当前位置:文档之家› 电快速瞬变脉冲群抗扰度(EFT)测试

电快速瞬变脉冲群抗扰度(EFT)测试

电快速瞬变脉冲群抗扰度(EFT)测试
电快速瞬变脉冲群抗扰度(EFT)测试

浪涌抗扰度(Surge)测试

浪涌(冲击)抗扰度(Surge) 1. 浪涌(冲击)抗扰度试验 l.i概述 浪涌抗扰度试验所依据的国际标准出IEC61000-4-5:2005,对应国家标准是GB/T17626.2:200X《电戲兼容试验和测虽技术浪涌(冲击)抗扰度试验》<. 浪涌(冲击)抗扰度试验就足模拟 带来的十扰影响,但需要指出的足,考核设备电磁兼容性能的浪涌抗扰度试验不同于考核设备岛斥绝缘能力的耐压试验.前者仅仅足模拟间接宙击的彫响(直接的雷击设备通帘都无法承受)。 1.2浪涌(冲击)抗扰度试验目的 本标准的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。本标准规定了一个一致的试验方法,以评定设备或系统对规定现象的抗扰度。 1.3浪涌(冲击)抗扰度试验应用场合 本标准适用于电子电气设备,但并不针对特定的设备或系统.貝冇减础EMC电磁兼容出版物的地位. 2. 术语和定义 2.1浪涌(冲击) 沿线路传送的电流电压或功率的瞬态波,其特性足先快速上升后缓慢下降。 2.2组合波信号发生器 能产生1.2/50ps开路电压波形、8/20ps短路电流波形或10/700ps开路电压波形、5/320ps短路电流波形的信号发生器。 2.3耦介网络 将能戢从一个电路传送到另一个电路的电路. 2.4去耦网络 用『防止施加到上的浪涌冲击影响其他不作试验的装遊设备或系统的电路。 2.5 (浪涌发生器的)等效输出阻抗 开路电压蜂值与短路电流峰值的比值. 2.6对称线 垫模到共模转换损耗大于20dB的平衡对线。 3. 试检筹级及选择 优先选择的试验等级范甬如表所示. 表试验等级 1.试验等级应根据安装情况,安装类别如卜?:

快速瞬变抗扰度测试

笃实务实 立信守信 敬业精业 创新求新 南京磐能电力科技股份有限公司——配网事业部 1 快速瞬变抗扰度测试 测试型号: 测试人员: 测试日期: 测试要求:对各回路进行试验:脉冲群周期为300ms ,测试时间每次60s ,重复频率为5KHz 脉冲群持续时间为15ms 及重复频率为100KHz 脉冲群持续时间为0.75ms 分别进行测试;试验期间允许出现短时通信中断和液晶显示瞬时闪屏,试验结束后能恢复通信。终端不能出现复位、死机、硬件损坏等现象。 测试记录表 序号 测试项目 测试对象 测试方法及要求 测试记录 结果 1 交流电源回路 L :±4kV ; N :±4kV ; PE :±4kV ; L 、N :±4kV ; L 、PE :±4kV ; N 、PE :±4kV ; L 、N 、PE :±4kV ; 5KHz 、15ms 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 2 交流电压回路 PT 对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 3 交流电流回路 CT 对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%; 测试结束:遥信变位10次,均显示正确; 测试结束:遥控操作10次,均动作正确; 4 遥信输入回路 开入对地:±4kV ; 5KHz 、15ms 及 100KHz 、0.75ms 测试期间:终端运行无复位、死机现象; 测试期间:终端通讯无误报、中断现象; 测试结束:模拟量改变量不大于±1%;

传导骚扰抗扰度(CS)测试

传导骚扰抗扰度(CS) 1.传导骚扰抗扰度 1.1 传导骚扰抗扰度概述 本标准主要介绍国际标准IEC61000-4-6:2006,对应国家标准GB/T17626.6:1998《电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度》的试验方法。 1.2 传导骚扰抗扰度试验目的和应用场合 本标准所涉及的主要骚扰源是来自9kHz~80MHz频率范围内射频发射机产生的电磁场。该电磁场会作用于电气、电子设备的电源线、通信线和接口电缆等连接线路上,这些连接引线的长度则可能与干扰频率的几个波长相当,因此,这些引线就变成被动天线,接受外界电磁场的感应,引线电缆就可以通过传导方式耦合外界干扰到设备内部(最终以射频电压和电流所形成的近场电磁骚扰到设备内部)对设备产生干扰。从而影响设备的正常运行。所以,本标准的目的主要是建立一个评估射频场感应的传导骚扰抗扰度性能的公共参考,为有关产品的专业技术委员会或用户和制造商提供一个基本参考。 2 传导骚扰抗扰度常见术语 2.1 人工手 模拟正常工作条件下,手持式电气设备和地之间的人体阻抗的电网络

2.2 辅助设备 为受试设备正常运行提供所需信号的设备和检验受试设备性能的设备。 2.3 注入钳 u 电流钳 由被注入信号的电缆构成的二次绕组实现的电流变换器。 u 电磁钳 由电容和电感耦合相组合的注入装置。 2.4 共模阻抗 在某一端口上共模电压和共模电流之比。 2.5 耦合系数 在耦合装置的受试设备端口所获得的开路电压(电动势)与信号发生器输出端上的开路电压的比值 2.6 耦合网络 以规定的阻抗从一电路到另一电路传输能量的电路。 2.7 去耦网络

电快速脉冲群实验及其对策(EFT)

