当前位置:文档之家› 一阶常微分方程的奇解

一阶常微分方程的奇解

一阶常微分方程的奇解
一阶常微分方程的奇解

摘要 (2)

1.何谓奇解 (2)

2.奇解的产生 (3)

3.包络跟奇解的关系 (4)

4.理论上证明C-判别曲线与P-判别曲线方法 (5)

4.1 克莱罗微分方程 (9)

5.奇解的基本性质 (12)

5.1 定理1 (12)

5.2 定理2 (14)

5.3 定理3 (14)

6.小结 (14)

参考文献: (15)

一阶常微分方程的奇解

摘要

在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。

关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解

设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈

如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解

定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解

2.奇解的产生

先看一个例子,求方程

033

=-??

? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解

3)(27

1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一

点)0,(0x 处相切,这种特殊的积分曲线y=0

称为奇积分曲线,他所对应的解就是奇

解,这就是奇解的产生。

我们现在给出曲线族包络的定义

某些微分方程,存在一些特殊的积分

曲线,会存在一些特殊的积分曲线,他并

不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

设给定单参数曲线族

0),,(=Φc y x (1)

其中C 是参数,),,(c y x Φ是x,y,c 连续可微函数。曲线族(1)的包络是指这样的曲线,他本身并不包含在曲线族(1)中,但过这曲线的每一点,有曲线族(1)中的一条曲线和他在这点相切。

例如,单参数曲线族

222)(R y c x =+-

(这里的R 是常数,C 是参数)表示圆心为(C ,0)而半径为R 的一族圆,此曲线族显然有包络

y=R 和 y=-R

(见图1)

3.包络跟奇解的关系

由奇解和包络的定义显然可知,若方程0),,(,=y y x F 的积分曲线族(即通解所对应的曲线族)的包络如果存在,则必定是方程0),,(,=y y x F 的奇解。事实上,在积分曲线族包络上的点(x,y )处的x,y 和,y (斜率)的值和在该点与包络相切的积分曲线上的x,y 和,y 满足方程0),,(,=y y x F 。这就是说,包络是积分曲线。其次,在包络的每一点,积分曲线族中都至少有一条曲线与包络相切。因此,

包络是奇解,由此可知,如果知道了微分方程0),,(,=y y x F 的通积分,那么该通积分的包络就是奇解。

4.理论上证明C-判别曲线与P-判别曲线方法

但是,一般的曲线族并不一定有包络,例如同心圆族、平行直线族都是没有包络的,从而我们引出了C-判别曲线与P-判别曲线。

从奇解的定义可知,奇解是一种具有特殊几何意义的特解。正如我们已见到的例子,在求解微分方程时只要注意一些例外情况就会得到这种特解. 这些奇解都是由定义来判定的. 但是由定义来判定奇解比较麻烦,下面介绍两种判别同时也是求奇解的方法:

由微分几何学可知,曲线族(1)的包络包含在由下列方程组

???=Φ=Φ0

),,(0),,(,c y x c y x c 消去 c 得到所谓 c -判别曲线.必须注意,在C-判别式曲线中有时出去包络外,还有其他曲线。

例1 求直线族

0sin cos =-+p y x αα (1)

的包络,这里的α是参数,P 是常数。https://www.doczj.com/doc/b515512548.html,

解:将(1)对α求导,得到

0cos sin =+-ααy x (2)

为了从(1),(2)中消去α,将(2)移项,然后平方,有

22222sin cos 2sin cos P =++ααααxy y x (3)

将(2)平方,又得

0sin cos 2cos sin 2222=-+ααααxy y x

(4) 将(3),(4)相加,得到

222P y x =+

(5) 容易检验,(5)是直线(1)的包络(见图2)

例2 求曲线族

0)(32

)(22=---c x c y (6)

的包络。

解:将(6)对C 求导数。得到

0)(3.32)(22

=-?+--c x c y

0)(2=---c x c y (7)

为了从(6)和(7)消去C ,将(7)代进(6),得

0)(32)(3

4=---c x c x

032)()(3=?????

?---c x c x , 从x-c=0得到

y=x (8) 从03

2=--c x 得到 9

2-=x y (9) 因此,C-判别曲线包括两条曲线(8)和(9),容易检验直线y=x 不是包络,而直线9

2-=x y 是包络(见图3)

值得注意的是,在 c 判别曲线中除了可能有的包络(即奇解)外,还可能是曲线族中奇点的集合, 在奇点,曲线没有确定的切线. 因此这种 c 判别曲线不是解;还可能是不与积分曲线族相切的曲线.

