当前位置:文档之家› 8-第8讲 理想流体的有旋与无旋流动

8-第8讲 理想流体的有旋与无旋流动

8-第8讲  理想流体的有旋与无旋流动
8-第8讲  理想流体的有旋与无旋流动

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

高等流体力学习题

第一讲绪论 习题: 1.综述流体力学研究方法及其优缺点。 2.试证明下列各式: (1)grad(φ±ψ)=grad(φ)±grad(ψ) (2) grad(φψ)=ψgrad(φ)+φgrad(ψ) (3)设r= x i+y j+ z k,则= (4) 设r= x i+y j+ z k,求div(r)=? (5) 设r= x i+y j+ z k,则div(r4r)= ? 3.给定平面标量场f及M点处上已知两个方向上的方向导数和,求该点处的grad f 第二讲应力张量及应变张量 例2-1试分析下板不动上板做匀速运动的两个无限大平板间的简单剪切流动 ,, 式中k为常数,且k=u0/b。 解:由速度分布和式(2-14、16和17)可得 再由式(2-18)可得 所以II=k=u0/b。 流动的旋转张量R的分量不全为零说明流动是有旋流动,I=tr A=0表明流动为不可压缩流动,II=k表明了流场的剪切速率为常数。

第三讲流体的微分方程 习题:试由纯粘流体的本构方程和柯西方程推导纳维尔-斯托克斯方程(N-S方程)。 第四讲流动的积分方程 【例3-1】 在均匀来流速度为V的流场中放置一个垂直于来流的圆柱体,经过若干距离后测得的速度分布如图所示,假设图示的控制体边界上的压力是均匀的,设流体为不可压缩的,其密度为ρ,试求: (1)流线1-2的偏移量C的表达式; (2)单位长度圆柱体的受力F的表达式。 解: (1)无圆柱体时流管进出口一样大(即流线都是直线,无偏移),进出口的流速分布也是相同的,而放入圆柱体之后出口处的流速分布变成图示的那样,即靠近中心线部分的流速变小,由于已经假定流体是不可压缩的流体,若想满足进出口流量相同——连续性方程,必然会导致流管边界会向外偏移,也就是说出口处流管的截面会增大。因此,求解时可由进出口流量相等入手,设入口处平均流速为V,取宽度为L,所得的连续性方程应为: 求得C=a/2 (2)在流管的进出口截面1-1与2-2之间使用动量方程,即圆柱体的阻力应等于单位时间内流出2-2面的流体的动量与流入1-1面的流体的动量差,列x方向的动量方程可表示为 则,F=-R 【例3-2】试求如图所示的射流对曲面的作用力。 解:假设水平射流的流量为Q,因曲面对称且正迎着射流,则两股流量可以认为相等,等于Q/2。x方向动量方程为 。 所以,射流对壁面的作用力为

理想流体的平面无旋运动

理想流体的平面无旋运动 6-1 给定平面流速度场u x = x 2y + y 2,u y = x 2 - y 2x ,问: (1) 是否存在不可压缩流函数和速度势函数; (2) 如存在,给出它们的具体形式; (3) 写出微团变形速率各分量和旋转角速度各分量。 6-2 已知不可压缩流体平面流在y 方向的速度分量为u y = y 2 -2x + 2y ,求速度在x 方向的分量。 6-3 对平面不可压缩流体的运动,试证明: (1) 如运动为无旋运动,则必满足?2u x = 0,?2u y = 0; (2) 满足?2u x = 0,?2u y = 0的流动不一定是无旋流。 6-4 已知平面流动的速度分布为2222,y x cx u y x cy u y x +=+=其中c 为常数。求流函数并 画出若干条的流线。 6-5 已知平面流动流函数 )(283)22arctan 22(arctan 222y x x y x y Q ++-+++-= πψ 判断是否是无旋流动。 6-6 已知速度势? ,求相应的流函数ψ : (1) ? = xy ; (2) ? = x 3 - 3xy 2 ; (3) 22y x x +=?。 6-7 证明? = 1/2(x 2 - y 2) + 2x - 3y 所表示的流场和ψ = xy + 3x + 2y 所表示的流场完全相同。 6-8 强度为60 m 2/s 的源流和汇流位于x 轴,各距原点为 a=3m 。计算坐标原点的流速,计算通过(0,4)点的流线的流 函数值,并求该点流速。 6-9 在速度为υ = 0.5 m/s 的水平直线流中,在x 轴上方2 单位处放一强度为Q = 5m 2/s 的源流。求此流动的流函数,并绘出此半物体的形状。 6-10 如图所示,等强度两源流位于x 轴,距原点为a 。求 流函数,并确定滞止点位置。

