当前位置:文档之家› 基带传输码型研究

基带传输码型研究

基带传输码型研究
基带传输码型研究

学号:20105044034

学院物理电子工程学院

专业电子科学与技术专业

年级2010级

姓名乔红玉

论文题目基带传输码型研究

指导教师郭建涛职称副教授

成绩

2012 年5 月30日

目录

摘要: (1)

Abstract (1)

1 引言 (1)

2 数字基带传输系统 (2)

2.1 数字基带传输概念及研究意义 (2)

2.2 数字基带传输系统 (2)

3 基带传输码型研究 (3)

3.1 码型的基本概念 (3)

3.2 码型问题的提出 (4)

3.3 对基带传输码型的要求 (4)

3.4 基带传输常用码型 (5)

3.5 码间干扰与扰码技术 (7)

4 结论 (9)

参考文献: (10)

致谢 (10)

基带传输码型研究

学生姓名:乔红玉学号:20105044034

学院:物理电子工程学院专业:电子科学与技术

指导老师:郭建涛职称:副教授

摘要:数字通信是信息经编码变换处理后,以数字信号在信道上传输的,较之于模拟通信有很大的优点。数字通信有基带传输和频带传输两种方式,而基带传输系统在数字通信中有重要的代表性。在实际的基带传输系统中,并不是所有类型的基带电波形都能在信道中传输,因此,基带传输的传输码型变换是传输过程的重要环节,因此对于传输码型的设计有一定的要求。了解常用码型及存在的误码原因,对传输码型进行初步的研究。本文主要对数字基带传输系统码型进行了探讨。

关键词:数字基带传输系统;基带传输码型;码型初步研究

Baseband Transmission Code pattern Research Abstract:digital communication is the information the encoded transform after processing, with digital signal transmitted on in the channel, during the simulation of communication has a lot of advantages. Digital communication have baseband transmission and frequency transmission two ways, and baseband transmission system in digital communication has an important representative. In the actual baseband transmission system, and not all types of baseband electric wave can in the channel transmission, therefore, the transmission code pattern transform baseband transmission is the important link of the transmission process, the design of the code pattern for transmission have requirement. Understand code pattern commonly used and the existing error causes of transmission code pattern preliminarily studied. This paper mainly to the digital baseband code pattern transmission system is discussed.

Keywords: digital baseband transmission system;code pattern preliminary research;code pattern baseband transmission

1 引言

按传输信号是模拟信号还是数字信号,分为模拟通信系统和数字通信系统;按传输信号是基带信号还是频带信号,分为基带通信系统和频带(调制)通信系统;如果传输的是数字信号,同时也是基带信号,则称这种系统为“数字基带通信系统”。实际的例子有:USB通信、RS232串口通信、局域网通信等等,主要用于近距离有线通信[7]。

在研究基带传输的同时,对传输码型的研究也是必不可少的。常用的传输码有单极性非归零码、双极性非归零码、单极性归零码、双极性归零码、差分码、数字双相码、传号反转编码(CMI码)、密勒码、传号交替反转码、三阶高密度双极性码等。在传输过程中码型变换时,易产生误码现象,导致信号输出错误。因此对码型的研究更显得尤为重要。

2 数字基带传输系统

2.1 数字基带传输概念及研究意义

1. 概念

原始信号所固有的基本频带称为基带。未经调制等频率变换处理的原始数据信号称为基带信号。在数据通信中直接传输基带信号的方式称为基带传输。计算机、电传机等数字设备输出的二进制序列代码,PCM或ΔM方式输出的码组等等都是数字基带信号。由于数字基带信号往往包含丰富的低频分量,甚至直流分量,因此适合于在具有低通特性的有线信道中近距离直接传输,我们称之为数字基带传输。用来传输数字基带信号的通信系统称为数字基带传输系统[5]。2. 研究意义

在利用双绞线电缆构成的近程数据通信系统中广泛采用了数字基带传输方式;数字基带传输中包含频带传输的许多基本问题,也就是说,基带传输系统的许多问题也是频带传输系统必须考虑的问题;任何一个采用线性调制的频带传输系统可等效为基带传输系统来研究。

2.2 数字基带传输系统

基带传输系统的基本结构如下图1所示。它主要由信道信号形成器、信道、接收滤波器和采样判决器组成。为了保证系统可靠有序地工作,还应有同步机制。

图1 传输系统基本结构

脉冲形成器:由于传输系统输入端通常是码元速率Rb 码元宽度Tb 的二进制脉序列(dk),由于这种单极性码含有直流和低频成分,而一般有线信道低频特性比较差,很难传输零频率附近的分量,因而单极性码不太适合在信道中直接传输,需用脉冲形成器形成适合于信道传输中的各种码型,如双极性码。

发送滤波器:脉冲形成器输出的码型是以矩形脉冲为基础的,这种码型占有频带宽(含高频分量),为了更适合信道传输等要求,用传输函数HT(w)的发送滤波器使之变成平滑的波形。

信道:信道是允许基带信号通过的介质,通常为有线信道, 如市话电缆、架空明线等。

接收滤波器:传输函数为HR(w)接收滤波器的主要作用是滤除带外噪声,均衡信道特性,使输出的基带波形有利于采样判决。

抽样判决器和码元再生器:抽样判决器是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,然后由码元再生电路实现码型反变换,以恢复或再生基带信号。

