当前位置:文档之家› (完整版)结构力学笔记

(完整版)结构力学笔记

(完整版)结构力学笔记
(完整版)结构力学笔记

第一章绪论

1、不论设计任何结构都要经过正确的计算,才能达到安全、经济和合乎使用要求的目的。

2、活动铰支座、铰支座、固定支座和定向支座

3、杆件结构的结点,通长可分为铰结点、刚结点、组合结点三种。

4、铰结点上的铰结端可以自由相对转动,因此,受荷载作用时:铰结点上个杆间夹角可以改变,与受荷前的夹角不同;各杆的铰结端不产生弯矩。铰结点:被连接的杆件在连接处不能相对移动,但可以相对转动,可以传递力,但不能传递力矩。木屋架的结点比较接近与铰结点。

5、刚结点上各杆的刚结端不能相对转动,即认为刚结点是一个刚体,各杆均刚结与此刚体上,因此,受荷后:刚结点上各杆间的夹角不变,各杆的刚结端旋转同一个角度;各杆的刚结端一般产生弯矩。

刚结点:被链接的杆件在连接处既不能相对移动,又不能相对转动,既可以传递力也可以传递力矩。现浇混凝土结点通常属于这类情形。

6、若在同一个结点上,某些杆间相互刚结,而另一些杆间相互铰结,则称为组合结点或半铰结点。

7、铰结点上的铰称为完全铰或全铰。

组合结点上的铰则称为非完全铰或半铰。

8、实际结构情况复杂,往往不能考虑所有因素去做严格计算,而需去掉次要因素,以简化图式来代替,这种用以计算的简化图式,叫做结构的计算简图或计算模型。

9、确定计算简图的原则是:保证设计上需要的足够精度;使计算尽可能简单。

10、常见杆件结构类型梁(多跨静定梁、连续梁)、拱、桁架、钢架。

第二章平面体系的几何组成分析

1、在不考虑材料应变的条件下,几何形状和位置都不能改变的体系称为几何不变体系。

在原来位置上可以运动,而发生微量位移后不能继续运动的体系,叫做

瞬变体系。

可以发生非微量位移的体系称为常变体系。

常变体系和瞬变体系统称为可变体系,均不能作为建筑结构,只有几何不变体系才能用作建筑结构。

由于瞬变体系能产生很大的内力,所以不能用作建筑结构。

2、自由度:是体系运动时可以独立改变的几何参数的数目。即确定体系位置所需的独立坐标的数目。

3、点的自由度:在平面内点的自由度等于2.

4、刚片:几何不变的平面物体叫刚片。它可以是一个杆,也可以是由若干个杆组成的几何不变部分。一个刚片的自由度等于3.

5、约束:是能减少自由度的装置。常见的约束有链杆和铰。

6、链杆:是两端以铰与别的物体相联的刚性的杆,一个链杆相当于一个约束。链杆可以不是直杆而是曲杆、折杆,它们同样也可以使两铰间距不变,起到杆件两端点连接成直杆的约束作用。

7、单铰:联结两个刚片的铰叫做单铰。单铰相当于两个约束。

8、联结两刚片的两链杆的交点为虚铰。

9、复铰:联结3个或3个以上的刚片的铰称为复铰。联结N个刚片的复铰相当于(N-1)个单铰。

10、一个几何不变体系,如果去掉任何一个约束就变成可变体系,则称为无多余约束的几何不变体系。无多余约束的几何不变体系的组成规则:

A:3刚片以不在同一条直线上的3铰两两相联

B:两刚片以1铰及不通过该铰的1个链杆相联

C:2刚片以不互相平行,也不汇交的3链杆相联

D:将新结点用二杆铰结与一几何不变体系,且3铰不在同一直线上用铰联结结点的两杆称为二元体或双干系。任何体系加二元体时其机动性质不变。拆去二元体体系的机动性质也不变,原体系自由度数目不变。

11、无多余约束的几何不变体系时静定结构。特性:在任意荷载作用下,支座反力和所用内力均可由平衡条件求出,其值时唯一和有限的。

12、有多余约束的几何不变体系是超静定结构。特性是仅由平衡条件不能求出全部内力及支座反力。

第三章静定结构内力计算

1、求支座反力时要尽量写出这样的方程:方程中只含有所求的未知量,而另外两个反力不出现。若另外两个反力相交,则取其交点为矩心,写力矩方程;若另外两个反力平行,则写投影方程。

2、计算时要注意:力偶在任何一个轴上的投影等于零。力偶对任何一点的矩都相等,等于力偶矩。

3、内力符号的规定:弯矩图要画在受拉纤维的一侧。剪力符号使杆件微段有顺时针转动倾向的为正。轴力以拉力为正。

4、指定截面内力的计算:

1)将待求内力的截面截开,体系分割为两部分,任取一部分作为截离体。

2)作截离体的受力图,将暴露处的剪力轴力画成正向,弯矩正向自行假设。】

3)由投影平衡方程求剪力及轴力,由对截面形心取矩方程求弯矩,

若得正与假设方向相同,若得负则相反。

5、某截面上的剪力的数值等于该截面一侧外力在垂直于杆轴方向上的投影之和,而方向相反。轴力等于一侧外力在杆轴方向上的投影之和,而方向相反。弯矩等于一侧外力对截面形心力矩之和,而方向相反。

6、绘制刚架弯矩图的基本方法:

1)利用剪力与弯矩间的微分关系,可以得到:

A:当刚架中某个直杆上两截面间无外力作用时弯矩图按直线变化

B:若已知两截面间剪力等于零,则弯矩图为一常数

C:当某杆截面一侧外力的合力平行于杆轴时,则杆上的弯矩图为一常数。

2)利用结点平衡条件可以得到:若结点上只有两根杆,且结点上无外力偶作用时,则M图或者都在里侧,或者都在外侧,且数值相同。

3)铰支座或自由端,若无外力偶作用,则弯矩等于零,若有外力偶作用,则弯矩等于外力偶矩。

D:弯矩图凸向荷载所指的方向。在集中力作用处弯矩图无突变,两侧都相等。

7、用叠加法作简支梁的弯矩图:含义是一组外力共同作用下产生的弯矩图的纵标等于各力分别作用下产生的弯矩图的纵标的代数和。

为了简便,采用如下的实际做法:

1)根据作用于两端的外力偶矩,标出端弯矩纵标

2)连以直线,称为基线

3)在基线上叠加杆上荷载在简支梁上产生弯矩图纵标。

8、刚架中任何一杆或杆的一段可通过简支梁绘制。

9、绘制弯矩图的步骤可归结为:

1)求支座反力

2)求控制截面的弯矩值。控制截面包括杆的两端、集中力作用处,力偶作用处两侧,均为荷载的起点、终点。

3)若两控制面无外力作用,则联以直线。若有外力作用,则联以直线后叠加上简支梁上的弯矩图。

10、任何一个杆,不论其两端的实际支撑如何,都可以通过简支梁绘

制弯矩图。

11、刚架剪力图绘制要点:

1)求出杆两端的剪力,当作简支梁绘制剪力图。

2)两截面间无垂直外力,作用时剪力图为常数。有均布垂直荷载时剪力图为一斜线。遇见集中垂直外力时,剪力图突变。

3)剪力绕杆的内部邻近一点顺时针转动时为正。

4)对于水平杆,正的剪力图画在上方。

12、多跨静定梁是多跨的,同时又是静定的,有基本部分和附属部分组成。基本部分的特点时脱离相邻部分,可以独立承受作用于其上的竖向荷载而保持平衡,它可以是几何不变体系,也可以是几何可变体系;附属部分是可变体系。

为了清楚地表示各部分的关系,把附属部分放在基本部分上面,把联结铰用附属部分的两个支杆代替,称这时的附属部分为附属梁,基本部分为基本梁,称图为层次图或基附关系图。

13、当力作用与基本梁或基本梁与附属梁的联结铰上时,附属梁不受力,只有基本梁受力。

当力作用于附属梁时,基本梁、附属梁均受力。

14、三铰拱在竖向荷载作用下不仅产生竖向支座反力,而且产生水平

支座反力。

具有与拱相同荷载和相同跨度的梁为代梁或相应的简支梁或相当梁。

三铰拱的竖向反力与相当梁的竖向反力相同。

F为拱高或拱矢

三铰拱的水平推力H永远指向内。

拱愈扁平,推反力H愈大。好、H=M C/f

三铰拱的弯矩小于相当梁的弯矩

三铰拱的弯矩小于曲梁的弯矩。

三铰拱的弯矩图、剪力图、轴力图都是曲线图形;在集中力处,由于(相当梁的剪力图)有突变,所以拱的剪力图、轴力图在此处均有突变。

由于弯矩与剪力之间存在微分,与梁类似,剪力为正处,弯矩为增函数;剪力为负处,弯矩为减函数;剪力为零处,弯矩有极值。

剪力公式

轴力公式

带拉杆的三铰拱拉力公式S=Mc/f

15、三铰拱的合理拱轴:定义是在给定的荷载作用下,采用这种拱轴,拱中个截面均无弯矩、无剪力、值承受轴力。

合理拱轴的表达式:y=Mx/H H=Mc/f

对于合理拱轴,支座处的轴力最大,拱顶处轴力最小,等于推反力H。

16、桁架是铰结直杆体系,承受结点荷载。其杆分为上弦杆、下弦杆、斜杆及竖杆。桁架中各杆只承受轴力,拉力对结点的作用方向为背离结点。压力对结点的作用方向为指向结点。

桁架可分为简单桁架、联合桁架和复杂桁架

简单桁架时按二元体规律形成的桁架

用结点法计算桁架内力:一个结点上未知力个数不得多于2个。

简单桁架可逐次用结点法求出全部内力,其次序与拆二杆结点的次序相同。

零杆:内力为零的杆称为零杆。1)一个结点上只有2根不共线的杆,结点上无外力作用,这两个杆均为零杆;2)结点上无外力作用,单杆为零杆。

17、平行弦桁架:弦杆内力从两端向中央递增,中间的弦杆内力最大:腹杆内力从两端向中央递减,两端的内力最大。

平行弦桁架上下弦杆承受梁中弯矩,腹杆承受梁中剪力。

竖杆内力符号与斜杆内力符号相反。

平行弦桁架中下斜杆受拉,上斜杆受压。

18、三角形桁架:弦杆内力两端大,中间小;斜杆及竖杆内力两端小,中间大。

19、抛物线形桁架:在满跨均布结点荷载作用下抛物线形桁架的腹杆内力为零;各下弦杆具有相同的拉力;各上弦杆受压,其水平分量都相等,且等于下弦杆内的拉力。

20、组合结构的计算:也叫混合结构,是由桁架杆和刚架杆两类杆件组成。

桁架杆只承受轴力,而刚架杆时承受弯矩、剪力几何轴力的

只有两端铰结的二力直杆才是桁架杆。

若中间有外力作用,或中间与其他物体相联,或二力铰结折杆,均为刚架杆。

21、画弯矩图要注意

1)杆的铰支端或自由端,若无外力偶作用,则弯矩等于零。

2)若一个刚架结点上只有2根杆,且无外力偶作用,则弯矩土或者都在结点外面,或者都在里面。

3)两截面间,若无垂直外力作用则弯矩图为以直线;若剪力等于零,则弯矩图为一常数。

第四章静定结构位移计算

1、实功:是力在其本身引起的位移上所做的功。

2、虚功:如果位移与做功的力无关,则说力在此位移上做了虚功。

力在做实功时,力在位移过程中,其数值是改变的,而在做虚功时力在位移过程中是不变的。

△ik脚注第一个字母i表示位移的地点和方向;k表示引起位移的原因。

虚位移可以理解为结构所可能发生的连续的、微小的位移。

3、广义力:概括地称这些做功的与力有关的因素为广义力。

广义位移:这些力将在相应的有关位移的因素上做功。这些有关位移的的因素称为广义位移。

4、T12=V12变变形体虚功方程

当给平衡的变形体(状态1)以任意的虚位移(状态2)时,变形体上外力之功的等于个微元体外力在变形上之功之和。

T12=∑∫M1 M2ds/EI+∑∫N1 N2 ds/EA+∑∫μQ1 Q2 ds/GA变形图虚功方程展开式

5、V12=V12相+V12变V12相=0 (4.11)