这里介绍另外一种求奇解的方法。

由存在唯一定理知道,如果),,(,y y x F 关于x,y,,y 连续可微,则只要0,≠??y F 就能保证解的唯一性,因此,奇解(存在的话)必须同时满足下列方程

),,(,

y y x F =0 0),,(,,=??y y y x F (10) 于是我们有下面结论:

方程

0),

,(=dx

dy y x F 的奇解包含在由方程组 ?????==0

),,(0),,(,p y x F p y x F p (11) 消去P 而得到的曲线中,这里F (x,y,p )是x,y,p 的连续可微函数,此曲线称为方程(10)的P-判别曲线。P-判别曲线是否是方程的奇解,需要进一步的检验

例3 求方程01)(

22=-+y dx

dy 的奇解。 解:从 ???==-+0

20122p y p 消去P 得到P-判别曲线

1±=y

容易验证,此两直线都是方程的奇解。因为容易求得原方程的通解为:

y=sin(x+c)

而1±=y 是微分方程的解,且正好通解的包络。

例4 求方程2

2??? ??-=dx dy dx dy x y 的奇解

解:从 ???=--=0

2222

p x p xp y

消去P 得到P_判别曲线

2x y =

但2x y =不是方程的解,故此方程没有奇解

强调指出:上面介绍的两种方法,只是提供求奇解的途径,所以C-判别曲线与P-判别曲线是不是奇解,必须进行检验

补充:

4.1 克莱罗微分方程

形如 )(p f xp y += (12) 的方程,称为克莱罗微分方程,这里dx dy p =

,)(p f 是P 的连续可微函数,现在我们进一步讨论:

将(12)两边对x 求导,并以p dx

dy =代入,即得 dx dp p f p dx dy x

p )(,++=, 即 0))((,=+p f x dx

dp 如果0=dx

dp ,则得到 P=C

将它代入(12),得到

)(c f cx y += (13)

这里的C 是任意常数,这就是(12)的通解。

如果0)(,=+p f x ,将它和(12)合并起来

???+==+)

(0)(,p f xp y p f x (14) 消去P 也得到方程的一个解。注意,求得此解的过程真好与从通解(13)中的求包络的手续一样。可以验证,此解的确是通解的包络,由此,我们知道,克莱罗微分方程的通解就是一直线族(在原方程以C 代P 即得),此直线族的包络就是方程的奇解。

例5:求解方程p xp y 1+

= 解:这就是克莱罗微分方程,因而它的通解就是

c

xc y 1+= 从 ???

????+==-c cx y c x 1012 中消去C ,得到奇解

x y 42=

这方程的通解就是直线族,而奇解就是通解的包络

例6 求一曲线,使其在其上的每一点的切线截割坐标轴而成的直角三角形(见(图例6)中的三角形OAB )的面积都等于2

解:设所要求的曲线切线方程为 1=+b

y a x 依题意有 ab=4

而 dx

dy a b -= 由上述三式消去a,b 得

dx dy dx dy x y 42-=??? ?

?- 或 dx dy dx dy x

y -±=2 这是克莱罗微分方程,其通解为

x c c c x c y 21122-=-±= )0(1

???=--=0

122cx x c c y 中消去C 得到微分方程的奇解1=xy ,这是等腰双曲线,显然他就是满足要求的解。

现在,可以引进奇解的概念:微分方程的某一个解称为奇解,如果在这个解的每一点上至少还有方程的另外一个解的存在,也就是说奇解就是这样的一个解,在他上面的每一点至少有方程的两条积分曲线通过。

5.奇解的基本性质

5.1 定理1 设),,(p y x F 及其各一阶偏导数是),,(p y x 的连续函数,若方程),,(dx

dy y x F 有奇积分曲线,则它必包含在P-判别曲线0),,(=y x ?之中 定理1 的性质是,在满足定理中连续可微的条件下,奇积分曲线必须从P-曲线中寻找,但是从P-判别曲线0),,(=y x ?中分解出来的一支或数支连续曲线是否就是),

,(dx

dy y x F 的奇积分曲线,尚需要进一步的依次验证:(1)该支曲线是),,(dx dy y x F 的积分曲线 ;(2)该支曲线上每一点处至少还有),,(dx

dy y x F 的另外一条积分曲线经过,且两者在该点相切。如果(1)不成立,则该支曲线仅是一般的积分曲线,不是奇积分曲线,只有当(1)和(2)都成立时,该支曲线才是奇积分曲线,而他所对应的解才是奇解 例 1 重新考虑:0)(23=-y dx

