0)的距离,x-a2+y-b2表示点(x,y)与点(a,b)的距离; ②y x表示点(x,y)与原点(0,0)连线的斜率, y-b x-a 表示点(x,y)与点(a,b)连线的斜率. 四、题型分析 (一) 目标函数中含参数 若目标函数中含有参数,则一般会知道最值,此时要结合可行域,确定目标函数取得最值时所经过的可行域内的点(即最优解),将点的坐标代入目标函数求得参数的值. 1.目标函数中x的系数为参数

线性规划理论在实际问题中的应用

Ⅰ线性规划理论在实际问题中的应用 ⅰ问题背景描述 线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其

有利的条件。线性规划已经成为现代化管理的一种重要的手段。 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。 从实际问题中建立数学模型一般有以下三个步骤; 1.根据影响所要达到目的的因素找到决策变量; 2.由决策变量和所在达到目的之间的函数关系确定目标函数; 3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。 所建立的数学模型具有以下特点: 1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。 2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。 3、约束条件也是决策变量的线性函数。 当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。 线性规划模型的基本结构:

对线性规划整点问题的探究

对线性规划整点问题的探究 厦门双十中学 郭俊芳 在人教版第二册(上)(2004年6月第一版,2006年4月第3次印刷)的高中数学教材第7.4节——简单线性规划。课本第61~62页给出两个线性规划的实际问题。分别代表两个类型:例3属于第一类:给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大;例4属于第二类:给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源最小。且例4还要求最优解是整数解。笔者在教学中发现,这个问题是学生的难点,学生仅靠阅读课本解答是不能完全理解怎样得到这个最优解的。笔者经过多次的教学实践和研究,试图找到解决这类问题的方法,以下是笔者认为行之有效的方法。 一、精确图解法求整数最优解 课本P88习题16 某运输公司有7辆载重量为6t 的A 型卡车与4辆载重量为10t 的B 型卡车,有9名驾驶员。在建筑某段高速公路中,此公司承包了每天至少搬运360t 沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车6次,每辆卡车每天往返的成本费A 型车160元,B 型车252元。每天派出A 型车和B 型车各多少辆公司所花的成本费最低? 解:设每天派出A 型车x 辆、B 型车y 辆,公司所花的成本为z 元,则 0x 70y 4x y 9 68x 106y 360x,y Z ≤≤??≤≤?? +≤????+??≥?∈?? 即0x 70y 4x y 94x 5y 30x,y Z ≤≤??≤≤?? +≤??+≥?∈?? z=160x+252y. 如图可行域是ABCD 围成的区域, 作直线160x+252y=0,图形中两直线160x+252y=0和4x+5y=30接近平行, 比较直线斜率k=160252- >-4 5 , 平移直线160x+252y=0,由图可知在A (7, 2 5 )处取到最小值,但A 不是整数解。 在可行域内共有(3,4),(4,3),(4,4),(5,2),(5,3),(6,2),(6,3),(7,1),(7,2)整数解,经检验只有(5,2)是最优解,此时z=160×5+252×2=1304元。 这种方法适用于区域是封闭区域,且区域内的整数点可数,坐标网络画出来容易在图上识别哪些整点在可行域内。 二、利用近似解估算整数最优解 课本P63例4 要将两种不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: x+y=9 4x+5y=30 160x+252y=0 A B C D

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三线性规划中的求参数取值或取 值范围问题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含 点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 2.12,则实数k 的值为. 二.值或范围.

例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件5503x y x y x +≥??-+≥??≤?使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 若使z=x+ay(a<0)若使z=x+ay 取得最小值的最优解有无数个,则例2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x (-3,0)处取得最大值,求实数a 的取值范围.直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