定时脉冲和同步提取电路:抽样判决器在信道特性不理想及有噪声干扰的情况下,正确恢复出原来的基带信号,须同步提取电路完成从接收滤波器的输出信号中提取定时脉冲,从而保证收发两端的码元一一对应实现同步[1]。

3 基带传输码型研究

3.1 码型的基本概念

码型~数字基带信号可以以不同形式的电脉冲出现,电脉冲的存在形式称为码型。

码型编码~通常把数字信号的电脉冲表示过程称为码型编码或码型变换,由

脉冲形成器 输

入 信道

接收 滤波器 S(t) e(t) 输出

噪声n(t) 抽样 判决器 同步提取 电路

发送滤波器 码元再生器 定时脉冲

码型还原为原来数字信号的过程称为码型译码。

线路传输码型~在有线信道中传输的数字基带信号又称为线路传输码型。3.2 码型问题的提出

在任何通信系统中,由于信号传输的距离产生了人们感到最头痛的问题——尽管所有通信设备均正常工作,但由于信道特性不理想及噪声干扰引起数据丢失、误码和同步失控。为解决这些问题,在通信系统设计中除了采用容错技术、改善信道特性及其它相应措施外,根据信道特性、传输速率及使用环境,选择适当的码形也是十分重要的一环。码形选择得好,不仅可以使系统易实现,更重要的是可尽量减小信道特性及嗓声干扰带来的甚至用其它措施也难以解决的数据丢失、误码及同步失控[2]。

3.3 对基带传输码型的要求

○1传输码型的功率谱中应不含直流分量,同时低频分量要尽量少:满足这种要求的原因是PCM端机、再生中继器与电缆线路相互连接时,需要安装变量器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。

○2传输码型的功率谱中高频分量应尽量少:这是因为一条电缆中包含有许多线对,线对间由于电磁感应会引起串音,且这种串音随频率的升高而加剧。

○3便于定时时钟的提取:传输码型功率谱中应含有定时钟信息,以便再生中继器或接收端能提取必需的定时钟信息。

○4传输码型应具有一定的检测误码能力:数字信号在信道中传输时,由于各种因素的影响,有可能产生误码,若传输码型有一定的规律性,那么就可根据这一规律性来检测是否有误码,即做到自动监测,以保证传输质量。

○5对信源统计依赖性最小:信道上传输的基带传输码型应具有对信源统计依赖最小的特性,即对信源经信源编码后,直接转换的数字信号的类型不应有任何限制(例如“1”和“0”出现的概率及连“0”多少等)。

○6要求码型变换设备简单、易于实现;由信息源直接转换的数字信号不适合于直接在电缆信道中传输,需经码型变换设备转换成适合于传输的码型,要求码型变换设备要简单、易于实现[5]。

3.4 基带传输常用码型

在实际的基带传输系统中,并不是所有代码的电波形都能在信道中传输。例如:含有直流分量和较丰富低频分量的单极性基带波形就不适宜在低频传输特性差的信道中传输,因为它有可能造成信号严重畸变。又如,当消息代码中包含长串的连续1或0时,非归零波形呈现出连续的固定电平,因而无法获取定时信息。

对常用码型[5]的分类,如下图二所示:

图2 常用码型 1.单极性非归零码

常记作NRZ 。在二元码中用高电平A 和低电平(常为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。

特点:○

1有直流分量○2连“0”或连“1”时不能直接提取位同步信息○3在信道上占用频带较窄○4发送能量大,利于提高收端信噪比○5对信道特性变化比较敏感。

2.双极性非归零码

在二元码中用正电平和负电平分别表示“1”和“0”。整个码元期间电平保持不变。在这种码型中不存在零电平。

特点:○1当“1”和“0”数目各占一半时无直流分量, 但当“1”和“0”出现概率不

相等时,仍有直流成份。○

2可在电缆等无接地线上传输。○3连“0”或连“1”时仍不能直接提取位同步信息。○

4对信道特性变化不敏感。 3.单极性归零码5

二元码

单极性非归零

双极性非归零

单极性归零码

差分码(相对码)

数字双相码

传号反转码

密勒码

三元码 双极性归零码 传号交替反转码 三阶高密度双极性码

常记作RZ(L)。发送“l”时,在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。它是其它码型提取同步信号需采用的一个过渡码型。以上三种二元码的功率谱中有丰富的低频分量,不能用于基带传输。

4.双极性归零码

与双极性非归零码相似,只是脉冲的宽度小于码元间隔。可方便的变换为单极性归零码提取同步信号,应用比较广泛。

特点:具有双极性不归零码的优点,且可方便的提取位同步信息。

5.差分码

记作NRZI,也称相对码,或不归零交替反转码。在差分码中,“1”、“0”分别用电平跳变或不变来表示。若用电平跳变来表示“1”,则称为传号差分码,记作NRZ(M)。若用电平跳变来表示“0”,则称为空号差分码,记作NRZ (S)。用差分波形传送代码可以消除设备初始状态的影响,特别是在相位调制系统中用于解决载波相位模糊问题。

6.数字双相码

又称为分相码或曼彻斯特码。它用一个周期的方波表示“1”,而用它的反相波形表示“0”。

特点:自含同步时钟,没有直流输出,但编码效率仅为50%。

7.传号反转编码(CMI码)