流体力学教案第5章流体漩涡运动基础

第五章 流体旋涡运动基础 §5-1 旋涡运动的几个基本概念 一、涡量场 对有旋流动,0≠ω?,而),,,(t z y x f =ω? ,所以对有旋流动的流场中同时存在一个旋涡场,或称涡量场或角速度场。 k Ωj Ωi ΩΩz y x ?? ??++= (1) z y w Ωx ??-??= υ x w z u Ωy ??- ??= (2) y u x Ωz ??-??= υ 满足涡量连续性方程: 0=??+??+??z Ωy Ωx Ωz y x (3) 二、涡线 同速度场中引进流线、流管和流量的定义一样。下面我们定义涡线、涡管、涡束以及旋涡强度(涡通量)。 涡线――涡线是旋涡场中的一条曲线,在某一瞬时,曲线上各点的切线方 向与该点流体微团的角速度ω? 方向重合。(Ω?方向的判别,根据右手螺旋法则)对非定常流动涡线的形状随时间而变,对定常流动,涡线形状不随时间而变。与流线一样,涡线本身也不会相交。 取k z j y i x s ???? d d d d ++=为涡线上一微元线段。 类似于流线微分方程,或由0d d d d ==?z y x ΩΩΩk j i s Ωz y x ???? ? 可得到涡线微分方程为: ) ,,,(d ),,,(d ),,,(d t z y x Ωz t z y x Ωy t z y x Ωx z y x == (4)

三、涡管和涡束 涡管-在涡量场中任取一不是涡线的封闭曲线,通过封闭曲线上每点的涡线,这些涡线形成一管状表面,称为涡管。 涡束-涡管中充满作旋转运动的流体,称为涡束。 四、涡通量 涡通量-通过任一开口曲面的涡量的总和。 通过开口曲面A 涡通量为: A n ΩJ A d ???=? ? n ? 为d A 的外法线单位向量 对于封闭曲面: A n ΩJ A d ???=?? 由于: 0=??+??+??z Ωy Ωx Ωz y x 所以:0d =?=??A n ΩJ A ? ? 五、速度环量 定义如下:在流场中任取一通曲线AB 。AB 曲线上任一点的速度为V ? ,在 该点B 附近的曲线上任取一微元线段s ?d ,V ?与s ? d 的夹角为α。 则速度环量: ???++==?=B A B A B A AB z w y x u s V s V Γd d d d cos d υα???? 其中:k w j i u V ????++=υ,k z j y i x s ???? d d d d ++= 若A 与B 重合,便成了封闭曲线,则: ???++==?z w y x u s V s V Γk k d d d d cos d k υα? ?= 环量的正向为:沿封闭周线前进时,周线所包围的面积在速度方向的左侧, 即逆时针方向速度环量为“+” ? B

第二章流体力学第一讲知识点汇总

第二章流体力学基础 第一讲 1.物质的三种状态: 固、液、气 2.流动性:在切向力的作用下,物质内部各部分之间就会产 生相对运动,物体的这一性质称为流动性。 3.流体:具有流动性的物体,具体指液体和气体。 4.流体力学: 将流体看作无数连续分布的流体粒子组成的 连续介质. 5.黏滞性:实际流体流动时内部存在阻碍相对运动的切向内摩擦力。 6.流体的分类:实际流体和理想流体 7.压缩性:实际流体的体积随压强的增大而减小,即压缩性。 8.实际流体:具有压缩性存在黏滞性流体。 9.理想流体:研究气体流动时,只要压强差不太大,气体的压缩性可以不考虑,黏滞性弱的流体(水和酒精)的黏滞性也可不考虑,故绝对不可压缩完全没有黏滞性的流体即为理想流体。 10.流体运动的描述:a.(拉格朗日法)追踪流体质点的运动, 即从个别流体质点着手来研究整个流体的运动. 这种研究方法最基本的参数是流体质点的位移. 由质点坐标代表不同的流体质点. 它们不是空间坐标, 而是流体质点的标