代表虚位移变形连续条件。

dV12=dV12刚+dV12变dV12刚=0 (4.15)

代表体系平衡条件

dV12=dV12变(4.16) 表示微段外力功等于微段外力在变形上之功。

变形体虚功方程是基于两点得到的:体系是平衡的和虚位移变形是连续的。

6、T ip p ds/EI N p ds/EA Q p ds/GA

求弹性体杆件结构位移的公式,它适用于静定结构,也适应于超静定结构。

静定结构由于荷载作用产生的位移计算:

Δip=p ds/EI 梁、刚架

Δip=N p L/EA 桁架

7、图乘法:Δip=p ds/EI=Δip=∑1/EI p dx

dx=ω*y o将积分转换为两个量的乘积叫图乘。

p

8、曲线图形与y o在杆轴同一侧是乘积取正号

折线图形要分段图乘。

y o必须取自直线图形,而不能取自折线图形或曲线图形

若两个图形都是直线图形,则y o可取自任何一个图形

Δip=∑ω*y o/EI (4.23)位移算式

9、位移法的使用条件:直杆等截面至少有一个图形是直线图形

10、图形的面积及其形心位置:

均布荷载在简支梁上产生的弯矩图:ω=2/3 L*b形心在中央

均布荷载在悬臂梁上产生的弯矩:ω=1/3 a*b 形心在1/4a处

11、静定机构由于支座位移产生的位移计算:Δic=-ΣR*c c为支杆位移的绝对值;R为单位力产生的发生位移支杆的反力,与位移方向一致时取正号。

12、静定结构由于温度改变产生的位移计算:t o=(t1+t2)/2 dφt=ατ’ds/h Δic=Σ∫M*ατ’ds/h+Σ∫Nαt o ds (4.26)

Δic=Σατ’/hωM+Σ∫N iαt o l

对于桁架Δic=ΣN iαt o l 以拉力为正,以温度升高为正

13、功的互等定理:

T12=T21状态1上上的外力在状态2位移上的功等于状态2上的外力在状态1位移上的功。

14、位移互等定理:δ12=δ21

单位力P2=1引起的单位力P1=1的作用点沿P1方向的位移δ12,等于单位力P1=1引起的单位力P2=1作用点沿P2方向的位移δ21

15、反力互等定理:R12=r21

约束1的单位位移所引起的约束2的反力r21等于约束2的单位位移所引起的约束1的反力r12。

第五章力法

1、超静定结构的性质:静力特征:仅根据平衡条件不能求出其全部内力。几何特征是:有多余联系的几何不变体系。

多余联系:是指单独去掉它是体系仍保持不变的那种联系。

必要联系:去掉它时就变成几何可变的

多余联系的反力:超静定力或静不定力或多余力。

必要联系的反力一定能由平衡条件确定。

2、超静定结构的性质

1)仅由平衡条件不能确定多余联系的反力,欲确定之还须考察变形条件。2)因此内力分布欲材料的物理性能和截面的几何性质有关。

3)由于有多余联系,所以当支座位移时,温度改变时,尺寸不准时能产生内力,而静定结构由于这些原因不能产生内力。

4)由于多余联系毁坏时,仍保持为几何不变体系,超静定结构较静定结

构有较强的防御能力。

5)超静定结构整体性强,受力较为均匀。

3、超静定结构多余联系的数目或静不定力的数目,称为超净定次数。

4、去掉多余联系的方式,通长有如下几种

1)去掉几支支杆相当于去掉几个联系。

2)去掉一个单铰相当于去掉两个联系。

3)在超静定结构上作一个切口,暴露出3个静不定力,相当于去掉3个联系。

4)在一个连续杆上加一个单铰,去掉二个联系,增加一个自由度。

5)切断超静定结构中点一根桁架杆,暴露出一个静不定力,相当于去掉一个多余联系。

5、计算超静定结构的方法很多,但基本方法只有梁中——力法,位移法力法是以力作为基本未知量,即先把力求出来,而后求位移。

位移法,是以位移作为基本未知量,先求位移,后求力。

6、用力法解算超静定结构的步骤是:

1)去掉多余联系,化为基本结构,即静定结构。

2)写力法典型方程,即变形条件

3)画各单位弯矩图及荷载弯矩图

4)求系数及常数项

5)解方程,求未知力

6)用叠加法绘制最终弯矩图

7、反对称弯矩图与对称弯矩图图乘结果等于零,称为相互正交。

8、在对称荷载作用下,对称结构的对称轴截面上,只出现对称的未知力,而反对称未知力等于零。同理,在在反对称荷载作用下,只出现对称未知

力,而对称未知力等于零。

9、结构对称性的应用:

无中柱对称结构:

1)当荷载任意时,沿对称轴切开,暴露3对未知力。

2)荷载对称时,无中柱对称刚架的等代半刚架,只出现对称的未知力,如轴力、弯矩。

3)荷载反对称时,无中柱对称刚架的等代半刚架,只有反对称未知力如,剪力。

有中柱对称结构

4)荷载对称时,中柱对称刚架的等代半刚架,截口处出现3个未知力。5)荷载反对称时,有中柱对称刚架的等代半刚架

结论:

1)无中柱对称刚架荷载对称时,沿对称轴截开,取出半刚架,加上沿对称轴可以移动的定向支座,既得其等代半刚架。

2)无中柱对称刚架,荷载反对称时,沿对称轴截开,对半个刚架,沿对称轴加一支杆,既得其等代半刚架。

3)有中柱对称刚架,荷载对称时,紧靠柱子截取左部或右部,加上固定端,既得到其等代半刚架,中柱承受轴力。

4)有中柱对称刚架,荷载反对称时,取其左部或右部,并保留中柱,将中柱的截面惯性矩减半,同时将中柱上的荷载减半。

10、无弯矩情况的判定:

1)一个集中力沿柱子的轴线作用。

2)一对大小性等,方向相反的力沿杆轴作用于杆的两端。

3)集中力作用于不动结点上。

11、在荷载作用下超静定结构位移计算步骤为:

1)结算超静定结构绘出M图。

2)将单位力作用在任意一个基本结构上绘弯矩图。3)按公式计算位移。

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

结构力学课程教学改革

结构力学课程教学改革 摘要:文章通过阐述笔者在“结构力学”课程教学中所遇到的一些问题,并针对这些问题在教学内容、教学方式等方面进行了思考,最后对课程的教学改革提出了自己的一些看法。 关键词:结构力学;教学方法;教学改革 前言 结构力学是高校土木工程专业最重要的一门专业基础课之一,在整个土木工程专业教学中不但具有承上启下的核心地位,而且贯穿于整个专业学习的过程。结构力学的先修课包括高等数学、线性代数、计算机基础知识、工程力学等,作为土木工程学科主要的专业基础课之一,它是联系基础力学课程与工程设计课程的纽带,是从力学基本理论过渡到工程实际应用的重要桥梁。结构力学课程的教学质量直接决定了后续钢筋混凝土结构设计原理、钢结构、地基基础和抗震结构设计、以及课程设计和毕业设计等课程的教学效果,同时也是学生今后在设计或施工工作中解决工程问题的基础。因此,想要学生将大学的专业课程学习扎实,结构力学这门课程必须学好,这就对我们结构力学的教室提出了更高的要求。本人在结构力学的教学过程中,发现了一些教学上所存在的问题,文章将从这些问题着手,提出一些解决问题的方法,并对该课程的教学的改革提出几点自己的见解。 一、结构力学教学中存在的问题 (一)课时少 在教育部大力推行“大土木”专业背景下,学生的课程数量大幅

增加,导致各专业课分配到的课时不可避免的减少,结构力学也不例外。而结构力学是一门专业基础课,主要研究杆系结构的内力和变形,具有内容较多,理论性强,概念较为抽象,解决问题的思路多样化等特点。有很多重要的内容必须细细讲授,要耗费大量课时,课时少与内容多的矛盾相当突出。因此,必须增加结构力学课程的学时。 (二)内容繁琐、零乱 在目前的结构力学的培养方案中,有一些内容较为繁琐、零乱。例如在理论力学中,桁架杆的内力计算已经被讲授过,而结构力学又要重新再讲一次,内容得不到很好的衔接,导致学生上课一头雾水。而像矩阵位移法这类本科学生今后在工作中很少被运用到的内容,大纲却要求重点讲授,不仅浪费课时,也浪费学生学习的精力。因此,教学内容改革势在必行。 (三)内容抽象 结构力学研究计算的是结构在各种效应作用下的响应,包括内力的计算及位移的计算。由于内力看不见,摸不着,学生在学习的过程中缺乏感性的认识,学生很容易将内力等概念混淆,造成对知识点的模糊。且由于课程的内容抽象,这就造成学生在接触到这门课程时容易产生畏难情绪,再者由于学生在学习过程中没有明确的目的性,“怎样去学习”、“知识点该如何运用”、“如何分析力学模型”等问题普遍存在,导致学生不能学以致用,自然而然缺乏对结构力学这门理论性较强的课程的学习兴趣。学生学习后不知道学习结构力学对今后工作有何帮助。

结构力学期末复习题及答案

二、判断改错题。 1、三刚片用三个铰两两相联必成为几何不变体系。 ( ) 2、对静定结构,支座移动或温度改变会产生内力。 ( ) 3、力法的基本体系必须是静定的。 ( ) 4、任何三铰拱的合理拱轴都是二次抛物线。 ( ) 5、图乘法可以用来计算曲杆。 ( ) 6、静定结构的影响线全部都由直线段组成。 ( ) 7、多跨静定梁若附属部分受力,则只有附属部分产生内力。 ( ) 8、功的互等定理成立的条件是小变形和线弹性。 ( ) 9、力法方程中,主系数恒为正,副系数可为正、负或零。 ( ) 三、选择题。 1、图示结构中当改变 B 点链杆方向(不能通过 A 铰)时,对该梁的影响是( ) A 、全部内力没有变化 B 、弯矩有变化 C 、剪力有变化 D 、轴力有变化 2、图示桁架中的零杆为( ) A 、DC, EC, DE, DF , EF B 、DE, DF, EF C 、AF, BF, DE, DF, EF D 、DC, EC, AF, BF 3、右图所示刚架中 A 支座的反 力 H A 为( ) A 、 P P B 、 2 C 、 P P D 、 2 C DE P C 2EI D EI EI A B 4、右图所示桁架中的零杆为( ) G HI A B F F J

A、DG, BI ,CH B、DE,DG,DC,BG,AB,BI C、BG,BI,AJ D、CF , BG , BI 5、静定结构因支座移动,() A、会产生内力,但无位移 B、会产生位移,但无内力 C、内力和位移均不会产生 D、内力和位移均会产生 支座 A 产生逆时针转角,支座 B 产生竖直沉降c ,若取简支梁为) A 、X c a B 、X a C、X c a 7、下图所示平面杆件体系为() A 、几何不变,无多余联系 B、几何不变,有多余联系 C、瞬变体系 D、常变体系 A B EI a A B X EI 6、对右图所示的单跨超静定 梁, 其基本结构,则力法方程为(