CMI码与数字双相码类似,也是一种二电平非归零码。编码规则为:“l”用交替的“0 0”和“1 1”两位码组表示,而“0”则固定地用“0 1”表示。

特点:含有丰富的定时信息,具有检错功能。

8.密勒码

又称延迟调制,它是数字双相码的一种变型。在密勒码中,“1”用码元周期中点处出现跳变来表示,而对于“0”则有两种情况:当出现单个“0”时,在码元周期内不出现跳变;但若遇到连“0”时,则在前一个“0”结束(也就是后一个“0”开始)时出现电平跳变。

9.传号交替反转码

是AMI码的全称。编码规则:将消息代码“0”(空号)仍变换为传输码的0;将消息代码“1” (传号) 交替地变换为传输码的+1、-1、+1、-1、…。

特点:由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。因此,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

码型具有一定检错能力;若接收端收到的码元极性与发送端完全相反, 也能正确判决。但是,AMI 码有一个重要缺点,即当它用来获取定时信息时,由于它可能出现长的连的连0串,因而会造成提取定时信号的困难。

10.三阶高密度双极性码

又记作HDB3码,无直流分量,占用频带窄,解决了AMI 码长连零位同步的提取问题,是目前较为广泛采用的码型之一。但编译码电路较复杂。

编码规则:○

1先把消息代码变换成AMI 码,当没有≥4个连0串时,结束编码,○2当出现4个以上连0串时,则将第4个0变换成与其前一非0符号同极性

的符号,称为破坏脉冲V (即+1记为+V ,-1记为-V)。○

3当相邻V 符号之间有奇数个非0符号时,结束编码,○

4当有偶数个非0符号时,将该小段的第1个0变换成+B 或-B ,B 符号的极性与前一非0符号的相反,并让后面的非0符号从V 符号开始再交替变化。

特点:○

1和AMI 码的大多数特点相同,无直流且低频少。○2连0串不超过3个,便于提取定时分量。○

3编码复杂,解码设备简单。

图3 传输码型的波形

3.5 码间干扰与扰码技术

10100110

+E

(a )+E

-E 110011+E

0101011(b )(c )+E -E 1010011

(d )

+E -E

1100011+E -E +3E -3E

0100111001110001(e )

( f )0单极性(不归零)码

双极性(不归零)码

单极性归零码

双极性归零码 差分码 多元码

1. 码间干扰

码间干扰又称码间串扰。产生码间串扰即误码的原因:一是信道加性噪声;二是传输总特性(包括收、发滤波器和信道的特性)不理想引起的波形延迟、展宽、拖尾等畸变,使码元之间相互串扰。此时,实际抽样判决值不仅有本码元的值,还有其他码元在该码元抽样时刻的串扰值及噪声。显然,接收端能否正确恢复信息,在于能否有效地抑制噪声和减小码间串扰。

图4 码间干扰

码间干扰原因及后果:系统传输总特性不理想,导致前后码元的波形畸变并使前面波形出现很长的拖尾,从而对当前码元的判决造成干扰[4]。

码间干扰严重时,会造成错误判决,如下图四所示:

图5 错误判决

消除码间干扰的基本思想:自行抵消,由于a n 是随机数据不可能抵消。相邻码元的前一个码元的波形到达后一个码元抽样判决时刻已经衰减到0,能满足

S

T

要求但不易实现。只要让它在后面码元抽样判决时刻上正好为0,就能消除码间干扰这就需要对h(t)的波形提出要求。利用奎纳斯特第一准则,使BW=fc=Rb/2=1/2T,这时其它码元的拖尾振幅在某一码元响应最大值处为零。

减少码间干扰方法:利用实验手段方便地估计和改善(通过调整)系统性能时在示波器上观察到的眼图,可以定性了解码间串扰的大小和噪音的大小。在基带系统中插入一个可调(或不可调)滤波器可以校正或补偿系统特性,减少码间串扰的影响,即起补偿作用的均衡器。在高速数据传输中得以广泛应用[6]。

图6 无码间干扰需满足的h(t)波形

2. 扰码技术

替换可能导致线路上产生恒定电平的比特序列,填入足够多的跳变,以满足接受器时钟保持同步的需要。接收器必须能识别。

优点:○1没有直流成分○2没有较长的零电平线路信号序列○3提供定时同步○4不会增加数据率○5可提供差错检测能力[3]。

4 结论

数字通信系统具有抗噪声性能好,传输质量高,便于保密等一系列优点而得到迅速的发展。数字通信系统有基带传输和频带传输两种传输方式。基带数字信号的传输在有线通信系统中得到了广泛的应用,在无线通信系统中也有一定的作用,USB通信、RS232串口通信、蓝牙协议、局域网通信等等。基带传输过程中传输码型变换是传输过程的重要环节,因此有必要对基带数字传输中产生的误码进行分析,进一步对传输码型进行研究。

参考文献:

[1]凌云志,陈向民. 数字基带传输系统的研究与设计[J]. 国外电子测量技术,

2008,13(9): 84-86

[2]姚闵. 基带传输信号的码型问题初探[J]. 计算机应用, 1986,4(05):77-78.

[3]卢晓东. 基于数字基带传输系统的理论研究[J]. 中小企业管理与科技,

2009,2(4):51-52.

[4]李耐根. 数字基带传输系统及其误码分析[J]. 新余高专学报,

2001,5(02):58-59.

[5]樊昌信,曹丽娜. 通讯原理[M]. 北京: 国防工业出版社, 2006.

[6]刘小群. 数字基带传输中码间干扰如何消除问题[J]. 黑龙江科技信息,

2008,7(10):18-20.

