当前位置:文档之家› 克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理
克劳斯硫磺回收技术的基本原理

前言

在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’

H2S + 3/2 O2 = S02 + H2O (1)

2H2S + S02 = 3/X Sx +2H2O (2)

其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应:

CS2 + H2O = COS + H2S (3)

COS + H20 = H2S + C02 (4)

本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述.

1、工艺的发展历程

1.1原始的克劳斯工艺

1883年英国化学家C,F〃C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式:

2NaCl + H2S04 = Na2SO4 + 2HCl (5)

Na2SO4 + 2C = Na2S + 2CO2 (6)

Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8)

反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导,

H2S + 1/2 O2 = 1/X Sx + H2O (9)

如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气体。

为了使产率达到80 ~ 90%,每小时在每体积催化剂上只能处理2~3体

积的H2S气体;为了加快热量散发从而增加处理容量,亦曾试图在窑炉中设臵冷却盘管,使冷的废气循环通过窑炉,结果并不成功,此后尽管又进行了种种尝试,但在二十世纪三十年代以前,该法并没有在工业领域得到推广,其原因是如上所述的那样,将H2S和O2在反应器内直接进行氧化反应,生成的大量反应热无法移出,致使反应器内温度猛升,为了控制反应温度,只得采用相当低的空速,故因生产能力低下而阻碍了该法的工业应用.

1.2 改良克劳斯工艺

克劳斯法早期的一种改型是I〃G〃Claus工艺(1932年),该法经锅炉燃烧一部分H2S,然后使生成的S02再与未反应的H2S化合.由于在燃烧生成S02时已释放出大量的反应热,因而在其后的催化反应中释放的反应热大为减少,不会因超温而造成催化剂破坏,这就是所谓的“分流法”.1938年德国法本公司(I〃G〃Farbenindustrie AG)对克劳斯法工艺作了重大改进,不仅显著地增加了处理量,也提出了一个回收以前浪费掉的能量的途径。其要点是把H2S的氧化分为两个阶段来完成。第一阶段称为热反应阶段,有1/3体积的H2S在蒸汽锅炉内被氧化成为S02,示于反应方程式(1),同时放出大量的反应热以水蒸汽的形式予以回收;第二阶段称为催化反应阶段,即剩余的2/3体积的H2S在催化剂上与生成的S02继续反应而成为元素硫,示于反应方程式(2)。改良克劳斯法的工艺流程见于图2,对照图1和图2可以看出,由于设臵了废热回收设备,炉内反应所释放的热量约有80 % 可以回收,而且催化转化反应器的温度也可以

凭借控制进口过程气的温度加以调节,这样就基本上排除了反应器温度控制难的问题,同时也大幅度提高了装臵的处理量,从而奠定了现代硫磺回收工艺的基础。“直流法”或“部分燃烧法”的问世是克劳斯工艺划时代的重大进展,此后克劳斯法才在工业上得到广泛应用。随着生产发展的需要,改良克劳斯工艺本身又作了不少改进,1938年以后的主要改进是相继增加了更多的催化反应器,同时在各反应器之间除去硫磺和热量,使反应平衡向着更高的硫磺产率方向移动。

1.3现代改良克劳斯工艺

经过半个多世纪的演变,改良克劳斯法在催化剂、设备、材质和流程以及控制方法等各方面经过不断的研究改进,才发展成为今天这样简单可靠、经济有效并得到普遍应用的硫回收方法。根据原料气中H2S的含量不同,现代改良克劳斯工艺大致可以分为三种基本型式,即部分燃烧法、分流法和直接氧化法,无论哪种型式都是由高温反应炉、冷凝器、再热炉和催化转化反应器等一系列容器所组成。这些型式之间的区别是在一级催化

转化反应器前面产生S02的方法不同。在这三种方法的基础上,各自再辅以

诸如预热、补充燃料气等不同的技术措施,又可派生出各种不同变型,其大致情况如表1所示。应予指出,表中所示的划分范围井非十分严格,关

表1各种工艺方法及适用范围

键是反应炉内燃烧H2S所释放的热量必须保证维持稳定的火焰,否则装臵将无法正常运行。

1.3.1部分燃烧法

全部原料气都进入反应炉,而空气的供给量仅够供原料气中1/3体积的H2S燃烧生成S02,从而保证过程气中H2S :S02为2 :l的化学计量分子比要求。反应炉内虽不存在催化剂,但H2S仍能有效地转化为硫蒸汽,其转化率随反应炉的温度和压力不同而异,一般在炉内H2S的转化率可达到60%~75%,其余的硫化合物将继续在催化转化反应器进行如反应(2)、(3)、(4)所示的催化反应。催化转化反应器的操作温度大致控制在比过程气中气态硫的露点温度高20~30℃,二级以后催化转化反应器的H2S转化率约为20~30%,因此部分燃烧法装臵其H2S转化率可以达到90~98%水平。

目前在工业上有几种常用的部分燃烧法工艺流程。图3为外掺合式部分燃烧法的原则工艺流程图。此流程主要特点是从废热锅炉出口处引出一股高温过程气掺合到一级和二级转化反应器的入口气流中,以达到使过程气再热的目的。外掺合式流程的优点是设备简单、平面布局紧凑、温度调节