电快速脉冲群实验(IEC 61000-4-4 EFT/Burst Test)及其对策综述 一.试验波形电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验。此波形不是感性负载断开的实际波形(感性负载断开时产生的干扰幅度是递增的),而实验所采用的波形使实验等级更为严酷。电快速脉冲群是由间隔为300ms的连续脉冲串构成,每一个脉冲串持续15ms,由数个无极性的单个脉冲波形组成,单个脉冲的上升沿5ns,持续时间50ns,重复频率5K。根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线的距离是脉冲的重复频率。 二.实验设备 1.电快速脉冲发生器其中储能电容的大小决定单个脉冲的能量;波形形成电阻和储能电容配 合,决定了波形的形状;阻抗匹配电阻决定了脉冲发生器的输出阻抗(标准为50欧姆);隔直电容则隔离了脉冲发生器中的直流成分。 2.耦合/去耦网络交/直流电源端口的耦合/去耦网络(CDN---Couple and Decouple networks), 这个网络提供了在不对称条件下把试验电压施加到受试设备的电源端口的能力。这里所谓不对称干扰是指电源线与大地之间的干扰。可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去耦网络的机壳相连,机壳则接到参考接地端子上。耦合/去耦网络的作用是将干扰信号耦合到EUT并阻止干扰信号干扰连接在同一电网中的不相干设备。一些电快速脉冲发生器已将耦合/去耦网络集成于一体。 3.电容耦合夹关于电容耦合夹的应用,在GB/T17626.4的第6.3节中指出,耦合夹能在受试 设备各端口的端子、电缆屏蔽层或受试设备的任何其他部分无任何电连接的情况下把快速瞬变脉冲群耦合到受试线路上。受试线路的电缆放在耦合夹的上下两块耦合板之间,耦合夹本身应尽可能地合拢,以提供电缆和耦合夹之间的最大耦合电容。耦合夹的两端各有一个高压同轴接头,用其最靠近受试设备的这一端与发生器通过同轴电缆连接。高压同轴接头的芯线与下层耦合板相连,同轴接头的外壳与耦合夹的底板相通,而耦合夹放在参考接地板上。 三. 实验设置 下面是在实验室进行电快速脉冲群抗扰度试验时所必须的配置: 1.参考接地板用厚度为0.25mm以上的铜板或铝板(需提醒的是,普通铝板容易氧化,易造成 试验仪器、受试设备的接地电缆与参考接地板之间塔接不良,宜慎用);若用其他金属板材,要求厚度大于0.65mm。参考接地板的尺寸取决于试验仪器和受试设备,以及试验仪器与受试设备之间所规定的接线距离(1m)。参考接地板的各边至少应比上述组合超出0.1m。参考接地板应与实验室的保护地相连。 2.试验仪器(包括脉冲群发生器和耦合/去耦网络)放置在参考接地板上。试验仪器用尽可能 粗短的接地电缆与参考接地板连接,并要求在搭接处所产生的阻抗尽可能小。 3.受试设备用0.1±0.01m的绝缘支座隔开后放在参考接地板上(如果受试设备是台式设备,则 应放置在离参考接地板高度为0.8±0.08m的木头桌子上)。受试设备(或试验桌子)距参考接地板边缘的最小尺寸满足项1(0.1m)的规定。受试设备应按照设备的安装规范进行布置和连接,以满足它的功能要求。另外,受试设备应按照制造商的安装规范,将接地电缆以尽量小的接地阻抗连接到参考接地板上(注意,不允许有额外的接地情况出现)。当受试设备只有两根电源进线(单相,一根L,一根N),而且不设专门接地线时,受试设备就不能在试验时单独再拉一根接地线。同样,受试设备如果通过三芯电源线进线(单相,一根L,一根N,及一根电气接地线),未设专门接地线时,则此受试设备也不允许另外再设接地线来接地,

浪涌抗扰度试验

浪涌冲击抗扰度测试及整改参考 浪涌冲击抗扰度测试及整改参考 1. 浪涌冲击形成的机理 电磁兼容领域所指的浪涌冲击一般来源于开关瞬态和雷击瞬态。 系统开关瞬态与以下内容有关: a )主电源系统切换骚扰,例如电容器组的切换; b )配电系统内在仪器附近的轻微开关动作或者负荷变化; c )与开关装置有关的谐振电路,如晶闸管; d )各种系统故障,例对设备组接地系统的短路和电弧故障。 雷击瞬态 雷电产生浪涌(冲击)电压的主要原理如下: a)直接雷击于外部电路(户外),注入的大电流流过接地电阻或外部电路阻抗而产生电压; b)在建筑物内、外导体上产生感应电压和电流的间接雷击(即云层之间或云层中的雷击或击于附近物体的雷击,这种雷击产生的磁场);c)附近直接对地放电地雷电入地电流耦合到设备组接地系统的公共接地路径。 当保护装置动作时,电压和电流可能发生迅速变化,并可能耦合到内部电路。 2. 试验内容: 对电气和电子设备的供电电源端口、信号和控制端口在受到浪涌(冲击)干扰时的性能进行评定。 3 .试验目的: 评定设备在遭受到来自电力线和互连线上高能量浪涌(冲击)骚扰时产品的性能。 4.试验发生器(雷击浪涌发生器) a)信号发生器特性应尽可能地模拟开关瞬态和雷击瞬态现象; b)如果干扰源与受试设备的端口在同一线路中,例如在电源网络中(直接耦合),那么信号发生器在受试设备的端口能够模拟一个低阻抗源; c)如果干扰源与受试设备的端口不在同一线路中(间接耦合),那么信号发生器能够模拟一个高阻抗源。 对于不同场合使用的产品及产品的不同端口,由于相应的浪涌(冲击)瞬态波形各不相同,因此对应模拟信号发生器的参数也不相同。 5.试验实施 电源、信号和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。 根据要进行试验的EUT的端口类型选择相应的试验试验波形发生器和耦合单元及相应的信号源内阻。 使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加冲击电压,。 每种组合应针对不同脉冲极性进行测试,两次脉冲间隔时间不少于1min。 对电源端子进行浪涌测试时,应在交流电压波形的正、负峰值和过零点分别施加试验电压。 对电源线和信号线应分别在不同组合的共模和差模状态下施加脉冲冲击。 每种组合状态至少进行5次脉冲冲击。 若需满足较高等级的测试要求,也应同时进行较低等级的测试。 只有两者同时满足,我们才认为测试通过。 6.试验结果 若电快速速变脉冲群测试通不过,可能产生如下后果: (1 )引起接口电路器件的击穿损坏。 (2 )造成设备的误动作。 7.导致浪涌冲击抗扰度试验失败的原因 浪涌脉冲的上升时间较长,脉宽较宽,不含有较高的频率成分,因此对电路的干扰以传导为主。主要体现在过高的差模电压幅度导致输入器件击穿损坏,或者过高的共模电压导致线路与地之间的绝缘层击穿。由于器件击穿后阻抗很低,浪涌发生器产生的很大的电流随之使器件过热发生损坏。对于有较大平滑电容的整流电路,过电流使器件损坏也可能是首先发生的。