[7]曹志刚,钱亚生.现代通信原理[M]. 北京: 清华大学出版社,1992.

致谢

衷心感谢我的指导教师郭建涛老师,本设计是在他的悉心关怀和精心指导下完成的。感谢图书馆为我提供了丰富的资料,同时感谢朋友们在我搜集论文资料期间给我的很多帮助以及很多宝贵意见。在老师,同学及朋友的帮助下,经过不断的努力,我完成了本次设计,再次感谢他们!

数字基带信号

数字基带信号 通信系统2007-09-24 16:40:29 阅读1500 评论3 字号:大中小订阅 一,数字基带信号 1.数字基带信号 所谓数字基带信号,就是消息代码的电波形。数字基带信号的类型很多,本节以由矩形脉冲构成的基带信号为例,主要研究这些基带信号的时域波形、频谱波形以及功率谱密度波形。 单极性不归零信号: 设消息代码由二进制符号0、1组成,则单极性不归零信号的时域波形如图5-2-1所示,其中基带信号的0电位对应于二进制符号0;正电位对应于二进制符号1。单极性不归零信号在一个码元时间内,不是有电压(或电流),就是无电压(或电流),电脉冲之间没有间隔,不易区分识别,归零码可以改善这种情况。单极性不归零信号的频域波形和功率谱密度波形分别如图所示。 (1) 时域波形 单极性不归零信号的时域波形 (2) 频谱波形 单极性不归零信号的频谱图 (3) 功率谱密度波形

单极性不归零信号的功率谱密度 单极性归零信号: 设消息代码由二进制符号0、1组成,则单极性归零信号的时域波形如图5-2-4所示,发"1"码时对应于正电位,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲,当发"0"码时,仍然完全不发送电流,所以称这种信号为单极性归零信号。单极性归零信号的频域波形和功率谱密度波形分别如图5-2-5、图5-2-6 所示。 (1) 时域波形 单极性归零信号的时域波形 (2) 频谱波形 单极性归零信号的频谱图 (3) 功率谱密度波形

单极性归零信号的功率谱密度 双极性不归零信号: 设消息代码由二进制符号0、1组成,则双极性不归零信号的时域波形如图5-2-7所示,其中基带信号的负电位对应于二进制符号0;正电位对应于二进制符号1。双极性不归零信号的频域波形和功率谱密度 波形分别如图所示。 (1) 时域波形 双极性不归零信号的时域波形 (2) 频谱波形 双极性不归零信号的频谱图 (3) 功率谱密度波形

数字基带传输系统仿真实验

数字基带传输系统仿真实验 一、系统框图 一个数字通信系统的模型可由下图表示: 信源信道数字信源编码器调制器编码器 数字信源噪声信道 信道数字信源信宿译码器解调器译码器 数字信宿编码信道 数字通信系统模型 从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。 在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。称为基带传输系统。与之对应,把包括了载波调制和解调过程的传输系统称为频带传输系统。无论是基带传输还是频带传输,基带信号处理是必须的组成部分。因此掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。 二、编程原理 1. 带限信道的基带系统模型(连续域分析) X(t) y(t) {}a, 输入符号序列―― l L,1

dtatlT()(),,,T, 发送信号―― ――比特周期,二进制,lbbl,0 码元周期 ,jft2,, 发送滤波器―― G(),或Gf()或gtGfedf()(), TT,TT,, , 发送滤波器输出―― L,1 xtdtgtatlTgt()()*()()*(),,,,,TlbTl,0 L,1 =()agtlT,,lTsl,0 , 信道输出信号或接收滤波器输入信号 (信道特性为1) ytxtnt()()(),, ,jft2,G(),Gf()gtGfedf()(),, 接收滤波器―― 或或 RR,RR,, , 接收滤波器的输出信号 rtytgtdtgtgtntgt()()*()()*()*()()*(),,,RTRR ,1L ()(),,,agtlTnt,lbR,0l ,jft2,gtGfCfGfedf()()()(), 其中 ,TR,, (画出眼图) lTlL,,, 01, 如果位同步理想,则抽样时刻为 b rlTlL() 01,,,, 抽样点数值为 (画出星座图) b ,{}a, 判决为 l 2. 升余弦滚降滤波器 (1),,,Tf,||,s,T2s, ,TT1(1)(1),,,,,,,,,ss Hfff()1cos(||),||,,,,,,,,TTT2222,,,ss,

基带传输技术

上次课回顾 非导向性媒体→ 无线电波→ 不同波段无线电波的作用及传播方式 无线传播模型: → 自由空间传播模型→ 信号衰减与距离的平方成正比 → 双线地面反射模型→ 信号衰减与距离的四次发成正比,并与天 线的高度有关 多径效应→ 频率选择性衰弱 多普勒效应+ 多径效应→ 多普勒扩展→ 时间选择性衰落 阴影衰落 分集接收 7

2.4 基带传输技术 2.4.1 基带传输的常用码型 在采用无线基带传输时,信号无需载波调制而直接被发射出去。送 入信道的数字基带信号的码型应该符合以下一些要求: ?传输码型应不含直流分量; ?可以从基带信号中提取位同步信号; ?基带编码最好能够具有内在检错能力; ?码型变换过程应具有透明性,即与信源的统计特性无关; ?应尽量减少基带信号频谱中的高频分量,以节省传输频带,提 高信道的频谱利用率,并减少串扰。 8