号.b.(欧拉法)是从分析流体流动空间中的每一点上的流体质点的运动着手来研究整个流体运动. 即研究流体质点在通过某一个空间点时流动参数随时间的化规律. 注:在流体运动的实际研究中, 对流体每个质点的来龙去脉并不关心, 所以常常采用欧拉法来描述流体的运动. 11.流场:流体流动的空间 12.流线:a.线上每一点的切线方向表示流体粒子流经该点时流速的方向。 b.通过垂直于流速方向上单位面积流线的条数等于流体粒子流经该点时流速的大小。 c.流线的疏密程度可以表示流速的大小。 d.流线不能相交,因为流体流速较小时,流体粒子流经各点时的流速唯一确定。 e.流体作稳定流动时, 流线形状保持不变, 且流线与流体粒子流动轨迹重合. 13.稳定流动:一般情况下, 流体流动时空间各点的流速随位置和时间的不同而不同, 若空间各点流速不随时间变化,流速只是空间坐标的函数v=v(x,y,z),而与时间无关,则称该流动为定常流动(稳定流动).所以,定常流动的流场是一种流速场,也只有在定常流动中,流线即为粒子运动轨迹。而且,速度不随时间变化,不一定是匀速,只是各点速度一定。 14.流管:如果在运动流体中取一横截面S1, 则通过其周边各

理想流体力学课程设计(Hess Smith方法求附加质量)

一、物理背景 无论是船舶还是海洋平台在海洋开发中都起着关键的作用,而开发海洋首先需要对海洋结构物进行深入地研究。这其中,水动力学中的附加质量是研究的重要方面,掌握物体附加质量的计算无疑具有重要的意义。 附加惯性力的存在使物体在理想流体中的变速运动相当于物体自身质量上增加了一个附加质量而在真空中运动,换句话说,理想流体增大了物体的惯性,使物体很难加速也难减速。 计算机是求解附加质量的重要工具,本课程设计主要依据分布源模型的面元法等知识来对圆球、椭球、圆柱、双椭球的附加质量进行数值模拟计算,并进行相关讨论。 二、理论依据 用s 表示无界流中的物体表面,来流为均匀流,其未扰动速度或无穷远处的速度为 , 1 x y z V V i V j V k V V ∞∞∞∞∞∞=++== (2.1.1) 用()Φx,y,z 表示定常速度势,它在物体外部空间域中适合拉普拉斯方程,在物面上适合不可进入条件,在无穷远处,应该与均匀来流的速度势吻合,即 20?Φ=(物体外) (2.1.2) 0=??n φ (物面s 上) (2.1.3) x y z xV yV zV ?∞∞∞Φ=+++(无穷远处) 其中,单位法线向量n 指向物体内部。 在速度势Φ中分出已知的均匀来流项,记 x y z xV yV zV ?∞∞∞Φ=+++ (2.1.4) 这里的?是扰动速度势,?应适合以下定解条件: 20??=(物体外) (2.1.5) V n n ? ∞?=-??(物面s 上) (2.1.6) 0?→(无穷远处) (2.1.7) 易知过物面s 的通量为零,即