瞬态传导抗扰度测试常见问题对策及整改措施

4.1 综述 电磁兼容所说的瞬态脉冲是指干扰脉冲是断续性的,一般具有较高的干扰电压,较快速的脉冲上升时间,较宽的频谱范围。一般包括:静电放电、电快速瞬变脉冲群、浪涌冲击等。由于它们具有以上共同特点,因此在试验结果的判断及抑制电路上有较大的共同点。在此处先进行介绍。 4.1.1 瞬态脉冲抗扰度测试常见的试验结果说明 对不同试验结果,可以根据该产品的工作条件和功能规范按以下内容分类: A:技术要求范围内的性能正常; B:功能暂时降低或丧失,但可自行恢复性能; C:功能暂时降低或丧失,要求操作人员干预或系统复位; D:由于设备(元件)或软件的损坏或数据的丧失,而造成不可恢复的功能降低或丧失。 符合A的产品,试验结果判合格。这意味着产品在整个试验过程中功能正常,性能指标符合技术要求。 符合B的产品,试验结果应视其产品标准、产品使用说明书或者试验大纲的规定,当认为某些影响不重要时,可以判为合格。 符合C的产品,试验结果除了特殊情况并且不会造成危害以外,多数判为不合格。 符合D的产品判别为不合格。 符合B和C的产品试验报告中应写明B类或C类评判依据。符合B类应记录其丧失功能的时间。 4.1.2常用的瞬态脉冲抑制电路: 4.1.2.1 箝位二极管保护电路: 图10二极管保护电路 工作原理如图10。 使用2只二极管的目的是为了同时抑制正、负极性的瞬态电压。瞬态电压被箝位在V++VPN~V--VPN范围内,串联电阻担负功率耗散的作用。利用现有电源的电压范围作为瞬态电压的抑制范围,二极管的正向导通电流和串联电阻的阻值决定了该电路的保护能力。本电路具有极好的保护效果,同时其代价低廉,适合成本控制比较严、静电放电强度和频率不十分严重的场合。 4.1.2.2 压敏电阻保护电路: 压敏电阻的阻值随两端电压变化而呈非线性变化。当施加在其两端的电压小于阀值电压时,器件呈现无穷大的电阻;当施加在其两端的电压大于阀值电压时,器件呈现很小电阻值。此物理现象类似稳压管的齐纳击穿现象,不同的是压敏电阻无电压极性要求。使用压敏电阻保护电路的特点是简单、经济、瞬态抑制效果好,且可以获得较大的保护功率。 4.1.2.3 稳压管保护电路: 背对背串接的稳压管对瞬态抑制电路的工作原理是显而易见的。当瞬态电压超过V1的稳压值时,V1反向击穿,V2正向导通;当瞬态电压是负极性时,V2反向击穿,V1正向导通。将这2只稳压管制作在同一硅片上就制成了稳压管对,使用更加方便。 4.1.2.4 TVS(瞬态电压抑制器)二极管: 这是最近发展起来的一种固态二极管,适用用于ESD保护。一般选择工作电压大于或等于电路正常工作电压的器件。TVS二极管是和被保护电路并联的,当瞬态电压超过电路的正常工作电压时,二极管发生雪崩,为瞬态电流提供通路,使内部电路免遭超额电压的击穿或超额电流的过热烧毁。由于TVS二极管的结面积较大,使得它具有泄放瞬态大电流的优点,具有理想的保护作用。但同时必须注意,结面积大造成结电容增大,因而不适合高频信号电