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A 、杆件的简化:常以其轴线代表 B 、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C 、体系简化:常简化为集中荷载及线分布荷载 D 、体系简化:将空间结果简化为平面结构 2、结构分类: A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B 、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。 ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。 二、平面体系的机动分析 1、体系种类 A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。 A 、W>0,表明缺少足够联系,结构为几何可变; B 、W=0,没有多余联系; C 、W<0,有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远处的体系分析可见结构力学P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

结构力学的知识点

双筋计算方法: 一As与As' 1、截面计算 1)假设a s=65mm,a s'=35mm,求得h0=h-a s 2)验算是否需要双筋。Mu= f cd bh02§b(1-0.5§b) 3)取§=§b,求As'=【M- f cd bh02§(1-0.5§)】/【f sd'(h0- a s')】 4)求As=【f cd bx+f sd'As'】/ f sd 其中x=§b h0 下面选钢筋,钢筋层净距,钢筋间净距(大于30mm和直径d),保护层厚度,再计算a s和a s' 二、已知As',求As 5)假设a s,求得h0=h-a s 6)求受压区高度x= h0-√h02-2【M- f sd'As'(h0- a s')】/f cd b 7)当x﹤§b h0且x﹤2 a s'时,As=M/【f sd(h0- a s')】 当x≤§b h0且x≥2 a s'时,As=【f cd bx+f sd'As'】/ f sd 8)选择受拉钢筋直径的数量,布置截面钢筋(同上) 2、截面复核 1)检查钢筋布置是否符合规要求 2)将As=?As'=?h0=?f cd f sd' f sd 若带入x=【f sd As- f sd'As'】/f cd b ≤§b h0 ﹤2 a s' 用Mu= f sd As(h0- a s')计算正截面承载力 若2 a s'≤x≤§b h0,矩形截面抗弯承载力 Mu= f cd bx(h0-x/2)+ f sd'As'(h0- a s')

一、As与As'均未知 1、截面设计 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之, ξ1=0.27+2.7 e0/ h0 ξ2=1.15-0.01l0/h η=1+1/【1400(e0/ h0)】(l0/h)2ξ1ξ2 2)令§=§b,求As'=【Ne s- f cd bh02§b(1-0.5§b)】/ f sd'(h0- a s') ≥ρmin bh (ρmin=0.2%)取σs= f sd 求As=【f cd bh0§b+ f sd'As'-N】/ f sd≥ρmin bh 二、已知As',求As 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之,2)计算受压区高度x= h0-√h02-2【Ne s - f sd'As'(h0- a s')】/f cd b 当2 a s'﹤x≤§b h0时,取σs= f sd 求As=【f cd bx+ f sd'As'-N】/ f sd 当x≤§b h0 x≤2 a s'时,As=Ne s'/ f sd(h0- a s') 3)选钢筋,看配筋率是否符合ρ+ρ'≥0.5%,纵筋最小净距(一般为30mm),重取a s= a s'=?,计算保护层厚度是否满足要求,最小截面宽度b min 2、截面复核 1)垂直于弯矩作用平面

结构力学复习材料

结构力学复习题 一、单项选择题 1.图示体系为() 题1图 A.无多余约束的几何不变体系 B.有多余约束的几何不变体系 C.瞬变体系 D.常变体系 2. 图示结构用位移法计算时,其基本未知量数目为( )。 A. 角位移=2, 线位移=2 B. 角位移=4, 线位移=2 C. 角位移=3,线位移=2 D. 角位移=2,线位移=1 3.图示结构AB杆杆端弯矩M BA(设左侧受拉为正)为() A.2Pa B.Pa C.3Pa D.-3Pa 题2图题3图 4.在竖向均布荷载作用下,三铰拱的合理轴线为() A.圆弧线 B.二次抛物线 C.悬链线 D.正弦曲线 5.图示结构DE杆的轴力为() A.-P/4 B.-P/2 C.P D.P/2 6.图示结构,求A、B两点相对线位移时,虚力状态应在两点分别施加的单位力为() A.竖向反向力 B.水平反向力 C.连线方向反向力 D.反向力偶

题5图题6图 7.位移法解图示结构内力时,取结点1的转角作为Z1,则主系数r11的值为() A.3i B.6i C.10i D.12i 题7图8.图示对称刚架,具有两根对称轴,利用对称性简化后的计算简图为() A. B. C. D. 题8图 9.计算刚架时,位移法的基本结构是() A.超静定铰结体系 B.单跨超静定梁的集合体 C.单跨静定梁的集合体 D.静定刚架 10.图示梁在移动荷载作用下,使截面K产生最大弯矩的最不利荷载位置是() A. B.

C. D. 题10图 11.图示杆件体系为( ) A .无多余约束的几何不变体系 B .有多余约束的几何不变体系 C .瞬变体系 D .常变体系 12.图示结构,截面C 的弯矩为( ) A .4 2ql B .2 2ql C .2ql D .22ql 题11图 题12图 13.图示刚架,支座A 的反力矩为( ) A .2Pl B .Pl C .2 3Pl D .2Pl 14.图示桁架中零杆的数目为(不包括支座链杆)( ) A .5 B .6 C .7 D .8 题13图 题14图 15.图示三铰拱,支座A 的水平反力为( ) A .0.5kN B .1kN C .2kN D .3kN 16.图示结构的超静定次数为( ) A .2 B .3 C .4 D .5

结构力学

第一讲平面体系的几何组成分析及静定结构受力分析 【内容提要】 平面体系的基本概念,几何不变体系的组成规律及其应用。静定结构受力分析方法,反力、内力计算与内力图绘制,静定结构特性及其应用。 【重点、难点】 静定结构受力分析方法,反力、内力计算与内力图绘制 一、平面体系的几何组成分析 (一)几何组成分析 按机械运动和几何学的观点,对结构或体系的组成形式进行分析。 (二)刚片 结构由杆(构)件组成,在几何分析时,不考虑杆件微小应变的影响,即每根杆件当做刚片。 (三)几何不变体系 体系的形状(或构成结构各杆的相对位置)保持不变,称为几何不变体系,如图6-1-1 (四)几何可变体系 体系的位置和形状可以改变的结构,如图6-1-2。 图6-1-1 图6-1-2 (五)自由度 确定体系位置所需的独立运动参数数目。如一个刚片在平面内具有3个自由度。(六)约束