灵活;缺

点是高温掺合管制作用难,掺合阀腐蚀严重,对总硫转化率有所影响。图

4为内掺合—换热式部分燃烧法的原则工艺流程图。

此流程的主要特点是把掺合管(又称内旁通管)和废热锅炉的炉管组合在一起,掺合过程在废气锅炉的尾部进行,利用掺合管出口阀开度不同来调节一级催化转化反应器的过程气温度,而二级催化转化反应器的入口温度则用自热式换热器来调节。内掺合的原理与外掺合相同,故它们的优、缺点也类似,只是内掺合式更节省占地面积。但是,由于掺合管设臵在废热锅

炉内部,一旦发生意外故障,检修比较困难。图5为酸性气再热炉式部分

燃烧法。此流程的特点是设臵一系列再热炉作为过程气的调温手段。再热

炉以酸性气为燃料,所需空气量仍以进炉酸气中l/3体积的H2S转化为SO2的计算量为准,炉内温度则以进酸气量的多少来控制。至于再热炉,其本身也有多种形式,除酸气再热炉外,常见的还有燃料气再热炉和管式再热炉,前者是以天然气或燃料气为再热炉燃料,把燃烧后的烟气掺入过程气以调节其温度,后者是以管式炉间接加热的方式来调节过程气的温度。

1.3.2分流法

原料气中H2S含量在25~40%(V)范围内推荐使用分流法。该法先将

原料气中1/3体积的H2S送入高温反应炉,配以适量的空气燃烧而全部生成SO2,其过程如反应(1)所示,生成的S02气体与其余2/3的H2S混合后在催化转化反应器内进行低温催化反应。分流法一般都采用两级催化转化,其总硫转化率大致为88 ~ 92 %,适宜规模较小的硫磺回收装臵。图6为掺合—换热式分流法的原则工艺流程图。此流程的特点是把上面所述的掺合与换热两种再热手段分别应用于分流法。

1.3.3直接氧化法

直接氧化法就其实质而言是原始克劳斯法的一种形式。原料气中H2S含量在2~15%(V)范围内推荐使用此法。直接氧化法的特点是不设臵高温反应炉,而是将原料气预热至适当的温度,再与空气加以混合后直接送入催化转化反应器,按反应式(1)和(2)进行低温催化反应,所需配入的空气量仍为l/3体积H2S完成燃烧生成SO2所需的量。图7为直接氧化法的原则工艺流程图。

另外,根据酸性气中是否含有NH3,还可分为不烧NH3流程和烧NH3流程。若NH3体积浓度<2%,推荐采用不烧NH3流程,此时两种酸性气所需全部空

气量都进入酸气高温反应炉第一段,操作中可调节进入第一段和第二段的酸性气的流量,以确保尾气中H2S与S02的比率为2 :1。目前国内已有处理NH3体积浓度为17 %的操作经验,而且可处理NH3体积浓度高达30%的酸性气。

2、工艺的基本原理

改良克劳斯法硫磺回收工艺的基本原理可简略地用上文中化学反应方程式(1)、(2)、(3)和(4)来表示。现以图8所示部分燃烧法工艺为例予以说明,在图8中,酸性气中的H2S转化为元素硫是酸性气在反应炉内的高温反应和在反应器内的低温催化反应中共同完成的。在反应炉内H2S氧

化为元素硫的高温热反应分两部进行,其中1/3的H2S参与反应方程式(1)所示的第一步反应,与化学计量的空气在900~1300℃之间进行燃烧,经

过自由火焰部分氧化后,H2S被转化成S02和H20;剩余的2/3的H2S再与S02进行反应方程式所示的第二步反应生成硫和水。在高温热反应条件下,硫元素基本上以S l和S2形态存在,燃烧后的含硫混合物进入废热锅炉冷却到350 ℃左右,同时产生中压饱和水蒸汽送入蒸汽管线;从废热锅炉出来的混合气进入一级冷凝器,冷却到150~160℃,产生的液硫以S8和S6形态从一级捕集器底部进入液硫储罐,同时产生水蒸汽进入低压管网,再热后的工艺过程气则进入二至三个绝热反应器进行低温催化反应。鉴于CS2和COS的水解反应受动力学过程所控制,高温有利于有机硫化物水解反应的进行,而H2S与SO2的克劳斯反应受热力学平衡所控制,低温有利于生成元素硫和水的反应进行,因此第一反应器床层的操作温度一般控制在320℃左右,第二和第三反应器床层的操作温度大致控制在260 ℃和220 ℃,比过程气中的气态的露点温度高20~30℃,采用逐级降低温度的措施强制反应向右进行,同时在反应器间采用冷凝的方法连续不断地回收液态硫。工业实践表明,在反应炉能达到的高温下,—般炉内H2S转化率可以达到60~75%,若采用二级克劳斯工艺装臵总硫转化率约为92~95%,三级克劳斯工艺最高可以达到98%水平。

3、工艺的化学反应

克劳斯硫磺回收工艺过程尤其是高温反应炉内的化学反应非常复杂,如果用纯的H2S气体作为原料气,又配入纯O2一起在高温反应炉内燃烧,则化学反应基本上可以用图9来形象表示,反应后的过程气中仅含有H2S、SO2、H2O及不同形态的硫分子。然而在工业酸性气中除了H2S外,通常还含有CO2、H2O、烃类、NH3等,因此如图10所示的那样,实际的化学反应十分

复杂,使反应后过程气中的组分也相应的变复杂了。表2为克劳斯反应炉内可能出现的基本化学反应,表3、表4和表5则分别为可能发生或消耗CO、H2的反应和COS的副反应及CS2的副反应,可以看出工业克劳斯过程尤其是反应炉内的化学反应相当的错综复杂.