破解线性规划中的整点问题

破解线性规划中的整点问题 河南省三门峡市卢氏一高(472200)赵建文 Email:zhaojw1968@https://www.doczj.com/doc/bd8276974.html, 线性规划中的整点问题是高中数学线性规划中的重要一类问题,是高中数学的一个难点,本文将整数线性规划问题解法作以简单介绍供同学们学习时参考. 例 某商店计划同时销售某品牌电热水器和太阳能热水器,由于市场需求旺盛,这两种产品供不应求,因该商店根据具体情况(如成本、员工工资)确定产品的月采购量,具体数据如下,问这两种产品各采购多少时,才能使总利润最大?最大利润是多少? 分析:本题是整数规划问题,设采购电热水器x 台、太阳能热水器y 台,列出约束条件和目标函数,用图解法解之. 解析:设月采购电热水器x 台、太阳能热水器y 台,月总利润为z 元,则 1000300030000100050011000 ,x y x y x y N +≤??+≤??∈? ,即330222 ,x y x y x y N +≤??+≤??∈?,目标函数为 z =800600x y + 作出可行域如图所示, 作直线l :86x y +=0, 平移直线z =800600x y +知过M 3638( ,)55时,max z =10320,但x =365,y =385不是整数,所以可行域内点M 3638( ,)55不是整点最优解. 求整点最优解 解法一 网格平移法 首先在可行域内打网格,其次描出M 3638(,)55 附近的所有整点,接着平移直线l :86x y +=0,会发现当移至(8,6)时,直线在y 轴上截距最大,即max z =10000元. 解法二 特值检验法 由图可知目标函数取得最大值的整点应分布在可行域右上侧靠近边界的区域,一次取得满足条件的整点,(0,10),(1,9),(2,9),(3,9)(4,8),(5,8),(6,8),(7,7),(8,6),(8,5),(9,4),(10,2),(10,1),(11,0).将这些点分别代入z =800600x y +,求出各点对应的值,经验证可知,在整点(8,6)处max z =10000元. 解法三 调整最优法 单位产品所需资金 月资金供应量(百元) 电热水器 太阳能热水器 成本 10 30 300 工资 10 5 110 单位利润 8 6

线性规划所有类型总结(很全的)

线性规划,想说懂你很容易 线性规划是近两年高考的必考内容。学习简单线性规划的有关知识其最终目的就是运用它们去解决在线性约束条件下目标函数的最值(最大值或最小值)问题。而有关的题型种类较多,变化多样,应用线性规划的思想解题不能完全拘泥于课本中的z=ax+by 的形式,下面就从规划思想出发探讨常见的简单线性规划求最值问题。 1、目标函数形如z=ax+by 型: 例1(2008.全国Ⅱ)设变量x y ,满足约束条件:222y x x y x ?? +??-? ,,.≥≤≥,则 y x z 3-=的最小值是( ) A .2- B .4- C .6- D .8- 解:画出可行域(如图1),由y x z 3-=可得331z x y -=,所以3 z -表示直线 331z x y -=的纵截距,由图可知当直线过点A (-2,2)时,z 的最小值是-8,选 D. 2、目标函数形如a x b y z --=型: 例2(2007.辽宁)已知变量x y ,满足约束条件20170x y x x y -+?? ??+-? ≤,≥,≤, 则 y x 的取值范围是( ) A .]6,59[ B .[)965??-∞+∞ ??? ,, C .(][)36-∞+∞ ,, D .[36], 解:画出可行域(如图2), y x 表示可行域内的点(x,y )与原点连线的斜率,求得A (1,6),C (29 ,25), 且求得K OA =6,K OC =5 9, 所以659≤≤x y ,选A. 3、目标函数形如z=a bx+cy 型: 例3.(2008.北京)若实数x y ,满足1000x y x y x ?-+? +???, ,,≥≥≤则23x y z +=的 最小值是( )A .0 B .1 C D .9 图1 图2 图3

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

高考数学中的线性规划问题的总结分析

线性规划问题的专题研究 新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。 一、08年高考中的线性规划问题的总结分析 1.基本问题 (1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥??+≥??++≤? ,那么2x y -的最大值为( ) A .2 B .1 C .2- D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最 大值,如图所示显然是平行线过A 点时取 最大值,将A 点坐标代入有 max 1Z =,故选择B (2)(08年福建文) 已知实数x 、y 满足1,1,y y x ≤???≥-?? 则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示 当平行线过点()2,1B 时,2x y + 区的最大值为4

(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须 满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是 (A)80 (B) 85 (C) 90 (D)95 解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为 51122,239,211, ,x y x y x x N y N -≥-??+≥??≤??∈∈?,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点 故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。 (4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是 (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为