脉冲干扰抗扰度及测试技术

脉冲干扰抗扰度及测试技术 摘要:电气或电子电路和系统中所遇到的多种电磁干扰并不是连续波干扰,而是脉冲或瞬态形式的干扰。传统的连续波测试并不能在较短的时间间隙内聚集足够的能量以有效地模拟脉冲或瞬态干扰。因此,应该使用脉冲干扰的电磁抗扰度测试方法。分别介绍了ESD、EFT、Surge原理和测试方法及注意事项。 关键字:电磁干扰静电放电电快速瞬变脉冲浪涌 Abstract:Electrical or electronic circuits and systems encountered in a variety of electromagnetic interference is not continuous waves interference, but the pulse or transient forms of interference. The traditional continuous wave test can not gather enough energy in order to effectively simulate the pulse or transient interference in a short period of time. Therefore, we should use the pulsed electromagnetic interference immunity test methods. Introduced the ESD, EFT, Surge principles and testing methods and precautions. Keywords: EMI ESD EFT/burst Surge 电磁骚扰是指可能引起一个器件、一台设备或一个系统性能下降的任何一种电磁现象。电磁骚扰可以是自然界的电磁噪声、无用信号或在媒质中传播时自身发生的改变。 电磁干扰(EMI)是电磁骚扰造成的器件、设备或系统的性能下降现象,从它的源到达接收机的主要机制是传导和辐射,如图1所示。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。 图1 电磁干扰耦合机制 1静电放电 静电放电(ESD)即累积的静电电荷放电,是一种自然现象,这种放电产生电磁干扰。当两种不同介电常数的材料互相摩擦时、加热或与带电物体接触将产生静电。静电放电是把累积的电荷泄放给具有较低对地电阻的另一个物体,这

电快速瞬变脉冲群__EFT原理及解决方法

摘要:量度继电器、继电保护及自动化装置(以下简称继电器及装置)随着电子技术的发展已实现微机化及数字化。在电力系统恶劣的电磁环境中经常受到电磁骚扰,出现电磁干扰的几率很大,严重影响量度继电器及装置的正常工作。其中影响较大的是瞬态脉冲骚扰。本文从分析瞬态脉冲骚扰产生的原因着手,总结出各种瞬态脉冲骚扰的特征,提出抑制的方法。 关键词:瞬态脉冲骚扰;原因及特征;抑制方法。 1 引言 在电力系统的电磁环境中存在着一些短暂的高能量的脉冲骚扰源,这些骚扰对继电器及装置的正常工作有非常大的影响,严重时也要损坏元器件,甚至损坏设备以至于整个系统。这些骚扰源就称为瞬态脉冲骚扰源。产生瞬态脉冲骚扰源的原因有:雷电放电、静电放电、电力系统的开关动作过程等。常见的瞬态脉冲骚扰源有电快速瞬变脉冲群骚扰、静电放电骚扰、浪涌(冲击)骚扰及1MHz(100kZHz)脉冲群骚扰等。 2 瞬态脉冲骚扰的产生原因 2.1 瞬态脉冲骚产生的机理 在开关断开电感负载电路的过程中,在电感上要产生反电势。根据楞次定律:这个反电势应为。反电势要向寄生电容C反向充电,随着充电电压的升高,当达到一定数值时,在触点之间要出现击穿现象,形成导电通路。一旦出现导电通路时,电容C就要开始放电,使电压下降,当电压降到维持触点导通电压以下时,触点又将处于断开状态。上述过程就要重复发生,此过程重复到触点的间距大至电容上电压不能使触点间再击穿为止。当电容不能通过击穿触点放电时,就通过电感回路放电,直至电感中能量消耗完为止。 在上述过程中,电容C每次击穿触点时都要向电源回路反向充电,因此在电源回路上形成很大的脉冲电流,由于电源回路也有阻抗存在,脉冲电流通过电源回路时,在其两端就要形成脉冲电压,而共用此电源回路的其它的电路(或继电器及装置就要受到该脉冲电压的影响。这就是瞬态脉冲骚扰形成的原因。随着触点间隙的变化,击穿触点间隙所需要的电压是变化的。当触点间隙越来越大时,击穿电压越来越高。因此电容C上的电压也要越来越高。当触点击穿所需要的电压越高时,电容充电的时间就越长,振荡波形的频率就越低。 2.2 主要的瞬态脉冲骚扰的产生及特点 (1) 电快速瞬变脉冲群骚扰 电快速瞬变脉冲群骚扰是由于电路中断开感性负载时产生的。它的特点是骚扰信号不是单个脉冲,而是一连串的脉冲群。一方面由于脉冲群可以在电路的输入端产生积累效应,使骚扰电平的幅度最终可能超过电路的噪声容限。另一方面脉冲群的周期较短,每个脉冲波的间隔时间较短,当第一个脉冲波还未消失时,第二个脉冲波紧跟而来。对于电路中的输入电容来说,在未完成放电时又开始充电,因此容易达到较高的电压,这样对电路的正常工作影响甚大。 电快速瞬变脉冲群骚扰源的电压的大小取决于负载电路的电感,负载断开速度和介质的耐受能力。 这类骚扰电压的特征是:幅值高、频率高。当触点断开时,电感电路中的电流企图继续通过,在触点之间产生高压,并引起电弧的重燃,这样就会产生一连串的电压脉冲叠加到继电器及装置连接的电源上。 电快速瞬变脉冲群骚扰电压主要是共模电压。它是通过电容耦合间接传输至其它电路,当由一个电路的电压产生的电场和第二个电路的导体交链时就会产生电容耦合。 (2) 浪涌(冲击)骚扰 浪涌(冲击)骚扰是雷电在电缆上感应产生的骚扰,它也可能在很大功率的开关在断开过程中产生。冲击(浪涌)骚扰的特点就是能量很大,在室内,浪涌(冲击)电压可达到6kV,室外可