dy 解 记p dx

dy =,则 0),,(23=-≡y p p y x F

032=-??p p

F 消去P ,即得到P-判别曲线y=0,由本节开始时的讨论可知,他是奇解

如果把例1的0)(23=-y dx dy 改成032=-y dx dy ,仍记p dx

dy =,可得 0),,(32

=-≡y p p y x F

01≠=??p

F 即从P-判别式得不到曲线。看来似乎与前面的讨论有矛盾,其实不然,因为这里31

32--=??y p F ,在y=0上不存在,而定理中假设y F ??是连续的 例2 求方程01)(22=-+y dx

dy 的奇解 解 从0122=-+≡y p F ,

02==??p p F 消去P ,得P-判别曲线012=-y ,他分解成两支y=-1和y=1,用直接代入的方法容易验证这两支都是方程的解,又因为方程可以写为

,12y dx

dy -±= 即 dx y dy

±=-21

故积分得 c x y +±=arcsin

于是得

[])sin()(sin c x c x ++-=+--ππ

=sin(x+c),

由于C 是任意常数,因此)sin(c x y +=与)sin(c x y +-=可以合并写成)sin(c x y +=。容易验证,对任意常数C ,他的确是原方程的解,这是一簇正弦曲线(如图),1±=y 上的每一点都与积分曲线族)sin(c x y +=中的一条曲线相切,故1±=y 是奇解

例3 求方程2,,2y xy y -=的奇解

解 记22),,(p xp y p y x F +-=。F 关于(x,y,p)连续可微,符合定理条件。由022=+-=??p x p

F 得P=X ,代入0),,(=p y x F 中以消去P ,得P-判别曲线,02=-x y ,即,2x y =,通过直接验证可知,2x y =不是解,故原方程没有奇解,

5.2 定理2 从定义知道,一阶微分方程的通解的包络一定是奇解;反之,微分方程的奇解(若存在的话)也是微分方程通解的包络,因而,为了求微分方程的奇解,可以先求出它的通解,然后求通解的包络。

5.3 定理3 设),,(c y x Φ及其各一阶偏导数是(x,y,c )d 连续函数,若),,(c y x Φ=0有包络,,并且该包络是一条连续曲线,且有连续转动的切线,则它必包含在C 判别曲线0),(=y x ?之中,必须指出,从C 判别曲线0),(=y x ?中分解出来的一支或数支曲线是否是包络,尚需要进一步按包络的定义验证 例4 求曲线0)()(32=---c x c y 的包络

解 命0)3()(),,(32=---≡Φx c y c y x ,则

0)(3)(22=-+--=?Φ?c x c y c

为了消去C ,将第二式代入第一式,得

0)9

4()(3=---c x c x 由x=c 得y=x ;再由094=-

-c x 得27

4-=x y 。因此C 判别曲线分解成两条直线y=x 和274-=x y ,容易看出,y=x 不是包络,274-=x y 是包络 6.小结

综上所述,一阶常微分方程的奇解求解过程涉及了数学的许多理论知识与技巧,是个综合性问题。一阶常微分方程的奇解可以有多种求法,例如C-判别法还有P-判别法,我

们也可以根据其方程的性质来求其包络望以后能有更大的发现,得以广泛的应用!

参考文献:

《常微分方程及其应用—方法、理论、建模、计算机》科学出版社

《常微分方程》浙江大学出版社

《常微分方程》第三版高等教育出版

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

一阶常微分方程的奇解

摘要 (4) 1.何谓奇解 (5) 2.奇解的产生 (5) 3.包络跟奇解的关系 (6) 4.理论上证明C-判别曲线与P-判别曲线方法 (7) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (16) 5.3 定理3 (16) 6.小结 (17) 参考文献: (17)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程) x F=0有一特解 y , , (,y

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

试论常微分方程的奇解

试论常微分方程的奇解 摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法. 关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法. Discussing Singular Solution about First Order Differential Equation ZHU Yong-wang (Class 1, Grade 2006, College of Mathematics and Information Science) Advisor: Professor LI Jian-min Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution, which can be solved by the P-judgment method and C-judgment method.While whether the two judgments can be applied to get every singular solution to the first order differential equation? This paper intends to illustrate this problem with several examples. Key words: Singular solution, P-judgment, C-judgment, C-P elimination method, The supplement method, Natural method. 1.引言 一般来说一阶常微分方程拥有任意常数的通解,另外还有个别不含于通解的特解.这种特解可以理解为通解的一种蜕化现象.它在几何上往往表现为解的唯一性遭到破坏.早在1649年莱布尼兹就已经观察到解族的包络也是一个解.克莱络