表2高温反应炉内的主要反应*

②△H为反应热的变化,负的△H表示是放热反应.

表3 高温反应炉内可能生成和消耗CO、H2的副反应

表4 高温反应炉内可能生成和消耗COS的副反应

表5 高温反应炉内可能生成和消耗CS2的副反应

此外,在气相状态下的元素硫有S1、S2、S3、S4、S5、S6、S7、S8构成,但在使用时以S2、S6、S8三种组份来概括,平衡时气相中各种硫组份的比例关系与温度的关系如图11所示。一般而言,大于700°K时气相中主要是S2,大于1500°K是S1 ,小于700°K则以S6、S8为主。这样克劳斯法回收元素硫的过程气组成就十分复杂了,大致包括H2S、SO2 、CO2 、H2O、

H2 、CO、COS、CS2、S2、S6、S8、N2等一些组份。值得指出的是COS、CS2的生成或消耗量虽然很少,但在尾气中占有一定的数量,将会影响到含硫尾气的达标排放。

4、H2S转化率和硫回收率的计算

在硫磺回收诸多工艺参数的计算中,最令装臵生产者关心重视的莫过于总硫转化率和硫的回收率。目前在生产现场较多使用下面的方法来进行计算。

4.1常用总硫转化率计算公式

总硫转化率 = l- V1(V3+1)/V2

式中V1 —尾气中H2S、SO2 、COS、CS2的体积百分数(干基) V2 —酸性气中H2S的体积百分数(干基)

V3—风气比,即空气流量和酸性气流量之比。

4.2常用硫回收率计算公式

硫回收率= W1/W2

式中W1 —硫磺产量

W2—酸性气潜硫含量,即酸性气流量(M3)×酸性气

中H2S %(V)含量÷22.4(公斤分子H2S/M3)x 34

(公斤H2S/公斤分子H2S)×32公斤S / 34公斤H2S 这两个计算公式的原理是正确的,但在生产现场有时往往操作条件基本没有变动,而总硫转化率和硫回收率却时高时低,究其原因在于计算公式本身的准确程度取决于酸性气流量和酸性气分析的准确程度。如果要求

硫回收率的偏差﹤土1%,则酸性气流量和酸性气分析的相对误差不得﹥±0.5%,由于现在所用测量方法的允许误差较大,因此硫回收率和总硫转化率必然计算不准。

为了获得准确的计算结果,必须考虑其它简便又实用的方法。

4.3卧龙河脱硫总厂的计算方法

硫回收率 = G1/ G1+G2+G3

式中G1硫磺产量(公斤/小时)

G2尾气中未转化的硫(公斤/小时)

G3尾气中的元素硫(公斤/小时)

上式中决定硫回收率的三个因素中,硫磺产量是主要的,占94%以上,而且容易测准,只要其余两个量的测量误差小于±10%,就能确定硫回收率的偏差小于土0.6 %。

关于G2可用色谱法准确而快速地测出尾气中的H2S、SO2 、COS、CS2和H2的体积百分数(干基),然后用C M算出未转化的硫与氮的分子比,再根据进装臵的总空气量就可以算出尾气中未转化的硫G2。

C M= C H2S+C SO2+C COS+2×C CO2/ C N2

G12= O.79(空气中N2含量)×Q ×C M×32/22.4 (公斤/小时)

关于G3,由于金属丝网捕集器的效率为98%以上,因此尾气中的液相持硫可以忽略不计,只考虑气相硫.G3的计算公式如下:

G3 = 0.79/ C N2×Q ×G (公斤/小时)

其中,0.79为空气中的N2含量;C N2为尾气中的N2含量(湿基),若酸性气体组成和风气比与设计值一致,C N2可用设计值;Q为进装臵的总空气量;

G为每M3尾气中的气相硫.

G = (P S×760/P0+P×736)× M S/22.4(公斤/小时) 式中,P S—硫的饱和蒸气压,可用下式计

算:

I n P s=-1.61732 + 0.00542412T + 1439.83/T

–2208508/T2

P s的单位是标准大气压,T为尾气的

绝对温度°K。

P—尾气压力,公斤/厘米2(表压)

M s—在尾气温度下硫的平均分子量

4.4法国埃尔夫阿奎坦石油公司的计

算方法

为了满足装臵生产现场的需要,利用图

12所示列线索图,可以从进料酸性气中杂

质的含量和未经焚烧的尾气中含硫化合物

的含量,快速测算出装臵的硫回收率。

详细用法叙述如下:先在两边的标尺上

找到相应的杂质含量和尾气中硫化物的含

量,连成直线即可在中间标尺上得到硫的回

收率。

例如进料酸气的杂质含量:CH4为1.0

克分子/100克分子H2S,C02为0.2克分子

/100克分子H2S,C03为0.05克分子/100克分子H2S,CO2为0.3克分子/100克分子H2S,将其折算成CH4则为:

∑CH4 =1.0 + 0.2 × 1.73 + 0.05 × 2.45 + 0.3 × 0.095 = 1.5

尾气中硫化合物的含量,H2S为500ppmv;SO2为150 ppmv; S为300ppmv;COS为150ppmv;相当于气相硫含量为:

∑S = 500+150+300+150+2 ×30 = 1160 ppmv

查图得到硫回收率为99.63%

4.5德国鲁奇工程公司的计算方法

列图表系选择9个主要的化学反应式作了系统的计算后的结果.通过系统的计算,得到了不同酸性气进料组成时反应产物(H2S、COS、S、H2O、CO、H2、CO2、N2)的组成与相应的反应温度、H2S转化率及空气校正系数等设计上的工艺参数之间关系的数值,给出了有关的化学平衡常数。发现与实测相比,计算的CS2值偏低,为此按计算值的200倍作图为设计依据,其它9个组分的计算值与实际值吻合的较好,因此具有相当水平的参考价值和现实指导意义。

图13,反应炉温度与进料酸性气组成关系

(按辐射热损失为50千卡/NM3酸性气计)

图14,反应炉H2S平衡浓度与进料酸性气体组成关系(湿基)

图15,反应炉SO2平衡浓度与进料酸性气体组成关系(湿基)

图16,反应炉CS2平衡浓度与进料酸性气体组成关系(湿基)

图17,反应炉COS平衡浓度与进料酸性气体组成关系(湿基)

图18,反应炉CO2平衡浓度与进料酸性气体组成关系(湿基)

(按辐射热损失为50千卡/NM3酸性气计)

图15,反应炉SO2平衡浓度与进料酸性气体组成关系(湿基)图16,反应炉CS2平衡浓度与进料酸性气体组成关系(湿基)

图17,反应炉COS平衡浓度与进料酸性气体组成关系(湿基)图18,反应炉CO2平衡浓度与进料酸性气体组成关系(湿基)

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

超级克劳斯硫磺回收系统动态模拟仿真

Modeling and Simulation 建模与仿真, 2015, 4(3), 80-86 Published Online August 2015 in Hans. https://www.doczj.com/doc/bd12953649.html,/journal/mos https://www.doczj.com/doc/bd12953649.html,/10.12677/mos.2015.43010 Dynamic Simulation of the Super Claus Sulfur Recovery System Wenfeng Ge, Jiang Wei, Xiaoqing Zheng, Song Zheng, Ming Ge Automatization College, Hangzhou Dianzi University, Hangzhou Zhejiang Email: wenfengge@https://www.doczj.com/doc/bd12953649.html, Received: Jul. 29th, 2015; accepted: Aug. 14th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/bd12953649.html,/licenses/by/4.0/ Abstract Coal chemical, oil refining industry and natural gas industry provided the main sulfur production in China. China is a country with coal as the main energy source, high sulfur coal is used for many factory productions and needs to recover sulfur from sulfur containing medium such as high sul-fur gas which is produced from desulfurization unit, generally in the form of simple substance sulfur as the final product. This paper from the sulfur recovery unit process principle and equip-ment principle starting, the general chemical process dynamic modeling software, OmniSim, is adopted to establish a set of dynamic mathematics of the super Claus sulfur recovery unit, which is treated with sulfuric acid gas in coal chemical industry. According to the actual operating condi-tion data, the reaction kinetic parameters of the sulfur recovery reaction device were corrected. The results show that the model of the main burner is successfully modeled by the Gibbs free energy minimization, and the average relative error of the simulation results and the actual oper-ating conditions is about 5%, which can meet the industrial application. According to this, this pa-per provides a scheme of dynamic model of sulfur recovery system using chemical process dy-namic modeling software. Based on the dynamic model, the dynamic response of the production operation and the test of the automatic control scheme can be simulated. Keywords Dynamic, Simulation, Modeling, Super Claus, Sulfur Recovery 超级克劳斯硫磺回收系统动态模拟仿真 葛文锋,魏江,郑小青,郑松,葛铭 杭州电子科技大学自动化学院,浙江杭州

克劳斯硫磺回收主要设备及操作条件(标准版)

克劳斯硫磺回收主要设备及操作条件(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0542

克劳斯硫磺回收主要设备及操作条件(标 准版) 现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。 1.反应炉 反应炉又称燃烧炉,是克劳斯装置中最重要的设备。反应炉的主要作用是:①使原料气中1/3体积的H2 S氧化为SO2 ;②使原料气中烃类、硫醇氧化为CO2 等惰性组分。 燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。 反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与

余热锅炉组合为一体)。在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。对于规模超过30t/d硫磺回收装置,外置式反应炉更为经济。 无论从热力学和动力学角度来讲,较高的温度有利于提高转化率,但受反应炉内耐火材料的限制。当原料气组成一定及确定了合适的风气比后,炉膛温度应是一个定值,并无多少调节余地。 反应炉内温度和原料气中H2 S含量密切有关,当H2 S含量小于30%时就需采用分流法、硫循环法和直接氧化法等才能保持火焰稳定。但是,由于这些方法的酸气有部分或全部烃类不经燃烧而直接进入一级转化器,将导致重烃裂解生成炭沉积物,使催化剂失活和堵塞设备。因此,在保持燃烧稳定的同时,可以采用预热酸气和空气的方法来避免。蒸汽、热油、热气加热的换热器以及直接燃烧加热器等预热方式均可使用。酸气和空气通常加热到230~260℃。其他提高火焰稳定性的方法包括使用高强度燃烧器,