电快速瞬变脉冲群抗扰度测试作业指导书

图1. 单相供电设备接线图 将受试设备的供电网络接入仪器后面板的“EUT电源输入端”,将受试设备的电源端接至仪器前面板的,注意相线(L线)、中线(N线)、地线(PE线)一一对应。 的“带护套双插拔测试线”(标准配置) 将仪器前面板上的接地端子(SG)与参考接地板相连,接线须短而粗,长宽比小于3:1。 IEC61000-4-4最新标准的相关要求进行配置。本配置主要以“在实验室进行的型“在设备最终安装条件下对设备进行的安装后试验”配置请参考用户手册。另,我司主要以产品电源线上的抗干扰试验为主,因此重点讲述“电源线抗干扰”试验配置。

图2. 台式设备电源线抗干扰试验配置图① 图3. 台式设备电源线抗干扰试验配置图② 地面设备信号线抗干扰性试验配置(接线要求与台式设备相同)

图3. 自动模式测试界面图4. 手动模式测试界面

解决方案:重新设置测试时间(test time)、重复时间(repetition)。使测试时间大于重复时间。 每脉冲群持续时间大于重复时间 解决方案:重新设置每脉冲群个数(Number of pulses)、重复时间(repetition 注:每脉冲群持续时间(ms)=每脉冲群个数* 1/脉冲频率(Spike Fre) 解决方案:设置合适的耦合路径。 EUT供电电源是否正常,EUT电源是否接入,“EUT POWER 每秒脉冲个数超出

解决方案:重新设置每秒脉冲个数或重复时间,使每秒脉冲个数符合要求。 最大每秒脉冲个数与试验电压成一定的反比关系,电压越大,每秒脉冲个数越少。如:试验电解决方案:重新设置测试时间或重复时间,使测试时间至少可完成一次渐变周期。

常用的抗扰度试验标准

常用的抗扰度试验标准 钱振宇 摘要:详细地介绍了几种抗扰度试验的目的、方法、严酷度等级及要求。 关键词:抗扰度试验,标准,电磁兼容,电源管理 我国电磁兼容认证工作已经起动,第一批实施电磁兼容的产品类别及所含内容也已基本确定,它们是声音和电视广播接收机及有关设备,信息技术设备,家用和类似用途电动、电热器具,电动工具及类似电器、电源、照明电器、车辆机动船和火花点火发动机的驱动装置、金融及贸易结算电子设备、安防电子产品、声音和电视信号的电缆分配系统设备与部件,低压电器。尽管产品不同,引用的产品族测试标准也不同,但其中抗扰度的试验内容基本相同,它们是静电放电、射频辐射电磁场、脉冲群、浪涌、射频场引起的传导干扰和电压跌落等6项。为了帮助读者对这些标准的理解,作者试图从试验目的、仪器特性要求、基本配置情况、标准试验方法和对标准的评述等方面入手,用比较简洁的文字介绍这些试验,以加深对标准的理解。 1IEC61000-4-2(GB/T17626.2)静电放电抗干扰试验 1.1静电放电的起因 静电放电的起因有多种,但IEC61000-4-2(GB/T17626.2)主要描述在低湿度情况下,通过摩擦等因素,使人体积累了静电。当带有静电的人与设备接触时,就可能产生静电放电。 1.2试验目的 试验单个设备或系统的抗静电干扰的能力。它模拟: (1)操作人员或物体在接触设备时的放电。

(2)人或物体对邻近物体的放电。 静电放电可能产生的如下后果: (1)直接通过能量交换引起半导体器件的损坏。 (2)放电所引起的电场与磁场变化,造成设备的误动作。 1.3静电放电的模拟 图1和图2分别给出了静电放电发生器的基本线路和放电电流的波形。 图1静电放电发生器 图2静电放电的电流波形 图1中高压真空继电器是目前唯一的能够产生重复与高速的放电波形的器件(放电开关)。图2是标准放电电流波形,图中Im表示电流峰值,上升时间tr=(0.7~1)ns。放电线路中的储能电容CS代表人体电容,现公认150pF比较合适。放电电阻Rd为330Ω,用以代表

JJF(电子)30384-2007电快速瞬变脉冲群校准规范

JJF(电子)30384-2007 电快速瞬变脉冲群校准规范 1 范围 本规范适用于电快速瞬变脉冲群发生器的校准,也适合于多功能电磁抗扰度测试仪的电快速瞬变脉冲群部分的校准。 2 引用文献 GB17626.4-1998 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 3 概述 电快速瞬变脉冲群发生器(Electrical Fast Transient/Burst Generator,以下简称发生器)是电磁兼容抗干扰试验中用到的重要仪器。发生器主要用于模拟沿电网传播或从信号线耦合的电快速瞬变脉冲群对电子仪器设备的冲击过程,考察被测试电子仪器设备的抗电快速瞬变脉冲群的能力。发生器主要由直流电压发生器、放电开关、波形网络组成。 4 计量性能要求 4.1 单脉冲电压峰值 范围:(0~4)kV,最大允许误差±10%(分别在50Ω、1000Ω负载时)。 4.2 单脉冲上升时间 5ns,最大允许误差±30%(分别在50Ω、1000Ω负载时)。 4.3 单脉冲持续时间 50ns,最大允许误差±30%(分别在50Ω、1000Ω负载时)。 4.4 单脉冲重复频率 5kHz、100kHz,最大允许误差±20%。 4.5 脉冲群持续时间 单脉冲重复为5kHz时,脉冲群持续时间为15ms,最大允许误差±20%; 单脉冲重复为100kHz时,脉冲群持续时间为0.75ms,最大允许误差±20%。 4.6 脉冲群周期 300ms,最大允许误差±20%。 图1 脉冲群波形图