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(222222222 2)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++-=?++-+=?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++= =++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+=?=?=+-=+-=?-+-=?-=?-=?=+=++?++++==+=(特解)解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32323232sin 2cos 231313322323232 2sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=?=?=?=-+=?=?-=?=+=-+?=+-+?=-++?-(通解) 2.用参数法求解下列微分方程:、接口不严等问题,合电气设备进行调试工作案。高中资料试卷保护装置调

常微分方程解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。 [教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步

推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 4.2 简单的单步法及基本概念 4.2.1 Euler法、后退Euler法与梯形法 求初值问题(4.1.1)的一种最简单方法是将节点的导数用差商 代替,于是(4.1.1)的方程可近似写成 (4.2.1) 从出发,由(4.2.1)求得再将 代入(4.2.1)右端,得到的近似,一般写成 (4.2.2) 称为解初值问题的Euler法. Euler法的几何意义如图4-1所示.初值问题(4.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有 ,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.

一阶微分方程的奇解及其逆问题

一阶微分方程的奇解及其逆问题 摘要介绍了导数已解出的一阶微分方程和导数未解出的一阶微分方程的奇解问题,通过相关实例进行了说明.同时.考虑了常微分方程奇解的逆问题. 关键词奇解;包络;通解;P-判别曲线;C-判别曲线;逆问题 The singular solution of first oder ordinary differential equation and its inverse problem Abstract In this paper, we introduce the singular solution of the first oder ordinary differential equation by giving corresponding examples. Meanwhile, we also consider the inverse problem of the singular solution of ordinary differential equation. Keywords Singular solution; envelope; general solution; P-judging curve; inverse problem

一阶微分方程的奇解及其逆问题 1 概念 例1.1.1 求微分方程 2 -)(2 2 x dx dy x dx dy y + = 的解. 解 令 dx dy p = 代入方程得 2 -2 2 x xp p y + =. (1) 两边对x 求导 0)-2)(1-( --2=→+=x p dx dp x p dx dp x dx dp p p . 由c x p x p +=→=0-2 代入(1)得方程的通解 2 2 2 c cx x y ++= . (2) 由2 0-2x p x p = →=代入(1)得4 2 x y = , 经验证此为原方程的解. 从图1中我们可以看到,此解与方程通解(2)中的每一条积分曲线均相切.对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族中,但是,在这条特殊的积分曲线上的每个点处,都有积分曲线族的一条曲线和它在此点相切,在几何中,这条特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这条特殊的积分曲线所对应的解称为微分方程的奇解. 下面我们分别给出曲线族包络和微分方程奇解的定义. 定义1 设给定单参数曲线族 Φ(x,y,c )=0其中c 是参数,Φ(x,y,c )是x,y,c 的连续可微函数,曲线族Φ(x,y,c )=0 的包络是指这样的曲线,它本身并不包含在这曲线族Φ(x,y,c )=0 中但这曲线的每一点,都有曲线族Φ(x,y,c )=0 中的一条曲线和它在这点相切 .

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解 习题4-1 1.求解下列微分方程: (通解) 特解) (特解)解:2 212 22 ) (22222 2 2222)(2101.(42202.. 0)1)(2(0)2()2(2222); (,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++- = ?++-+= ?+-=?-=? =+-=+-=?-=?=+=++?=+++?+++=++= = ++=+-2 2 4ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln .. 0))(2(ln 22)1(ln ln ); (,)(ln ).2(2 2 2 C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+= ?= ?=+-=+-=?-+-=?-=?-=?=+=++?++++== +=(特解) 解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3 2 2 2 222cos 2) sin (cos 222cos 12 cos 123sec tan , tan , ,tan . cos tan 22).3(-++=+ == = + =+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32 32 32 32sin 2cos 23 13 133 22 323 2 3 2 2 sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0 tan tan 23212 cos sin cos sin cos sin cos 3 cos 21cos cos cos sin cos 2=+=+ = ?= ?= ?=- + =?=?-=? =+=-+?=+-+?=-+ +?-(通解) 2.用参数法求解下列微分方程: 管壁薄、接口不严等问题电气设备进行调试工作高中资料试卷保护装置调

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (3) 2.奇解的产生 (3) 3.包络跟奇解的关系 (5) 4.理论上证明C-判别曲线与P-判别曲线方法 (6) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (17) 5.3 定理3 (17) 6.小结 (17) 参考文献: (18)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解 )(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程

033 =-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(271c x y += 容易看出,y=0也是原方程的一个 解。现在来研究这个解y=0有什么特殊 的地方。由图我们看到,在解y=0上的 每一点)0,(0x 处相切,这种特殊的积分曲 线y=0称为奇积分曲线,他所对应的解 就是奇解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分曲线,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。 设给定单参数曲线族 0),,(=Φc y x (1)

相关主题
文本预览
相关文档 最新文档