克劳斯硫回收工艺事故整理

克劳斯硫回收工艺事故整理 1.硫磺开工烧坏人孔 1999年8月15日16:30,某炼油厂硫磺回收装置操作员在巡检时发现炉人孔烧坏。 事故经过: 1999年7月10日,硫磺回收装置按计划点炉开工,7月10日点焚烧炉F-202,11日23:25时点燃烧炉F-101,14日点尾气炉F-201,转化器、炉开始烘烤,7月23日烘炉完毕;7月29日至30日R-101、R-102、R-201装催化剂,8月6日重新点火开工,8月13日引酸气入燃烧炉,系统继续升温,8月15日加大酸气入炉量,到16:30发现燃烧炉人孔烧坏而紧急停工。 事故分析: 造成主燃烧炉人孔烧坏的主要原因是: 1、燃烧炉F-101衬里材料选材错误。 2、风量表偏小,酸气量偏小,造成配风过大,主燃烧炉超温。 3、主要仪表存在不少问题:酸气超声波流量计无指示,H2S/SO2比值分析仪无法投用,SO2、O2分析仪不准,火焰检测仪无法投用等问题。 4、整个人孔被错误用保温材料包得严严实实。) 5、操作人员经验不足。 采取措施:

8月20日至9月20日修复衬里,校验风量流量表,更换超声波流量计。 经验教训: “三查四定”时要认真仔细,对各关键设备内衬里选材要严格确认,避免开工后出现衬里不能经受操作温度的纰漏。 2. 开工过程中造成燃烧炉外壁超温 1999年10月1日,某炼油厂硫磺回收装置燃烧炉外壁超温。 事故经过: 1999年9月20日燃烧炉人孔烧坏处理完毕后,24日重新点火升温,29日产出合格硫磺,10月1日发现主燃烧炉外壁超温而紧急停工。事故分析: 1、燃烧炉衬里问题 2、开工引酸气量较大,酸气量波动大,造成炉膛温度过高。 采取措施: 紧急停工,修复燃烧炉衬里 经验教训: 在烘炉完毕后,打开燃烧炉人孔检查衬里时,要严格按照裂缝的条数和尺寸进行审核,不合格就要返工,别把缺陷带到开工后。 3. 停工过程废热锅炉露点腐蚀报废 事故经过: 2000年3月27日,硫磺回收装置停工,28日发现烟道法兰处漏出铵盐,4月3日拆开F-202人孔,E-202头盖试漏发现废锅E-202内管程

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

克劳斯硫回收操作规

克劳斯硫回收操作规程 1.岗位任务及意义 我厂所采用的原料煤硫含量较高,如果不加以回收,就会污染空气。本岗位接受低温甲醇洗岗位送来的硫化氢尾气,通过克劳斯回收装置回收,并制成固体硫磺。本装置H2S的总转化率90-95%;COS不发生克劳斯反应,通过尾气烟囱直接放空。年产硫磺1万吨,回收硫磺不仅经济效益可观还可以消除污染。 2.工艺原理及流程叙述 2.1工艺原理 克劳斯法回收硫的基本反应如下: H2S+1/2O2→S+H2O (1) H2S+3/2O2→SO2+H2O (2) 2H2S+SO2→3S+2H2O (3) 反应(1)(2)在燃烧室中进行,在温度1150℃-1300℃,压力0.06MPa 和严格控制气量的条件下,将硫化氢燃烧成二氧化硫,为催化反应提供(H2S+CS2)/SO2为2/1的混合气体。 此气体通过AL2O3基触媒,按反应(3)生成单质硫。 2.2流程叙述 来自上游甲醇洗工序的酸性气温度为37.2℃,压力为0.22MPaG,经进料管分离罐(V1301)分出挟带液后,按一定比例分成两股,其中一股去H2S燃烧炉(F1301)。该流股经过控制阀后压力降为0.06 MPaG 进入H2S燃烧炉(F1301),在H2S燃烧炉(F1301)中,酸性气和一定

比例的反应空气发生燃烧反应,反应生成SO2的和燃烧反应剩余的H2S 进一步发生部分克劳斯反应,反应后的酸性气体温度可达800℃以上。高温酸性气随后进入H2S余热回收器(E1301)回收器废热并副产蒸汽,同时将反应生成的单质硫部分冷凝。H2S余热回收器(E1301)一共有四程换热管(PASS1~4)回收本工序工艺气的废热,高温酸性气废热的回收是通过其中的第一、二换热管(PASS1、PASS2)进行的。高温酸性气全部通过PASS1后温度降为600℃,然后分成两股,其中一股流经PASS2温度进一步降至185℃,然后和未经过PASS2的流股混和。通过调整两个流股的比例可使混合后的温度控制在约300℃。混合后的酸性气流股和进料器分离罐(V1301)后未进入H2S燃烧炉(F1301)的旁路酸性气体混合后温度降至230℃、压力0.04MPaG进入克劳斯反应器(R1301)一段。在该段床层酸性气中的H2S和SO2在催化剂LS-971和LS-300的作用下发生克劳斯反应生成单质硫,H2S的转化率为80%~85%。流出反应器的酸性气体温度约为340℃,经过H2S余热回收器PASS3回收器废热后,温度降为175℃,同时绝大部分的单质硫被冷凝下来。为达到克劳斯反应器二段所需的温度,流程中设置了第一再加热器(E1302),酸性气进入该加热器预热到约238℃后进入克劳斯反应器二段继续进行克劳斯反应以回收剩余的硫。在二段反应床中,H2S的转化率约为75%,反应后的酸性气温度约为255℃。经过H2S余热回收器PASS4回收该股的废热后,流股的温度降至175℃,其中的单质硫也被大部分冷凝分离。经过第二再加热器预热至230℃后该流股进入反应器三段发生克劳斯反应,此时H2S