5 校准条件 5.1 环境条件 5.1.1 温度:(23±5)℃ 5.1.2 相对湿度:(65±15)% 5.1.3 周围无影响正常校准工作的电磁干扰和机械震动。 5.2 对标准设备的要求 5.2.1 50Ω脉冲高压衰减器:功率≥2W,带宽≥400MHz,衰减器的输入阻抗和输出阻抗为50Ω。 5.2.2 1000Ω脉冲高压衰减器:功率≥2W,带宽≥400MHz,衰减器的输入阻抗为1000Ω,输出阻抗为50Ω。 5.2.3 数字存储示波器:带宽≥400MHz,幅度测量最大允许误差优于±1.5%。 6 校准项目和校准方法 6.1 外观及结构检查 6.1.1 发生器的标志应符合国家相关技术文件的规定,发生器应明示以下信息: ——产品名称及型号 ——出厂编号(或设备编号) ——生产日期 ——制造厂商(或商标) 6.1.2 发生器应设有接地端钮,并标明接地符号,接地线应完好无损。 6.1.3 发生器的开关、旋钮、按键、接口等控制和调节机构应有明确标志。 6.2 单脉冲电压峰值(分别在50Ω、1000Ω负载时) 校准发生器的单脉冲电压峰值时,使用数字存储示波器和脉冲高压衰减器,其接线如下图: 图2 校准原理图 将发生器的输出直接连接到脉冲高压衰减器的输入端,脉冲高压衰减器的输出端接示波器,校准要分别在50Ω、1000Ω负载时进行。校准方法如下: 6.2.1 示波器和发生器开机预热半小时以上,方可进行测量。 6.2.2 脉冲高压衰减器输出端为BNC头,输入端通常为特殊的SHV头,使用时注意不要接反。如发生器的输出不是SHV头,则应使用转接头连接发生器和脉冲高压衰减器。 6.2.3 示波器设置为50Ω输入阻抗,以及合适的电压、时间档和触发模式。 6.2.4 将发生器调节到需校准点,按开始键。 6.2.5 从示波器读数,并将示波器捕捉到的脉冲波形存储,读取并记录单脉冲峰值电压和单脉冲波形参数。 6.2.6 调节发生器的输出电压,校准下一点。 6.2.7 校准完毕,将发生器输出调节到零。 6.3 单脉冲上升时间(分别在50Ω、1000Ω负载时) 校准发生器的单脉冲上升时间时,其接线图同图2,可以和单脉冲电压峰值的校准同时进行。

电压跌落、短时中断和电压变化的抗扰度测试

电压跌落、短时中断和电压变化的抗扰度试验 分享到:4 电压跌落、短时中断和电压变化的抗扰度试验 IEC61000-4-11(GB/T17626.11)1.干扰的起因 电压瞬时跌落、短时中断是由电网、变电设施的故障或负荷突然出现大的变化所引起的。在某些情况下会出现两次或更多次连续的跌落或中断。电压变化是由连接到电网的负荷连续变化引起的。 这些现象本质上是随机的,其特征表现为偏离额定电压并持续一段时间。电压瞬时跌落和短时中断不总是突发的,因为与供电网络相连的旋转电机和保护元件有一定的反作用时间。如果大的电源网络断开(一个工厂的局部或一个地区中的较大范围),电压将由于有很多旋转电机连接到电网上使之逐步降低。因为这些旋转电机短期内将作为发电机运行,并向电网输送电力,这就产生了电压渐变。作为大多数数据处理设备,一般都有内置的断电检测装置,以便在电源电压恢复以后,设备按正确方式起动。但有些断电检测装置对于电源电压的逐渐降低却不能快速作出反应,结果导致加在集成电路上的直流电压,在断电检测装置触发以前已降低到最低运行电压水平之下,由此造成了数据的丢失或改变。这样,当电源电压恢复的时候,这个数据处理设备就不能正常再起动。 2.试验目的

IEC61000-4-11标准规定了不同类型的试验来模拟电压的突变效应,以便建立一种评价电气和电子设备在经受这种变化时的抗扰性通用准则。其中对电压渐变作为一种型式试验,根据产品或有关标准的规定,用在特殊的和认为合理的情况下。 3.三个专门的术语 (1)电压瞬时跌落指在电气系统的某一点,电压突变下降,在经历了半个周期到几秒钟的短暂持续期后,又恢复正常。 (2)短时中断指供电电压消失一段时间,一般不超过1min。短时中断可认为是100%的幅值瞬时跌落。 (3)电压渐变指供电电压逐渐变得高于或低于额定电压,变化的持续时间相对周期来说,可长可短。

浪涌抗扰度(Surge)测试之欧阳家百创编

浪涌(冲击)抗扰度(Surge) 欧阳家百(2021.03.07) 1.浪涌(冲击)抗扰度试验 1.1概述 浪涌抗扰度试验所依据的国际标准是IEC61000-4-5:2005,对应国家标准是GB/T17626.2:200X《电磁兼容试验和测量技术浪涌(冲击)抗扰度试验》。 浪涌(冲击)抗扰度试验就是模拟 带来的干扰影响,但需要指出的是,考核设备电磁兼容性能的浪涌抗扰度试验不同于考核设备高压绝缘能力的耐压试验,前者仅仅是模拟间接雷击的影响(直接的雷击设备通常都无法承受)。 1.2浪涌(冲击)抗扰度试验目的 本标准的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。本标准规定了一个一致的试验方法,以评定设备或系统对规定现象的抗扰度。 1.3浪涌(冲击)抗扰度试验应用场合 本标准适用于电子电气设备,但并不针对特定的设备或系统,具有基础EMC电磁兼容出版物的地位。