2.4 基带传输技术 2.4.1 基带传输的常用码型 AMI(Alternative Mark Inversion)码 原信息码的“0”编为传输码的“0”;原信息码的“1”,在编为 传输码时,交替的用“+1”和“-1”表示。 例: 消息代码:1 0 1 0 1 0 0 0 1 0 1 1 1” AMI码:+1 0 -1 0 +1 0 0 0 -1 0 +1 -1 +1” 评价: ?AMI码所确定的基带信号无直流分量 ?但当信息代码中出现长零串时,信道中会出现长时间的0电位, 而影响定时信号的提取。 9

2.4 基带传输技术 2.4.1 基带传输的常用码型 HDB3(High Density Bipolar of order 3 code)码 ?先检查消息代码的连“0”个数,当连“0”个数少于4个时,仍按 AMI码规则进行编码; ?消息代码的连“0”个数达到或超过4个时,则将每个4连“0”小 段的第4个“0”变换成非“0”符号(+1或-1),这个符号称为破 坏符号,用V符号表示,记作“+V”或“-V”。 ?V码的极性应与其前一个非“0”符号极性相同,同时满足V码的 极性必须交替出现。否则,将4连“0”小段的第1个“0”变换成 “+B”或“-B”,称为恢复码或平衡码。B符号的极性应与其前 一个非“0”符号极性相反。

通信原理报告 数字基带信号HDB3码型编码转换实现

通信原理课程设计报告 题目:数字基带信号HDB3码型编码转换实现 专业班级: 姓名: 学号: 指导教师:

设计任务要求: 仿真实现数字基带通信系统信源输入24位二进制序列产生HDB3码,通过高斯白噪声信道,接收端滤波、解码的时域图及频谱图。以矩形波为例,要求实现输入24位二进制序列产生AMI码,HDB3码,接收端滤波、解码上述码型。

摘要 HDB3码全称三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。HDB3码实行转换一般分为三个步骤,先将消息码转换AMI码然后加“V”,接着加“B”,这几部我们可以使用C语言进行编程实现。为了实现HDB3码的编码与转换,同时加深对通信系统工作原理的了解,我们采用了MATLAB软件进行编码仿真,同时学习掌握MATLAB软件的基础使用。 关键词:AMI码;HDB3码;编码;解码;MATLAB;仿真

目录 1. 设计原理 (4) 1.1 HDB3码的介绍 (4) 1.2 HDB3码的编码转换规则 (5) 1.3 HDB3码的解码转换规则 (5) 1.4 HDB3码的软件程序设计 (6) 2. MATLAB软件仿真结果及其分析 (10) 2.1 MATLAB软件的介绍 (10) 2.2 仿真结果图示 (12) 2.3 仿真结果分析 (15) 3. 设计总结及心得体会 (22) 4. 参考文献 (22) 5. 致谢 (23)

正文 1.设计原理 1.1 HDB3码的介绍 HDB3码即三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,“三阶”通俗讲就是最多3个连0码元,“高密度双极性”就是没有直流分量,不会连续出现+1或-1,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。 三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的"0"位元取代成"000V"或"B00V"。这个做法可以确保连续的相隔单数的一般B记号。 1.2 HDB3的编码转换规则 HDB3码的编码规则主要分为3步: 1 .先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI 码就是HDB3码; 2 .若AMI码中连0的个数大于等于4,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号,用表示(+V,-V);

通信原理实验--数字基带传输仿真实验

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

通信原理第四章(数字基带传输系统)习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12) () s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ =-∞ = =-+--=-+ --=-+-? ∑ ?∑ ?? ∑ ? ----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

基于GUI的数字基带传输码型仿真—采用Miller码CMI码双极性归零码双极性不归零码

基于G U I的数字基带传输码型仿真—采用 M i l l e r码C M I码双极性归零码双极性不归零 码 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

《通信原理》 CDIO项目设计总结报告 项目名称:基于GUI的数字基带传输码型仿真—采用 Miller码、CMI码、双极性归零码、双极性不 归零码 班级:班 学号: 姓名: 年月日

目录目录

1.项目目的与要求 项目目的 1.对数字基带传输系统主要原理和技术进行研究,包括基带传输的常用码型Miller码、CMI码、双极性归零码、双极性不归零码。 2.建立数字基带传输系统数学模型。 3.利用Matlab编写基于GUI的数字基带传输码型程序。 4.对系统进行仿真、分析。 5.观察并记录信息码波形和传输码的波形,并进行分析。 项目要求 1.建立数字基带传输系统数学模型。 2.利用Matlab编写基于GUI的数字基带传输码型程序。 3.对通信系统进行时间流上的仿真,得到仿真结果。 4.将仿真结果与理论结果进行比较、分析。 2.项目设计 项目分析 数字基带传输系统 基带传输系统的基本组成如下图所示,它主要由信道信号形成器、信道、接受滤波器和抽样判决器。

其中各部分的作用如下: 脉冲形成器:基带传输系统的输入是由终端设备或编码器产生的脉冲序列,脉冲形成器的作用就是形成适合信道传输的基带信号,主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。 信道:它是允许基带信号通过的煤质。信道的传输特性通常不满足无失真传输条件,另外信道还会进入噪声。 接受滤波器:它的主要作用是滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 抽样判决器:它是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接受滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 miller码 密勒码又称为延迟调制码,是双相码的一种变形。编码规则如下:“1”码用码元间隔中心点出现越变来表示,即用10或01表示。“0”码有两种情况:对原始符号“0”则分成单个“0”还是连续“0”予以不同处理,单个“0”时,在码元边界处电平不跃变,在码元中间点电平也不跃变;对于连续“0”,则使连续两个“0”的边界处发生电平跃变,即“00”与“11”交替。