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

克劳斯硫磺回收主要设备及操作条件

编号:SM-ZD-41016 克劳斯硫磺回收主要设备 及操作条件 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

克劳斯硫磺回收主要设备及操作条 件 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。 1. 反应炉 反应炉又称燃烧炉,是克劳斯装置中最重要的设备。反应炉的主要作用是:①使原料气中1/3体积的H?S氧化为SO?;②使原料气中烃类、硫醇氧化为CO?等惰性组分。 燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。 反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与余热锅炉组合为一体)。在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。对于规模超过30t/d

克劳斯法-工艺介绍

克劳斯法回收硫磺 CPEE天津分公司 2012.1.20

克劳斯法硫回收工艺 一、工艺方法及原理 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。 一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

硫磺回收工艺介绍

目录 第一章总论................................................................ 项目背景.............................................................. 硫磺性质及用途 ........................................................ 第二章工艺技术选择 ........................................................ 克劳斯工艺 ............................................................ 工艺.............................................................. 硫横回收工艺 .................................................... 超级克劳斯工艺 .................................................. 三级克劳斯工艺 ................................................ 尾气处理工艺 .......................................................... 碱洗尾气处理工艺 .................................................. 加氢还原吸收工艺 .................................................. 尾气焚烧部分 .......................................................... 液硫脱气.............................................................. 第三章超级克劳斯硫磺回收工艺 ........................................... 工艺方案.............................................................. 工艺技术特点 .......................................................... 工艺流程叙述 .......................................................... 制硫部分.......................................................... 催化反应段 ........................................................ 部分氧化反应段 .................................................... 碱洗尾气处理工艺 .................................................. 工艺流程图 ........................................................ 反应原理.............................................................. 制硫部分一、二级转化器内发生的反应: ............................... 尾气处理系统中 ................................................ 物料平衡..............................................................

克劳斯法硫磺回收方法

克劳斯法硫回收 一、工艺设计 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

硫磺回收工艺介绍样本

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 ..................................................................... 错误!未定义书签。 1.2硫磺性质及用途............................................................ 错误!未定义书签。第二章工艺技术选取 ................................................................. 错误!未定义书签。 2.1克劳斯工艺.................................................................. 错误!未定义书签。 2.1.1MCRC工艺............................................................ 错误!未定义书签。 2.1.2CPS硫横回收工艺............................................. 错误!未定义书签。 2.1.3超级克劳斯工艺 .............................................. 错误!未定义书签。 2.1.4三级克劳斯工艺 ........................................... 错误!未定义书签。 2.2尾气解决工艺............................................................... 错误!未定义书签。 2.2.1碱洗尾气解决工艺 .............................................. 错误!未定义书签。 2.2.2加氢还原吸取工艺 .............................................. 错误!未定义书签。 2.3尾气焚烧某些............................................................... 错误!未定义书签。 2.4液硫脱气 ..................................................................... 错误!未定义书签。第三章超级克劳斯硫磺回收工艺............................................ 错误!未定义书签。

克劳斯法硫回收装置液硫系统的优化设计

?18?气体净化2019年第19卷第3期 克劳斯法硫回收装置液硫系统的优化设计 黄占修 (洛阳宏兴新能化工有限公司,河南省洛阳市471112) 摘要:克劳斯(Claus)法制硫是从酸性气中回收单质硫的重要技术之一。在克劳斯硫回收装置的液硫回收系统设计中,常规做法是设置四级硫封罐,从四级硫封罐出来的液硫汇集成到一根总管后进入 硫池中,存在液硫管线布置复杂、占地面积大等缺点。优化设计方案提出,通过改变冷凝器出来的液硫 流向,在液硫线上增设U型弯,克服硫冷凝器、反应器之间的压力降,在过程气间形成有效液封,起到原 设计中硫封罐的作用,相比常规做法可减少3个硫封罐的设置。同时对液硫总线进硫池的方式、硫池内 蒸汽伴热盘管等内构件的材质选择等方面存在的问题提出了相应优化措施。 关键词:Claus硫磺回收硫封罐硫池优化设计 1概述 随着含硫原油和含硫天然气的开发利用,用克劳斯(Claus)法从酸性气中回收单质硫元素的工艺已成为加工含硫天然气或炼厂气的一种重要形式。Claus法回收单质硫元素主要分两个阶段⑴,一个是高温热反应阶段,主要在酸性气燃烧炉内完成,控制炉膛温度一般不低于980?[2],炉内H?S的转化率为65%-70%;另一个是催化反应阶段,控制酸性气燃烧炉出口过程气中H?S和SO2的摩尔比为2:1,在反应器内Claus催化剂参与下,和SO?完成氧化还原反应,生成单质硫,该阶段单质硫元素收率约25%~30%。一般认为,在合适的操作条件下,Claus制硫部分总硫转化率约95%⑶。为提高催化反应阶段单质硫元素的转化率,利用硫冷凝器冷却去除过程气中的单质硫蒸汽,降低生成物分压,促进比S和SO2的反应向正方向进行。硫蒸汽冷凝成液硫后,由液硫回收系统统一回收到硫池,进一步脱气、成型处理。图1为Claus工艺原则流程。 图1克劳斯制硫工艺原则流程 液硫回收系统由硫封罐、液硫管线、地下硫池组成。若硫封罐或硫池设置不合理,容易岀现液硫管线布置不集中、占地面积大、液硫凝固堵塞,甚至会出现液硫池中液硫倒窜、硫池着火等安全事故,影响装置长周期运行。2硫封罐优化设计 2.1硫封罐的原理及作用 Claus制硫工艺中生成的液硫,在酸性气燃烧炉废热锅炉或硫磺冷凝器中完成气液分离,液硫自流进入硫封罐中。硫封罐设置有一定高度,靠液硫自