减少体系独立运动参数(自由度)的装置。 1.外部约束 指体系与基础之间的约束,如链杆(或称活动铰),支座(固定铰、定向铰、固定支座)。2.内部约束 指体系内部各杆间的联系,如铰接点,刚接点,链杆。 规则一:一根链杆相当于一个约束。 规则二:一个单铰(只连接2个刚片)相当于两个约束。 推论:一个连接n 个刚片的铰(复铰)相当于(n- 1)个单铰。 规则三:一个单刚性结点相当于三个约束。 推论:一个连接个刚片的复刚性结点相当于( n- 1)个单刚性结点。 3.必要约束 如果在体系中增加一个约束,体系减少一个自由度,则此约束为必要约束。 4.多余约束 如果体系中增加一个约束,对体系的独立运动参数无影响,则此约束称为多余约束。(七)等效作用 1.虚铰 两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作用与实铰相同。 平行链杆的交点在无限远处。 2.等效刚片 一个内部几何不变的体系,可用一个刚片来代替。 3.等效链杆。 两端为铰的非直线形杆,可用一连接两铰的直线链杆代 二、几何组成分析 (一)几何不变体系组成的基本规则

结构力学知识点总结

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0,体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。

9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。 () ()Q dM x dF x dx =2 2 ()()()Q dF x d M x q y dx dx ==-,,B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=- =+ ? ? ?

分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。 12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。 13.对称结构受正对称荷载作用, 内力和反力均为对称(K行结点不受荷载情况)。对称结构受反对称荷载作用, 内力和反力均为反对称。 14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)

结构力学知识点汇总

结构力学知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dFQ F Q M M+ dM d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

结构力学最全的知识点梳理及学习方法

第一章绪论 §1-1 结构力学的研究对象和任务 一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。 注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。最简单的结构可以是单个的构件,如单跨梁、独立柱等。 二、结构的分类:由构件的几何特征可分为以下三类 1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。 3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。 三、课程研究的对象 ?材料力学——以研究单个杆件为主 ?弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构 ?结构力学——研究平面杆件结构 四、课程的任务 1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。 2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。 3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。 §1-2 结构计算简图

一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。 选择计算简图时,要它能反映工程结构物的如下特征: 1.受力特性(荷载的大小、方向、作用位置) 2.几何特性(构件的轴线、形状、长度) 3.支承特性(支座的约束反力性质、杆件连接形式) 二、结构计算简图的简化原则 1.计算简图要尽可能反映实际结构的主要受力和变形特点 ,使计算结果安全可靠; .............. 。 2.略去次要因素,便于分析和计算 ....... 三、结构计算简图的几个简化要点 1.实际工程结构的简化:由空间向平面简化 2.杆件的简化:以杆件的轴线代替杆件 3.结点的简化:杆件之间的连接由理想结点来代替 (1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。 (2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。(3)组合结点(半铰):刚结点与铰结点的组合体。 4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结 (1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。沿支座链杆方向产生一个约束力。 (2)固定铰支座:简称铰支座,允许杆件饶固定铰铰心有微小转动。过铰心产生任意方向的

结构力学上期末复习重点

第一章: 机动分析就是判断一个杆系是否是几何不变体系,同时还要研究几何不变体系的组成规律。又称: 几何组成分析、几何构造分析 机动分析的目的: 1、判别某一体系是否为几何不变,从而决定它能否作为结构。 2、区别静定结构、超静定结构,从而选定相应计算方法。 3、搞清结构各部分间的相互关系,以决定合理的计算顺序。 计算自由度: W=3m-2h-r m---刚片数h---单铰数r---单链杆数(支座链杆) W=2j-b-r 【平面链杆系的自由度(桁架):链杆(link)——仅在杆件两端用铰连接的杆件】 非链杆体系的只能用第一个公式计算 J---铰结点数b---链杆数r---单链杆数(支座链杆) = 限制自由度为1 限制自由度为2 限制自由度为3 W>0时,体系几何可变 体系几何不变的必要条件:W≤0 A.三刚片规则 三个刚片用不在同一直线上的三个单铰两两相连,所组成的平面体系几何不变。 B.二元体规则 在刚片上增加一个二元体,是几何不变体系。 C.两刚片规则: 两个刚片用一个铰和一个不通过该铰的链杆连接,组成几何不变体系。

O 瞬变体系:原为几何可变,经微小位移后即转化为几何不变的体系。 铰结三角形规则——条件:三铰不共线 机动分析步骤总结: 计算自由度 判别二元体,如有,先撤去 观察是否是瞬变体系 已知为几何不变的部分宜作为大刚片 两根链杆相当于其交点处的虚铰 运用三刚片规则时,如何选择三个刚片是关键,刚片选择的原则是使得三者之间彼此的连接方式是铰结 各杆件要么作为链杆,要么作为刚片,必须全部使用,且不可重复使用 4.多余约束”从哪个角度来看才是多余的?( A ) A.从对体系的自由度是否有影响的角度看 B.从对体系的计算自由度是否有影响的角度看 C.从对体系的受力和变形状态是否有影响的角度看 D.从区分静定与超静定两类问题的角度看 下列个简图分别有几个多余约束: 0 个约多余束 3 个多余约束