??=??s ds n 0? 所以远方条件(2.1.7)可进一步具体化为 ?? ? ??=2 1r O ? (r =∞) (2.1.8) 用pq r 表示点p 和q 之间的距离,对函数()q ?和1/pq r 在物面s 外部和远方控制面c 的内部之空间域内用格林公式,当点p 在上述空间域内时 ()()()1 114q pq q q pq s c p q q ds r n n r ???π +???????? = -?? ????? ????????? ?? (2.1.9) 从?的远方条件(2.1.8)可知,c 上积分趋于零,式(2.1.9)成为 ()()()1 114q pq q q pq s p q q ds r n n r ???π ????? ??? = -?? ????? ???????? ? ?? (2.1.10) 其中, p 是物面s 外的任意一点。 在物体的内部域中构造一个合适的内部解i ?,它在s 内部适合拉普拉斯方程,在物面s 上适合某种物面条件,其具体形式将在下面给出。对于上述物体外部的点p 函数1/pq r 在物体内部域中没有奇点,在内部域中对函数()i q ?和1/pq r 用格林公式,得到 ()()110i i q pq q q pq s q q ds r n n r ??????? ??? =-?? ????? ????????? ?? (2.1.11) 式(2.1.10)和(2.1.11)中的p 是物体外部同一个点,把两式相减,得到 ()()q s pq q i q i q pq ds r n n n r p ????? ? ?? ?????? ????--??? ? ????-??=11 4????π? (2.1.12) 在物面s 上取i ?适合下述两种物面条件,得到两种i ?的定解条件,一种是: 20 (i i s s ?????=? ? =??内部)(上) (2.1.13) 定解问题(2.1.13)是拉普拉斯方程的第一类边值问题,它的解是存在且唯一的。取式(2.1.12)中的内部解i ?为式(2.1.13)所决定的函数,则式(2.1.12)成为 ()() q s pq ds r q p ?? =σ? (2.1.14) 其中

哈尔滨工程大学-理想流体力学-大作业

理想流体力学大作业 学生姓名: 学号: 2013年10月

Hess —Smith 方法计算物体附加质量 作者: 摘 要:本文运用Hess-Smith 方法计算了圆球、椭球和圆柱的附加质量系数以及椭球并行的干扰效应。同 时,文章分析了网格变化对计算值的影响趋势。本文使用matlab 语言对圆球、椭球与圆柱的模型进行了网格有限元的划分,得到各个单元的节点坐标,然后利用Hess-Smith 方法对圆球、椭球及并行椭球的附加质量系数进行计算及分析。 关键字:边界元;Hess-Smith; 附加质量系数 一、物理背景 Hess-Smith 方法是一种计算任意三维物体势流的方法,该方法由美国的Hess 和Smith 两人于20 世纪60 年代提出。Hess-Smith 方法又称为分布奇点法,作为一种边界元方法,它用许多平面四边形或三角形表面单元来表示物体表面,并在每个单元上布置强度未知的源,然后在物体表面的某些考察点上满足法向速度为零的物面边界条件,得到求单元源密度的线性代数方程组。求解方程组得到源密度分布,进而可求流场内任意点的速度、压力等物理量。 二、理论依据 2.1 分布源模型的建立 s 为无界流中的物体表面,来流为均匀流,在无穷远处流体的速度为: x y z V V i V j V k ∞∞∞∞=++ (2.1.1) 1 V V ∞∞== ()Φx,y,z 为定常速度势,并在物体外部空间域中满足拉普拉斯方程,在物面上适合不可穿透条件,在无穷远处,应该与均匀来流的速度势相同。即 20?Φ=(物体外) (2.1.2) 0=??n φ (物面s 上) (2.1.3) 其中,单位法线向量n 指向物体内部。 在速度势Φ中分出已知的均匀来流项,记 x y z xV yV zV ?∞∞∞Φ=+++ (2.1.4) 这里的?是扰动速度势,?应适合以下定解条件:

流体力学主要理论模型

流体力学主要理论模型 在连续介质假设的基础上,建立流体运动的基本方程组,具有广泛的适应性。严格来说这个方程组通常并不封闭,即方程中的未知数多于方程数。为了求出理论解,必须根据情次再提出一些符合或接近实际的假设,从而在某些条件下使方程组封闭。但是,即使方程组已封闭,求方程的解仍然不是轻而易举的。由于方程的非线性特征及方程中变量的互相祸合,使得求解这种一般的方程组几乎成为不可能,因此还必须根据具体问题的特点,抓住问题的主要方面,忽略次要方面,必要时作进一步的假设、简化和近似,设计出一个合理的理论模型。 以下例出流体力学主要的几种理论模型供读者参考。 一、黏性流体与理想流体模型 1.黏性流体模型 流体的黏性是流体的一种物理特性,它表示流体各部分之间动量传递的难易程度,反映了流体抵抗剪切变形的能力。黏性流体是一切真实流体的模型,它具有普遍的意义。 牛顿通过实验首先提出黏性流体的剪切应力公式,为黏性流体力学的发展创造了条件。1823年L.纳维尔和G. G.斯托克斯分别建立了不可压与可压黏性流体运动方程组。此后,边界层、紊流理论的研究普遍开展起来。 虽然流体的黏性是用动力黏度μ来衡量,但是μ大的流体未必当作黏性流体流动来处理。依牛顿内摩擦定律,剪切应力与动力黏度μ及速度梯度有关。因此,虽然流体的动力 黏度较大,但如果流场的速度梯度很小,剪切应力仍然不大,就可以把它当作无黏性流动来处理。相反,如果流体的黏性较小,但流场的速度梯度很大,则仍有必要把它当作黏性流动来处理。 1904年,普朗特提出了边界层理论,将流动划分为两个区域,在远离边界以外的区域中(势流区),黏性效应可予忽略,用无黏性流体理论求解。而在靠近边界的一薄层区域中,黏性效应不可忽略,应利用黏性流动理论求解。这样,边界层理论不仅给出了正确的数学提法,而且也用黏性流动理论解释了在这种情况下阻力的存在。 紊流是黏性流体流动中的一个重要方面。实验表明,流体流动有两种流态,层流和紊流。自然界很多层流运动,常常是不稳定的,稍有扰动,层流立即转变为紊流,紊流运动与层流的重大差别是在它的不规则性和输运能力的剧烈增大。但是由于紊流运动的复杂性,其发生机理至今仍不清楚。目前,对紊流的研究主要通过紊流的平均运动和涨落运动求解黏性流体运动基本方程。 2.理想流体模型 如前所述,实际流体都是具有黏性的,都是黏性流体。不具有黏性的流体称为理想流体,这是客观世界上并不存在的一种假想的流体。在流体力学中引人理想流体的假设是因为在实际流体的黏性作用表现不出来的场合(像在静止流体中或匀速直线流动的流体中),完全可以把实际流体当理想流体来处理。 在许多场合,想求得黏性流体流动的精确解是很困难的。对某些黏性不起主要作用的问题先不计黏性的影响,使问题的分析大为简化,从而有利于掌握流体流动的基本规律。如水波在河中传播时,在较长的距离上,仍不消衰.大气在高空中运动时.长驱直人,常常跨越数千公里,这表明在这类流动中,黏'rt并不起主要作用,因此将其黏性略去.以便可以分析简便且能得到其主要的运动规律。至于黏性的影响,则可根据试验引进必要的修正系数.讨由理想流体得出的流动规律加以修正。此外.即使是对于黏性为主要影响因素的实际流动问题,先研究不计黏性影响的理想流体的流动.而后引人黏性影响,再研究黏性流体流动的更为复杂的情况,也是符合认识事物由简到繁的规律的。基于以匕诸点,在流体力学中.总支先研究理想流体的流动,而后再研究黏性流体的流动。