克劳斯法硫磺回收工艺技术的应用与趋势

克劳斯法硫磺回收工艺技术的应用与趋势 发表时间:2019-03-05T15:05:11.197Z 来源:《防护工程》2018年第35期作者:田玉玲 [导读] 近年来我国也新建立了很多克劳斯装置,克劳斯装置在我国近80%的炼油厂中都在充分使用。 内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰 025350 摘要:近年来,环境污染问题日益严重,而石化企业在对资源加工处理过程中,不可避免地会产出硫化氢等污染物质。采用克劳斯法硫磺回收工艺,不仅可以最大限度地降低废气对环境的污染问题,而且能够高效地回收硫磺产品,从而提高了能源的利用效率与价值。本文将对硫磺回收工艺技术现状及前景展望进行简要介绍,并提供一些借鉴。 关键词:克劳斯法;硫磺回收工艺;应用;趋势 引言:随着全球含硫原油和天然气资源的广泛的开发,运用克劳斯法从酸性气体中将硫元素回收的工艺已经得到了广泛的使用,近年来我国也新建立了很多克劳斯装置,克劳斯装置在我国近80%的炼油厂中都在充分使用。 1、克劳斯法硫磺回收工艺的优势 首先,克劳斯法硫磺回收工艺具有操作灵活方便和弹性范围大的优点,而且热稳定性、化学稳定性和机械强度也很高,同时维修方便,装置运行平稳可靠,并能减少有害物质的排放,催化剂的使用寿命能多达10年左右;其次,克劳斯法对于硫磺的转化效率和回收效率十分可观,可以实现加工处理过程的连续周期运转,同时副反应的现象能够有效控制,最为关键的是可以满足环保排放的标准要求;再次,克劳斯法对于酸性气浓度不同范围的适应能力较强,不仅可以满足新建装置设备,而且对于传统装置改造升级的情况也较为适合。同时三废问题可以得到最大限度的降低和抑制。基于克劳斯法装置适应性强的特点,因此广泛应用于石化企业硫磺回收与尾气处理环节;最后,相对来讲克劳斯法的系统操作并不复杂,因此投资费用低,而且工艺流程也容易操控和管理。此外硫磺作为生产硫酸产品的重要工业原料,其经济价值更为凸显。 2、硫磺回收工艺技术现状 2.1、氧基硫硫磺回收工艺技术 克劳斯法是一种较为成熟的多方式处理方法,主要是通过提高含氧量亦或增加空气氧气的利率来升级强化设备,从而提高整个硫磺回收设备的回收率,是一种硫磺回收工艺手法,是现代社会最受欢迎的硫回收工艺技术,具有高效能及高效益。事实上,克劳斯硫回收装置的工作原理是借助酸性气体来处理冰冷低温的甲醇,从而完成从属于酸性气体的二硫化氢及单独质子的硫元素。克劳斯法主要的工艺流程从总体上讲共有三种类型,即分流法、燃硫法及部分燃烧法。它的工作流程是最开始利用燃烧炉内1/3的二硫化氢与氧气燃烧进行化学反应从而生成二氧化硫,在这之后充分利用催化剂,使没用尽的二氧化氢与新生成的二氧化硫在催化剂的作用下进行克劳斯化学反应,最后生产完成硫磺回收。它的化学反应公式是H2S+3/2O2=SO2+H2O+519.2KJ,2H2S+SO2=3S+2H20+93KJ。实际上在化学反应的过程中,由于酸性气体的纯度不够高,也就是说酸性气体中掺杂了除硫化二氢之外的二氧化碳、二氧化氢等相当复杂多样化学元素及化学反应其伴随反应及副作用也时常出现,稳定性不够高。 硫磺回收工艺技术的优点大概有以下几点,即相对于其他大型、操作复杂、技术低等、价格高昂的设备来说,该技术操作简单、流程简明易懂,所需要的设备也较少,故而占地面积也是较少的,投资成本较低,可以节约资金;除此之外,由于此技术较高端,所用设备先进,即该设备可以快速地运行生产回收,回收硫磺纯度相对其他设备较高,工作效率高。但凡是都有双面性,硫磺回收工艺技术也有其限制性和缺陷:在整个化学反应的过程中,由于生产条件不够先进,化学平衡始终受到多方面的抵制,普遍常规的Claus工业技术及两级硫在催化剂的作用下的转化过程中硫磺的回收率为90%—95%,就算是较为先进高级的三级硫在催化剂作用下的转化过程中硫磺的回收率也只能最高达到98%。 2.2、选择性催化氧化法制硫 当原料酸性气体中如果硫化氢的含量过低,克劳斯工艺会受到热力学平衡的影响,其反应温度也受到很大的限制,转化率也会降低,但是硫化氢的选择性催化氧化反应并不是平衡的反映,只要有合适的催化剂,就可以使转化率大为提升。按照这个思路,在美国公司率先研究了催化氧化法制硫,这类方法的关键在于氧化剂的选择。催化氧化法主要是分成还原式和循环式,这两种不同的类型方法也不同,还原式的方法主要用于尾气的处理的,循环式的方法主要用于硫磺的回收。这类方法不用借助燃烧炉,而且原料中的酸性气体中的烃类物质含量比较少。硫化氢的含量比较低的情况下,原料在反应后可以直接进人到转化器中,床层的温度应该控制在370℃左右,硫的回收率可以达到80%以上。在采用上述的方法进行处理后,硫化氢为酸性气体,在一级转化器中,反应温度会受到限制,导致硫化氢中的酸性气体的含量不能过高。我国的炼油厂也采用过此类方法,但是当时装置内的硫化氢气体的酸性太强,而且气体非常不稳定,效果不好,而且炼油厂也加工了大量的含硫的原料,在回收中,导致装置的规模过大,在采用还原法进行尾气的处理中,效果并不是特别的理想。 3、对克劳斯法硫磺回收工艺技术应用现状与趋势的探究 3.1、克劳斯低温、富氧和直接氧化工艺 首先,克劳斯低温工艺是在低于硫露点的环境下进行操作的技术,其变革特点就是根据硫露点,进而调节转化器操作温度,因此广泛用于硫回收,且回收效率很理想。然而低温工艺的前期投资成本和后期操作费用也很高,同时比较适用于大型化酸气处理回收;其次,传统克劳斯工艺是以空气作为催化剂,由于空气中所含大量的氮气,因此总硫回收率相对低一些。而克劳斯富氧工艺是以氧气直接作为催化剂,不仅提升了设备的处理能力和效率,同时对于硫化氢含量的范围也极为适应。由于氧气成本较高,为了节约成本提升经济效益,因此要对技术持续改进,目前多以较低的富氧程度下进行处理加工;最后,克劳斯直接氧化工艺可以分为气相氧化法和液相氧化法。由于常规克劳斯工艺中当硫化氢占有比例较低时,设备的温度就会降低,从而影响了加工的深入进行,因此采用直接氧化工艺可以提升硫回收率,而且对于有机硫的去除效果也能达到55%—85%左右。 3.2、工业技术方面 我国已经将硫磺的回收及装置尾气的处理技术从最初的环保作用成功转变成了经济与环境两不误的高端科技。随着各种法律法规的颁布,我国的相关生产商已经在大力建设硫磺回收设备了,与此同时,硫磺回收工艺也在不停地被改进。如今,大多的硫磺回收装置是以