东南大学《结构力学》考试大纲

结构力学》考试大纲 一、命题范围与重点 1.平面体系的几何组成分析 用平面几何不变体系的基本组成规则分析给定平面体系的几何构造,判断其几何稳定性。 2.静定结构的内力计算 静定梁、刚架、桁架、拱和组合结构的内力计算。 直杆弯矩图的叠加法;直杆弯矩,剪力及荷载间的微分关系及增量关系。 隔离体平衡法:结点法和截面法以及它们的联合应用。 多跨静定梁的计算方法。 刚体体系的虚功原理。 3.静定结构的位移计算 弹性体的虚功原理及平面结构位移计算的一般公式。 静定平面弹性结构因荷载、支座移动、温度变化和制造误差而产生的位移计算(单位荷载法)。 图乘法;三角形及标准二次抛物线图形的面积及形心位置。 弹性体系的功的互等定理、反力互等定理和位移互等定理。 4.力法 用力法计算超静定梁、刚架、桁架、组合结构。 上述超静定结构因荷载、支座移动、温度变化和制造误差而产生的内力和位移的计算。 对称性的利用。 5.位移法 等截面直杆的转角位移方程。 用位移法计算刚架和连续梁由于荷载和支座移动产生的内力。 对称性的利用。 6.力矩分配法 用力矩分配法计算连续梁和无侧移刚架 7.影响线 用静力法和机动法作静定梁和桁架反力和内力的影响线。 用机动法作超静定梁的影响线。 用影响线求给定荷载下的影响量。 8.矩阵位移法 单元刚度矩阵的概念。 利用一般单元的刚度矩阵求特殊单元的刚度矩阵。 局部坐标系和整体坐标系中结点力、位移和单元刚度矩阵的转换。 整体刚度矩阵的概念,和集成方法。 等效结点荷载。结构整体结点荷载的形成。 9.结构动力计算 单自由度体系的自由振动。自振频率的计算。 单自由度体系在简谐荷载作用下的受迫振动。 多自由度体系的自由振动。振型和频率的计算、主振型的正交性。 多自由度体系在简谐荷载作用下的受迫振动,振型分解法。

结构力学复习题

结构力学期末考试题 一、名词解释: 1、 结构的计算简图 答:用一个简化的图型来代替实际图形称为计算简图。 2、几何不变体 答:在不考虑材料应变的情况下,体系的形状和位置是不能改变的。 3、自由度 答:等于一个体系运动时可以改变的坐标的数目。 4、多余约束 答:如果在一个体系中增加一个约束,而体系的自由度并不因此而改变,则该约束称为多余约束。 5、内力影响线 答:表示单位移动荷载作用下内力变化规律的图形。 6、内力包络图 答:连接各截面内力最大值的曲线。 7、位移互等定理 答:在任一线性变形体中,由荷载1引起的与荷载2相应的位移影响系数等于由荷载2引起的与荷载1相应的位移影响系数。 8、超静定结构 答:一个结构,如果它的支座反力和各截面内力不能完全由静力平衡条件唯一的确定,称为超静定结构。 9、无侧移刚架 答:如果刚架的各结点(不包括支座)只有角位移,没有线位移称为~。 10、线刚度 答:杆件单位长度的抗弯刚度。用EI/L 表示。 11、形常数和载常数 答:用位移法求超静定结构时,只与杆件截面尺寸和材料性质有关的常数称为形常数,只与荷载有关的常数称为载常数。 12、转动刚度 答:表示杆端对转动的抵抗能力。 二、简答题 1、简述进行结构几何构造分析的目的 答:就是检查结构是否是一个几何不变体。 2、试简述影响线与内力图的区别? 答:影响线:单位移动荷载、横坐标表示单位荷载的作用位置,纵坐标表示指定截面单位内力。内力图:荷载有不变的大小、方向、作用线,横坐标表示截面位置,纵坐标表示相应截面内力大小。 3、力法和位移法的解题思路? 答:力法:以多余未知力为基本未知量,用变形协调条件列出基本方程。 位移法:以独立的位移量为基本未知量,用结点或截离体列出平衡方程。 4、已知两端固定的单跨超静定梁AB ,其A 端的转角位移方程为: M AB =4i AB θA +2 i AB θB -F AB B A M l i +?/6,

最新结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dF Q F Q M M+d M d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

武汉科技大学结构力学考试重点

武汉科技大学《结构力学》复习大纲 要求:试题要涉及结构力学的主要知识点,并注重力学基本概念和计算方法的掌握。以《结构力学(I)》作为考核的重点,分值占70%左右,内容包括:几何组成分析、静定结构的内力及位移计算、力法和位移法对超静定结构的计算、影响线及其应用;《结构力学(II)》占30%左右,内容包括:矩阵位移法(杆系有限元法)对结构的静力计算、动力计算。试题分填空(基本概念)和计算两种题型,达到本科中等以上难度水平。 一、平面杆系结构的几何组成分析 考核几何不变体系组成的三个基本规律,能灵活利用几何组成规律对平面杆系的几何构成做出正确判断。瞬变体系的判断,静定结构及超静定结构的几何构成。 二、静定结构 1. 静定结构的内力计算:利用截面法及平衡条件计算静定结构任意截面的内力,能根据内力图的规律和控制截面的内力,快速做出多跨静定梁、静定刚架、桁架及组合结构的内力图。基本概念包括三铰拱、平面静定桁架、刚架、组合结构等指定截面的内力,利用节点平衡条件及对称性对桁架的零杆做出判断。 2. 静定结构的位移计算:利用单位荷载法计算静定梁、刚架、组合结构、桁架等在荷载、温度作用及支座移动时的位移。基本概念包括虚功原理及其应用,结构位移计算的一般公式,三个互等定理及其适用范围。 三、超静定结构 1. 力法的基本原理及应用。重点考核用力法求解超静定结构(包括超静定梁、刚架、排架、桁架及组合结构)在荷载、温度及支座移动作用下的内力,并能用对称性对结构进行简化。力法的基本概念包括基本未知量的确定、力法基本结构的选择、基本方程的建立及含义、各系数项的含义及计算、根据弯矩图快速做出剪力图及轴力图。 2. 位移法的基本原理及其应用。重点考核用位移法求解超静定结构(包括超静定梁、刚架、排架)在荷载作用下的内力,并能用对称性对结构进行简化。基本概念包括位移法基本未知量的确定、基本结构的选择、基本方程及系数项的含义、对称性的应用。要求记忆等截面直杆的刚度方程及在均布荷载、跨中集中力、支座位移作用下超静定梁的杆端内力。 3. 超静定结构的位移计算。在用力法或位移法计算出超静定结构的内力后,或在给定某超静定结构的弯矩图的条件下,利用虚功原理计算出指定截面的位移;如果所求位移为结点位移,也可以考虑用位移法直接求解。 四、影响线 静定多跨梁、静定桁架等的支座反力或指定截面的内力的影响线,并利用影响线求在给定静荷载作用的影响量及移动荷载作用下某一截面内力的最大值。基本概念包括:影响线的概念、影响线的特征及做法、影响线的应用。 五、矩阵位移法 矩阵位移法对平面桁架、刚架静力计算的步骤及结构刚度方程的建立。基本概念包括:单元刚度方程及刚度系数含义及具体值,单元杆端力与内力、荷载向量的计算,总刚度矩阵的集成,边界条件的处理(包括先处理法和后处理法);根据单元及总刚度矩阵中每个系数的含义计算刚度矩阵中的指定元素值;定位向量的应用,根据结构位移向量计算各单元的内力。 六、动力计算 重点考核单自由度体系在简谐荷载作用下的强迫振动及两个自由度体系的自由振动计算。基本概念包括结构动力微分方程的建立、自振频率和振型的计算,主振型的正交性,