线性规划知识总结

线性规划知识总结 1. 二元一次不等式(组)表示的平面区域 (1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。 (2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。 注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。 2. 线性规划 我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问题的基本步骤是: (1)确定好线性约束条件,准确画出可行域。 (2)对目标函数z =ax +by ,若b >0,则 b z 取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。 (3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。 (4)注意实际问题中的特殊要求。 说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得; 2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。 知识点一:二元一次不等式(组)表示的平面区域 例1:基础题 1. 不等式组201202 y x x y -->?? ?-+≤??表示的平面区域是 ( ) A B C D 2. 如图,不等式组50 03x y x y x -+≥?? +≥??≤? 表示的平面区域面积是 ________________。

高考中含参数线性规划问题专题(学生版)

高考中含参数线性规划问题专题(学生版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考中线性规划专题 纵观近几年高考试题,线性规划问题是每年的必考内容。题型多以选择题、填空题出现,它是直线方程在解决实际问题中的运用,特别是含参数线性规划问题,与数学中的其它知识结合较多,题目灵活多变,要引起高度重视. 近三年全国卷是这样考 1.(2015·新课标全国卷Ⅰ理科·T15)若x,y 满足约束条件?? ? ??≤-+≤-≥-0400 1y x y x x 则y x 的最 大值为 . 2.(2015·新课标全国卷Ⅰ文科·T15)若x,y 满足约束条件20210220x y x y x y +-≤?? -+≤??-+≥?则 z=3x+y 的最大值为 . 3.(2015·新课标全国卷Ⅱ理科·T14)若x,y 满足约束条件则z=x+y 的最大值为 . 4.(2015·新课标全国卷Ⅱ文科·T4)若x,y 满足约束条件50210210x y x y x y +-≤?? --≥??-+≤?则z=2x+y 的最大值为 . 5. (2014·新课标全国卷Ⅱ高考文科数学·T9) 设x,y 满足约束条件1010330x y x y x y +-≥?? --≤??-+≥? 则 z=x+2y 的最大值为( ) A.8 B.7 C.2 D.1

6. (2014·新课标全国卷Ⅱ高考理科数学·T9)设x,y 满足约束条件70310350x y x y x y +-≤?? -+≤??--≥? 则 z=2x-y 的最大值为 ( ) A.10 B.8 C.3 D.2 7.(2013·新课标全国Ⅱ高考理科·T9)已知a>0,x,y 满足约束条件 ()133x x y y a x ?≥? +≤??≥-? 若z=2x+y 的最小值为1,则a= ( ) A.14 B. 1 2 C.1 D.2 8.(2013·新课标全国Ⅱ高考文科·T3)设,x y 满足约束条件 10,10,3,x y x y x -+≥?? +-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 9.(2013·新课标Ⅰ高考文科·T14)设x ,y 满足约束条件 ? ? ?≤-≤-≤≤013 1y x x ,则y x z -=2的最大值为______. 10. (2013·大纲版全国卷高考文科·T15)若x y 、满足约束条件 0,34,34,x x y x y ≥?? +≥??+≤? 则z x y =-+的最小值为 . 11.(2013·大纲版全国卷高考理科·T15)记不等式组0,34,34,x x y x y ≥?? +≥??+≤? 所表 示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划习题

第一章 线性规划习题 1. 将下列线性规划问题变换成标准型,并列出初始单纯形表。 1) min Z =-3x 1+4x 2-2x 3+5x 4 s.t.???????≥≥+-+-≤-++-=-+-. ,0,,22321432244321432143214321无约束x x x x x x x x x x x x x x x x 2) max S =z x /p k s.t.???? ????? ==≥=-=-=∑∑∑===).,...,2,1;,...,2,1(0),,...,2,1(1, 1 11 m k n i x n i x x a z ik m k ik n i m k ik ik k 2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题: min Z =2x 1+3x 2+x 3 s.t.??? ??≥≥+≥++.0,,,623,8243 212 1321x x x x x x x x 并指出该问题的解属哪一类解。 3. 【表1-6】是某求极大化线性规划问题计算得到单纯形表。表中无人工变量, a 1, a 2, a 3, d , c 1, c 2为待定常数。试说明这些常数分别取何值时,以下结论成立。 1) 表中解为唯一最优解; 2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解; 4) 表中解非最优,为对解进行改进,换入变量为x 1,换出变量为x 6。 表1-6 4. 某饲料厂用原料A 、B 、C 加工成三种不同牌号的饲料甲、乙、丙。已知各 种牌号饲料中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号的饲料的单位加工费及售价如【表1-7】所示。 表1-7

相关主题
文本预览
相关文档 最新文档