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

通信原理实验报告二基带传输常用码的编码解码方法

实验二基带传输常用码的编码解码方法 一、实验目的 了解基带传输常用码的编码解码方法。 二、实验内容 设定一个信息码串,产生常见的编码如单极性非归零、双极性非归零、单极性归零、双极性归零、AMI、HDB3码的时域波形;不考虑噪声影响,以采样电平为依据恢复出原始信息串。 三、实验原理 1、单极性非归零。它用正电平和零电平分别对应二进制码“1”和“0”,波形特点是电脉冲之间无间隔,极性单一。 2.双极性非归零。用正负电平的脉冲分别代表二进制代码“1”和“0”。其正负电平的幅度相等、极性相反。 3.单极性归零。是单极性非归零波形的形式。 4.双极性归零。是双极性非归零波形的形式,兼有双极性和归零波形的特点。 5.AMI。全称是传号交替反转码,其编码规则是将消息码的“1”交替的变换为“+1”和“-1”,而“0”保持不变。 6.HDB3。全称是三阶高密度双极性码。编码规则是: 1)检查消息码中“0”的个数。当连“0”数目小于等于3时,HDB3码与AMI码一样,+1、-1交替; 2)当连“0”个数超过3时,将每四个连“0”化作一小节,定义为B00V,称为破坏节,其中V称为破坏脉冲,而B称为调节脉冲;

3)V与前一个相邻的非“0”脉冲的极性相同,并且要求相邻的V码之间极性必须交替。V的取值为+1或-1; 4)B的取值可选0、+1或-1,以使V同时满足(3)中的两个要求;5)V码后面的传号码极性也要交替。 译码:从收到的符号序列中可以很容易的找到破坏点V,就可以断定V符号及前面的三个符号必须是连“0”符号,从而恢复四个连“0”码,再将所有-1变成+1后便得到原消息代码。 四、实验内容 (一)单极性非归零、双极性非归零、单极性归零、双极性归零时域波形。 实验代码: M=10000; %产生码元数 L=10; %每码元复制32次 dt=0.1; %采样间隔 T=L*dt; %码元时间 TotalT=M*T; %总时间 t=0:dt:TotalT; %时间 F=1/dt; %仿真频宽 df=1/T otalT; %频率间隔 f=-F/2:df:F/2-df; %频率 N=M*L; %总长度 ShowM=16; %显示码元数 ShowN=ShowM*L; ShowT=(ShowN-1)*dt; Showt=0:dt:ShowT; %时间 dutyradio=0.5; %占空比 randwave=round(rand(1,M)); %产生二进制随机码,M为码元个数 randwave(1:16)=[1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0]; onessample=ones(1,L); %定义复制的次数L,L为每码元的采样点数rerandwave=randwave(onessample,:); %复制的第1行复制L次 unipolarwave=reshape(rerandwave,1,L*M); %重排成1*L*M数组 %单极性不归零码 subplot(4,1,1);plot(Showt,unipolarwave(1:ShowN));axis([0 20 -1.2 1.2]);

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

通信原理报告数字基带信号HDB3码型编码转换实现

通信原理课程设计报告题目:数字基带信号HDB3码型编码转换实现 专业班级: 姓名: 学号:

指导教师: 设计任务要求: 仿真实现数字基带通信系统信源输入24位二进制序列产生HDB3码,通过高斯白噪声信道,接收端滤波、解码的时域图及频谱图。以矩形波为例,要现输入24位二进制序列产生AMI码,HDB3码,接收端滤波、解码上述码型。

摘要 HDB3码全称三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编

码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。HDB3码实行转换一般分为三个步骤,先将消息码转换AMI码然后加“V”,接着加“B”,这几部我们可以使用C语言进行编程实现。为了实现HDB3码的编码与转换,同时加深对通信系统工作原理的了解,我们采用了MATLAB软件进行编码仿真,同时学习掌握MATLAB软件的基础使用。 关键词:AMI码;HDB3码;编码;解码;MATLAB;仿真 目录 1. 设计原理 (4) 1.1 HDB3码的介绍 (4)

1.2 HDB3码的编码转换规则 (5) 1.3 HDB3码的解码转换规则 (5) 1.4 HDB3码的软件程序设计 (6) 2. MATLAB软件仿真结果及其分析 (10) 2.1 MATLAB软件的介绍 (10) 2.2 仿真结果图示 (12) 2.3 仿真结果分析 (15) 3. 设计总结及心得体会 (22) 4. 参考文献 (22) 5. 致 (23)

正文 1.设计原理 1.1 HDB3码的介绍 HDB3码即三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,“三阶”通俗讲就是最多3个连0码元,“高密度双极性”就是没有直流分量,不会连续出现+1或-1,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。 三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的"0"位元取代成"000V"或"B00V"。这个做法可以确保连续的相隔单数的一般B记号。 1.2 HDB3的编码转换规则 HDB3码的编码规则主要分为3步: 1 .先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI 码就是HDB3码;

通信原理------数字基带传输实验报告

基带传输系统实验报告 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习matlab的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观察眼图和星座图判断信号的传输质量。 二、实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带传输系统模型如下:

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率Fo为 4 /Ts,滚降系数分别取为、、1,

数字基带传输常用码型的MATLAB表示

数字基带传输常用码型的MATLA表示 在某些具有低通特性的有线信道中,特别是传输距离较近的情况下,数字基带信号不经调制可以直接传输,这种系统称为数字基带系统。而具有调制解调过程的数字系统称为数字带通传输系统。在第七章中,将列举数字带通传输系统仿真的例子,在本章中,我们重点讨论数字基带常用码型的产生,即数字基带信号的产生。教材中,我们以单极性不归零码和单极性不归零码的实现作为参考。 单极性不归零码MATLA程序如下: function y=snrz(x) % 本函数实现输入二进制码,输出编号的单极性非归零码 % 输入x 为二进制码,输出y 为单极性非归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num; y((i-1)*num+j)=1; % 对应的点赋值为1 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y 序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title(' 单极性非归零码1 0 0 1 0 1'); % 绘图 在MATLA命令行窗口中键入x的值,并调用函数snrz(x),就可以得到对应的单极性不归零码。如输入以下指令,将出现图 1 所示的结果。

单极性不归零码MATLA 程序如下: fun ctio n y=srz(x) %本函数实现输入二进制码,输出编号的单极性归零码 %输入x 为二进制码,输出y 为单极性归零码 plot(t,y); grid on; axis([0 i -0.2 1.2]); title(' 单极性非归零码 1 0 0 1 0 1'); num=200; %单极性非归零码每 t=0:1/num:le ngth(x); for i=1:le ngth(x); if x(i)==1; for j=1: nu m/2; y((i*2-2)* num/2+j)=1; % y((i*2-1)*num/2+j)=0; % end else for j=1: num; y((i-1)*num+j)=0; % end end end y=[y,x(i)]; % 个码元包含的点 对1而言,前半部分时间值为1 对1而言,后半部分时间值为0 对应的点赋值为0 为了绘制图形,注意要将 y 序列加最后一位 单极性非归零码1 0 0 1 0 1 图1单极性不归零码

基带传输常用码型及基带信号频谱实验

基带传输常用码型及基带信号频谱实验 一、实验目的 1、熟悉通信基带信号功率谱基本原理 2、熟悉SYSTEMVIEW软件的信号谱分析应用 3、掌握使用SYSTEMVIEW软件生成最常用基带信号与数字双相传输码的基本方法 二、实验原理: 1、数字基带信号的频谱特性 数字基带信号是随机的脉冲序列,只能用功率谱来描述它的频谱特性。研究好数字基带信号的功率谱,就可以了解信号带宽,有无直流分量,有无定时分量。这样才能选择匹配的信道,确定是否可提取定时信号。 经过合理假设下的严格数学推导,可以得到以下主要结论: (1)随机脉冲序列功率谱包括连续谱和离散谱; (2)单极性信号中有无离散谱取决于矩形脉冲的占空比,归零信号中有定时分量。不归零信号中无定时分量。0、1等概的双极性信号没有离散谱,即同时没有直流分量和定时分量。 (3)随机序列的带宽主要依赖单个码元波形的频谱函数G1(f)或G2(f),通常以谱的第一个零点作为矩形脉冲的近似带宽,它等于脉宽τ的倒数。 2、传输系统发射与信道部分的基本结构如图2—1所示。如果系统直接传送基带信号,称之为基带传输系统。 图2—1 在基带传输系统中,系统的输入是数字基带信号,它不一定适合直接在信道中传输。信道信号形成器的作用就是把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。称此信号形成器为数字基带调制器;与此对应的,在接收端将信道基带信号变换成原始数字基带信号,称之为基带解调器。 3、数字基带调制器中的波形变换与码型变换 在数字基带调制器中,波形变换后传输电波形常见的有矩形脉冲、三角波、高斯脉冲和升余弦脉冲波形等。最常用的是矩形脉冲波形,正如我们在前面通原

基带信号常用码型转换

通信原理大作业 用matlab仿真 1.幅频失真 S(t)=sint+1/3sin3t, S’(t)=sint+sin3t; 相频失真 S(t)=sint+1/3sin3t, S’(t)=sin(t+2pi)+1/3sin(3t+3pi). 程序: x=0:pi/20:3*pi; y1=sin(x)+(sin(3*x))/3; y2=sin(x)+sin(3*x); y3=sin(x+2*pi)+(sin(3*x+3*pi))/3; figure(1) plot(x,y1); hold on plot(x,y2,'r-'); legend('S(t)=sint+1/3sin3t','S(t)=sint+sin3t') figure(2) plot(x,y1); hold on plot(x,y3,'r-'); legend('S(t)=sint+1/3sin3t','S(t)=sin(t+2*pi)+1/3sin(3t+3*pi)')

幅频失真 相频失真

2. 将输入的一串0,1编码 1) 转换成AMI 码 2) 转换成HDB3码 3) 转换成双相码 4) 转换成Miller 码 5) 转换成CMI 码 总流程 开始 输入数组 依次显示五种码形 结束 转换成AMI 码 转换成CMI 码 转换成 HDB3 码 转换成双相码 转换成Miller 码