重点结构力学复习题

《结构力学I》期末复习题 一、几何组成分析: 1.图示体系为[ ]体系。 A 几何可变(常变)B几何瞬变C静定 D 超静定 2.图示体系为[ ]体系。 A 几何可变(常变)B几何瞬变C静定 D 超静定 3.图示体系为[ ]体系。 A 几何可变(常变)B几何瞬变C静定 D 超静定 4.图示体系为[ ]体系。 A 几何可变(常变)B几何瞬变C静定 D 超静定 5.图示体系为[ ]体系。 A 几何可变(常变)B几何瞬变C静定 D 超静定

6.图示体系为[ ]体系。 A 几何可变(常变) B 几何瞬变 C 静定 D 超静定 7.图示体系为[ ]体系。 A 几何可变(常变) B 几何瞬变 C 静定 D 超静定 8.图示体系为[ ]体系。 A 几何可变(常变) B 几何瞬变 C 静定 D 超静定 二.静定结构内力计算 1. 试画出图示静定梁的弯矩图和剪力图。

2.试 画 出 图 示刚架的弯矩图、剪力图和轴力图。各杆长均为l 。 3. 试 求 图 示 桁 架各指定杆的轴力。已知F= 30kN 。 三、静定结构的位移计算 1.用图乘法计算图示荷载作用下外伸梁C 点的竖向位移Δcy 。 10kN

2.试画出 图示结构的弯距图。并求C 点的水平位移和D 点转角。已知三杆长均为l ,EI 为常数。 3.试绘制图示静定结构的弯矩图,并求A 点的垂直位移和B 点转角。已知三杆长均为 3m 。各杆EI 均为10000kNm 2。 4.试绘制图示静定结构的弯矩图,并求A 点的垂直位移。各杆EI 均为5000kNm 2。 四.力 法 1.试用力法计算图示结构,绘制弯矩图。已知二杆长均为l ,EI 为常数。 q 5kN

高考文综学霸的地理笔记, 超超超详细, 一轮复习必备!

高考文综240分学霸的地理笔记, 超超超详细, 一轮复习必备! 第一单元从宇宙中看地球 第一讲地球与地图 一、地球与地图 1、赤道上经度相差1°实地距离大约为111千米,其他纬线上经度相差1°实地距离大约为111×千米。经线上纬度相差1°实地距离大约为111千米。 2、东半球的范围从20°W向东到160°E。 3、球面两点的最短距离为两点之间的“大圆劣弧”,常见大圆为赤道、经线圈和晨昏圈。北半球同一纬线上的最短距离向北偏,南半球同一纬线上的最短距离向南偏。 4、该地看北极星的仰角就是该地的纬度。 5、有经纬网的地图,经线指示南北方向,纬线指示东西方向。东西方向是相对的,要根据劣弧进行判断。(劣弧即两点经度差小于180°) 二、等高线地形图 1、等高线地形图的判读 (1)读数值范围,判断地貌类型:海拔在200m以下,等高线稀疏的是平原;海拔在200m~500m,等高线较稀疏的是丘陵;海拔大于500m,等高线密集的是山地;海拔在1000m以上,等高线在边缘十分密集,而顶部稀疏的是高原;四周等高线密集且数值大,中间等高线稀疏且数值小的是盆地。 (2)读疏密程度,判断坡度:等高线越密集,坡度越陡;等高线越稀疏,坡度越缓。从山顶向四周,等高线高密低疏,为凹坡,可通视;高疏低密,为凸坡,易挡住人们的视线。 (3)读弯曲状况:等高线凸向高处的是山谷,凸向低处的是山脊(凸高为谷、凸低为脊)。 (4)读局部闭合等高线:等高线闭合,中高周低的地形类型是山峰;中低周高的地形类型为盆地;特殊情况,规律判读为“大于大的”为山坡上的小山丘或“小于小的”为山坡上的小洼地。 (5)基本特征:同线等高;同图等距;相邻两条等高线数值可以相等,如河谷两侧相邻的等高线,也可以递变;任意两条等高线一般不会相交,若相交或重叠则为陡崖。 2、等高线地形图中的有关计算: (1)计算两点的相对高度: 先算出最大值和最小值的范围,再进行相减或(n-1)×d<△H<(n+1)×d

相关主题
文本预览
相关文档 最新文档