2.术语和定义 2.1 浪涌(冲击) 沿线路传送的电流电压或功率的瞬态波,其特性是先快速上升后缓慢下降。 2.2 组合波信号发生器 能产生1.2/50μs开路电压波形、8/20μs短路电流波形或10/700μs 开路电压波形、5/320μs短路电流波形的信号发生器。 2.3 耦合网络 将能量从一个电路传送到另一个电路的电路。 2.4 去耦网络 用于防止施加到上的浪涌冲击影响其他不作试验的装置设备或系统的电路。 2.5(浪涌发生器的)等效输出阻抗 开路电压峰值与短路电流峰值的比值。 2.6 对称线 差模到共模转换损耗大于20dB的平衡对线。 3.试验等级及选择 优先选择的试验等级范围如表1所示。

EMC61000-4B电快瞬变脉冲群发生器操作手册

编制/日期:蒋修旭 2019-3-2 审核/日期: 批准/日期:EMC61000-4B 快速群脉冲发生器操作手册

第一章面板说明 一、前面板说明 图3EMS61000-4B快速群脉冲发生器前面板示意图 1.EUT电源指示灯:当试品电源输入端已上电,并且“EUT ON”按键按下后,此指示灯亮,表明EUT电源输出端已通电,否则此指示灯熄灭。 2.EUT电源输出端口:此端口可连接被试设备的电源端,供受试设备工作。 3.群脉冲耦合端:通过同轴电缆线或一转三连接器将P.OUT输出端与其中一个或多个耦合端连接,可将群脉冲耦合至相应路径。 4.P.OUT输出端:脉冲群输出口,可与左侧群脉冲耦合端连接。也可用于观察波形或连接电容耦合夹进行信号线试验,观察波形时必须在端口接上高压衰减器和400M以上示波器。 5.接地端(SG):用于与参考接地板进行连接。 6.“谨防高压”警示灯:当仪器在测试状态时,该警示灯亮。 7.电压调节旋钮:用于调节试验电压,顺时针旋转时电压增大,逆时针旋转时电压减小。开机和关机之前均要将其逆时针旋转到底。 8.操作键

脉冲频率选择:在复位状态下,按此键可进行2.5kHz/5kHz/100kHz脉冲重复频率的切换,相应指示灯会点亮;在设定状态下,按此键为光标循环左移; POS/NEG:在复位状态下,按此键切换试验电压正、负极性,相应指示灯会点亮;在设定状态下,按此键为光标循环右移; EUT.ON:此键用于控制受试设备工作电源的接通和断开;在设定状态下,按此键为光标所在位置数循环减1; △:在设定状态下,按此键为光标所在位置数循环加1; 设定/确定:在复位状态下,按此键可进入试验时间的设定;在设定状态下,按此键确认并完成该项设定。 9.电源开关(POWER):仪器电源开关。 10.复位键(RESET):按此键可切断脉冲输出,测试结束,相应警示灯会熄灭。 11.启动键(START):按此键可启动脉冲输出,测试开始,相应警示灯会闪烁。 12.显示窗口B:时间显示窗口,用于显示试验时间,单位为s。 13.显示窗口A:试验电压显示窗口,用于显示脉冲峰值电压,单位为kV。

电快速瞬变脉冲群抗扰度测试作业指导书

1. 目的: 评价产品在电快速瞬变脉冲群干扰下的抗干扰能力。 (电路中,机械开关对电感性负载的切换,通常会对同一电路中的其他电气和电子设备产生干扰。这类 干扰的特点是:脉冲成群出现、脉冲的重复频率较高、脉冲波形的上升时间短暂、单个脉冲的能量较 低。) 2. 范围: 适用于电源线有接入供电网络的电子电气产品。 3. 定义:暂无 4. 职责: 4.1测试员负责雷击浪涌测试的产品接线、过程测试及异常反馈; 4.2审核人员负责试验记录结果或试验过程状态的确认及巡查。 5. 内容: 图1.单相供电设备接线图 式试验”为例进行配置。“在设备最终安装条件下对 另,我司主要以产品电源线上的抗干扰试验为主,因此重点讲述“电源线抗干扰”试验配置。一1 5.2.1台式设备电源线抗干扰试验配置 受试设备按生产厂的安装要求与接地系统相连接,不允许有额外的接地,受试设备的的电源线长度如 修订日期:页码:2/16控 5.1 试验接线: 1)将受试设备的供电网络接入仪器后面板的“ 2) 5.2 试验配置: EUT电源输入端”,将受试设备的电源端接 、地线(PE线)一一对应。 (标准配置) 接线须短而粗,长宽比小于 F1科1持 按照GB/T17626.4,IEC61000-4-4最新标准的相关要求进行配置。本配置主要以“在 MAI. /'■1 LJ “EUT电源输出端”,注意相线(L线N 线 板相连, 将仪器前面板上的接地端子(SG *注意:请尽量使用50cm的“带护套 EC T ■ 验室进行的型 果超过0.5m,应把电源线折叠在一起,然后放置在距参考接地板上方0.1m 处。