转化成五种码具体流程 思路:数组xn 中0保持不变;并统计1个数,当为偶数1保持不变;当为奇数1变换为-1 1) 转换成AMI 码 no no no 得到数组xn Xn (i )是否=1 num=num+1 num 是否为偶数 得到数组xn 长度k i=1; num=0 yn(i)=xn(i) yn(i)=xn(i) yn(i)= -xn(i) i 是否=k 得到数组yn i=i+1

通信原理实验一 数字基带传输

通信原理实验一 数字基带传输 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理 1.匹配滤波器和非匹配滤波器: 升余弦滚降滤波器频域特性:

将频域转化为时域 2. 最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有 (延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 3.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或 ?接收滤波器的输出信号 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 其中若为最佳基带传输系统,则发送滤波器和接收滤波器都为根升余弦滤波器,当采用非匹配滤波器时,发送滤波器由升余弦滤波器基带特性实现,接收滤波器为直通。 三、实验内容 1.通过匹配滤波和非匹配滤波方式,得到不同的滚降系数下发送滤波器的时域波形和频率特性。 实验程序: (1)非匹配情况下: 升余弦滚降滤波器的模块函数(频域到时域的转换) function [Hf,ht]=f_unmatch(alpha,Ts,N,F0) k=[-(N-1)/2:(N-1)/2]; f=F0/N*k; for i=1:N; if (abs(f(i))<=(1-alpha)/(2*Ts)) Hf(i)=Ts; elseif(abs(f(i))<=(1+alpha)/(2*Ts)) Hf(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts)))); else Hf(i)=0; end; end; 主函数 alpha=input('alpha=');%输入不同的滚降系数值 N=31;%序列长度 Ts=4; F0=1;%抽样频率

数字基带传输常用码型的MATLAB表示

数字基带传输常用码型的MATLAB表示 在某些具有低通特性的有线信道中,特别是传输距离较近的情况下,数字基带信号不经调制可以直接传输,这种系统称为数字基带系统。而具有调制解调过程的数字系统称为数字带通传输系统。在第七章中,将列举数字带通传输系统仿真的例子,在本章中,我们重点讨论数字基带常用码型的产生,即数字基带信号的产生。教材中,我们以单极性不归零码和单极性不归零码的实现作为参考。 单极性不归零码MA TLAB程序如下: function y=snrz(x) % 本函数实现输入二进制码,输出编号的单极性非归零码 % 输入x为二进制码,输出y为单极性非归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num; y((i-1)*num+j)=1; % 对应的点赋值为1 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title('单极性非归零码1 0 0 1 0 1'); % 绘图 在MATLAB命令行窗口中键入x的值,并调用函数snrz(x),就可以得到对应的单极性不归零码。如输入以下指令,将出现图1所示的结果。

单极性非归零码 1 0 0 1 0 1 0123456 图1 单极性不归零码 单极性不归零码MA TLAB程序如下: function y=srz(x) % 本函数实现输入二进制码,输出编号的单极性归零码 % 输入x为二进制码,输出y为单极性归零码 num=200; % 单极性非归零码每一个码元包含的点 t=0:1/num:length(x); for i=1:length(x); if x(i)==1; for j=1:num/2; y((i*2-2)*num/2+j)=1; % 对1而言,前半部分时间值为1 y((i*2-1)*num/2+j)=0; % 对1而言,后半部分时间值为0 end else for j=1:num; y((i-1)*num+j)=0; % 对应的点赋值为0 end end end y=[y,x(i)]; % 为了绘制图形,注意要将y序列加最后一位 plot(t,y); grid on; axis([0 i -0.2 1.2]); title('单极性非归零码1 0 0 1 0 1'); 同上,在MATLAB命令行窗口中键入x的值,并调用函数srz(x),就可以得到对应的单极性归零码。如输入以下指令,将出现图2所示

实验3基带信号的常见码型变换

信息院 14电本 基带信号的常见码型变换实验 一、实验目的 1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒、PST 码型变换原理及工作过程; 2.观察数字基带信号的码型变换测量点波形。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.20M 双踪示波器1台 三、实验工作原理 在实际的基带传输系统中,传输码的结构应具有下列主要特性: 1) 相应的基带信号无直流分量,且低频分量少; 2) 便于从信号中提取定时信息; 3) 信号中高频分量尽量少,以节省传输频带并减少码间串扰; 4) 不受信息源统计特性的影响,即能适应于信息源的变化; 5) 编译码设备要尽可能简单 1.1 单极性不归零码(NRZ 码) 单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。 0000 E +1111 图16-1 单极性不归零码 1.2 双极性不归零码(BNRZ 码) 二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。 10111000E +E -0 图 16-2 双极性不归零码 1.3 单极性归零码(RZ 码) 单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。单极性码可以直接提取定时信息,仍然含有直流成分。

0000 1111E +0 图 16-3 单极性归零码 1.4 双极性归零码(BRZ 码) 它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。 0000 1111E +0E - 图 16-4 双极性归零码 1.5 曼彻斯特码 曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。 例如: 消息代码: 1 1 0 0 1 0 1 1 0… 曼彻斯特码:10 10 01 01 10 01 10 10 01… 曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。 0000 1111E +E -0 图 16-5 曼彻斯特编码 1.6 CMI 码 CMI 码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则: “1”码交替的用“11“和”“00”两位码表示; “0”码固定的用“01”两位码表示。 例如: 消息代码:1 0 1 0 0 1 1 0… CMI 码: 11 01 00 01 01 11 00 01… 或: 00 01 11 01 01 00 11 01…

相关主题
文本预览
相关文档 最新文档