流体力学课后习题答案 贾月梅主编

《流体力学》 习题与答案 周立强 中南大学机电工程学院液压研究所

第1章 流体力学的基本概念 1-1. 是非题(正确的打“√”,错误的打“”) 1. 理想流体就是不考虑粘滞性的、实际不存在的,理想化的流体。( √) 2. 在连续介质假设的条件下,液体中各种物理量的变化是连续的。( √ ) 3. 粘滞性是引起流体运动能量损失的根本原因。( √ ) 4. 牛顿内摩擦定律适用于所有的流体。( ) 5. 牛顿内摩擦定律只适用于管道中的层流。( ) 6. 有旋运动就是流体作圆周运动。( ) 7. 温度升高时,空气的粘度减小。( ) 8. 流体力学中用欧拉法研究每个质点的轨迹。( ) 9. 平衡流体不能抵抗剪切力。( √ ) 10. 静止流体不显示粘性。( √ ) 11. 速度梯度实质上是流体的粘性。( √ ) 12. 流体运动的速度梯度是剪切变形角速度。( √ ) 13. 恒定流一定是均匀流,层流也一定是均匀流。( ) 14. 牛顿内摩擦定律中,粘度系数m 和v 均与压力和温度有关。( ) 15. 迹线与流线分别是Lagrange 和Euler 几何描述;它们是对同一事物的不同说法;因此迹线就是流线,流线就是迹线。( ) 16. 如果流体的线变形速度θ=θx +θy +θz =0,则流体为不可压缩流体。( √ ) 17. 如果流体的角变形速度ω=ωx +ωy +ωz =0,则流体为无旋流动。( √ ) 18. 流体的表面力不仅与作用的表面积的外力有关,而且还与作用面积的大小、 体积和密度有关。( ) 19. 对于平衡流体,其表面力就是压强。( √ ) 20. 边界层就是流体的自由表明和容器壁的接触面。( ) 1-2已知作用在单位质量物体上的体积力分布为:x y z f ax f b f cz ?=? =?? =?,物体的密度 2lx ry nz ρπ=++,坐标量度单位为m ;其中,0a =,0.1b N kg =,()0.5c N kg m =?;52.0l kg m =,0r =,41.0n kg m =。试求:如图1-2所示区域的体积力x F 、 y F 、Fz 各为多少?

高等流体力学笔记第1讲

流体力学 40个学时 研究生 第一讲 一、流体力学 技术基础课,是在水力学及相关的数学课基础的进一步学习课。40学时,为少学时,清华北大力学等专业约在120~140学时,因此只能是基本的内容。三个大部分:绪论、运动学、动力学。共分8个章节分别为: 第一章:流体及其物理性质(绪论) 第二章:流体运动学 第三章:流体动力学的基本方程 第四章:不可压理想流体平面无旋流动 第五章:不可压理想流体三维轴对称流动 第六章:粘性流体层流运动 第七章:粘性流体紊流运动 第八章:边界层理论 二、学习方法:概念+数理学方法?????????场论 矢量张量线性代数复变函数微积分 数理方程 方程及类型+边界条件+求解方法 理论分析+半经验公式+实验研究+数值模拟 三、考查方法:闭倦2~3小时,内容不超过课堂讲述及练习。 四、参考书:没有很适合的教材,主要参考书有清华潘文全主编的《流体力学基础》及清华张兆顺主编《流体力学》。不统一要求,按讲课内容参考学习。要求大家记笔记。 必须预习:书中最后所附附录:1、正交曲线座标系 2、场量 3、张量 4、复便函数 清华张兆顺流体力学P363~372 第一章 流体及其物理性质 §1.1流体与连续介质模型 流体: 流体包括液体和气体,是物质三态中的两中存在形式与状态。 流体同其它物质一样,都是由大量不断运动的分子组成。但由于单位体积内分子数量的悬差与不同物质分子特性的差异、固体、液体和气体的基本特征不同。 固体可承受一定的拉力、压力和剪切力,保持静态的平衡,因此可保持一定的形状,有固定的体积。 液体虽然可承受很大的压力,但在受到微小的拉力或剪切力时,就会发生流动与变形,因此液体虽然有固定的体积但没有固定的形态。 气体既不可承受拉力或剪切力,否则就会发生流动,也不能承受压力,否则就会被压缩。因此气体既没有固定的形状也没有固定的体积。 正是因为液体与气体都表现出在受到微小的拉力或剪切力是易流动和变形的性质,所以都叫作流体。 从力学观点看,固体与流体的主要差别在于可否承受拉力或剪切力;从运动学观点看,

相关主题
文本预览
相关文档 最新文档