第十四章 硫磺回收装置

第十四章硫磺回收装置 第一节装置概况及特点 一、装置概况 硫磺回收装置是环保装置,它是洛阳分公司500万吨/年炼油工程主体生产装置之一。该装置主要处理液态烃、干气脱硫酸性气及含硫污水汽提酸性气等,其产品是国标优等品工业硫磺。 二、装置组成及规模 硫磺回收(Ⅰ)设计生产能力为3000t/a,1987年8月开工,2001年4月扩能改造至1.0×104t/a;硫磺回收(Ⅱ)设计生产能力为5650t/a,1997年9月开工,2000年3月扩能至1.0×104t/a。 三、工艺流程特点 两套硫磺回收装置均采用常规克劳斯工艺,采用部分燃烧法,即将全部酸性气引入酸性气燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。过程气采用高温外掺合、二级转化、三级冷凝、三级捕集,最终硫回收率达到93%以上。尾气中硫化物及硫经尾气焚烧炉焚烧,70m烟囱排放。 第二节工艺原理及流程说明 一、工艺原理 常用制硫方法中根据酸性气浓度不同,分别采用直接氧化法、分流法和部分燃烧法。本装置采用的是部分燃烧法,即将全部酸性气引入燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。对于硫化氢来说,反应结果炉内约有65%的硫化氢转化为硫,余下35%的硫化氢中有1/3燃烧生成二氧化硫,2/3保持不变。炉内反应剩余的硫化氢、二氧化硫在转化器内催化剂作用下发生反应,进一步生成硫,其主要反应如下: 主要反应: 燃烧炉内:H2S+3/2O2=H2O+SO2+Q 2H2S+ SO2= 2H2O+3/2S2+Q H2S+CO2=COS+ H2O+Q 2H2S+CO2=CS2+2 H2O+Q 反应器内:2H2S+SO2=H2O+3/nSOn+Q COS+ H2O = H2S+CO2-Q CS2+ 2H2O=2H2S+CO2-Q 为获得最大转化率,必须严格控制转化后过程气中硫化氢与二氧化硫的摩尔比为2:1。 二、工艺流程说明

相关主题
文本预览
相关文档 最新文档