修订日期:页码:3/16控 长度:0. 5m 1趙缘支座 被试设备 群脉冲发竺器 按地参考平面 图2.台式设备电源线抗干扰试验配置图① 长度;0, 5m 1屣缘支座 被试设备 群脉冲发生器 接地参考平面 图3.台式设备电源线抗干扰试验配置图②\ '蕾考孃地板 怪拔堤0.5也 乂下 '忒刮桌 1趙錄支座被试设备 长度:0. 5m 5.2.2地面设备信号线抗干扰性试验配置土接线要求与台式设备相同) 电源 群泳冲注人POUT 电:爆 1 5.2测试机台: 群脉沖发梓器标准接地板 杭州远方EMS61000-4B 智能型群脉冲发生器(ELECTRICAL INTELLIGENT TRANSIENT GENERATOR)

浪涌冲击抗扰度试验作业指导书

浪涌(冲击)抗扰度试验作业指导书 更多免费资料下载请进:https://www.doczj.com/doc/bd10873471.html,好好学习社区

浪涌(冲击)抗扰度试验作业指导书 1. 范围: 本作业指导书规定了整机浪涌(冲击)抗扰度试验方法。 2. 引用标准: GB4706.1-2005《家用和类似用途电器的安全第一部分:通用要求》 GB 4343.2-1999《电磁兼容家用电器、电动工具和类似器具的要求第2部分:抗扰度—产品类标准》 GB/T 17626.5-1999《电磁兼容试验和测量技术浪涌(冲击)抗扰度试验》 GB/T 4365-2003《电磁兼容术语》 IEC 60335-1:2001+A1:2004《Household and similar electrical appliances-Safety - Part 1:General requirements》 CISPR 14-2:1997+A1:2001《Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 2: Immunity product family standard》 IEC 61000-4-5:2005《Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test》 EN60335-1:2002《Household and similar electrical appliances - Safety - Part 1: General requirements》 EN 55014-2:1997+A1:2001《Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 2: Immunity product family standard》 EN 61000-4-5:1995+A1:2001 《Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test 》 3. 术语和定义: 下列术语和定义适用于本标准。 3.1 EUT equipment under test 受试设备。 3.2 浪涌(冲击) surge 沿线路传递的电流、电压或功率的瞬态波。 3.3 耦合网络 coupling network 用于将能量从一个电路传递到另一个电路的电路 3.4 去耦网络 decoupling network 用于防止施加到EUT上的浪涌(冲击)影响其他不做实验的装置、设备或系统的电路 3.5 差模电压 differential mode voltage 一组规定的带电导体中任意两根之间的电压。差模电压又称对称电压 (symmetrical voltage)。

电快速瞬变脉冲群(EFT)和静电(ESD)问题的测量和定位-6页文档资料

电快速瞬变脉冲群(EFT)和静电(ESD)问题的测量和定位 大部分电子产品需要通过电快速瞬变脉冲群(EFT)(根据IEC61000-4-4)和静电放电(ESD)(根据IEC61000-4-2)等项目的标准测试。EFT和ESD是两种典型的突发干扰,EFT信号单脉冲的峰值电压可高达4kV,上升沿5ns。接触放电测试时的ESD信号的峰值电压可高达8kV,上升时间小于1ns。这两种突发干扰,都具有突发、高压、宽频等特征。 在进行标准的EFT/ESD测试时,把干扰脉冲从设备外部耦合到内部,同时监视设备的工作状态。如果设备没有通过这些标准的测试,测试本身几乎不能提供任何如何解决问题的信息。 要想定位被测物(EUT)对突发干扰敏感的原因和位置,必须进行信号测量。但是如果采用示波器进行测量的话,EUT内部的干扰会产生变化。例如图1中,使用金属导线的探头连接到示波器,会形成一个额外的干扰电流路径,从而影响测试结果,很难定位产生ESD/EFT问题的原因。 EFT/ESD干扰电路正常工作的 机理 在进行EFT/ESD等抗扰度测试 时,需要把相应的突发干扰施加到 EUT的电源线,信号线或者机箱等 位置。干扰电流会通过电缆或者机 箱,流入EUT的内部电路,可能 会引起EUT技术指标的下降,例 如干扰音频或视频信号,或者引起 图1 用示波器测量EFT/ESD 通信误码等;也可能引起系统复 位,停止工作,甚至损坏器件等。 电子产品的抗干扰特性,取决于其PCB设计和集成电路的敏感度。电路对EFT/ESD信号敏感的位置,一般能被精确定位。形成这些"敏感点"的原因,很大程度上取决于GND/VCC的形状以及集成电路的类型和制造商。 实践发现,产生EFT/ESD问题的最主要的原因是,干扰电流的主要部分会流入低阻抗的电源系统。干扰电流能通过直接的连接进入GND系统,再由线路连接,从另外一个地方耦合出来;干扰电流也能通过直接连接进入GND系统,然后通过和金属块(例如机箱)等物体的容性耦合方式,以电场的方式(场束)耦合出来。 图2中,干扰脉冲电流I通过电缆或者电容渗透到PCB内。由干扰电流产生电场干扰(电场强度E)或者磁场干扰(磁场强度B)。磁脉冲场B或电脉冲场E是影响PCB最主要的基本元素,一般来说,敏感点要么仅对磁场敏感,要么仅对电场敏感。 干扰电流I通过电源线注入到设备内部。由于旁路电容C的存在,一部分电流IA离开了被测物,内部的干扰电流Ii被减少了。图中所示的由干扰电流Ii产生的磁场B会影响它周围几厘米范围内的电路模块,一般电路模块内只会有很少的信号线会对磁场B敏感。

相关主题
文本预览
相关文档 最新文档