当前位置:文档之家› 原核表达操作步骤及注意事项

原核表达操作步骤及注意事项

原核表达操作步骤及注意事项
原核表达操作步骤及注意事项

原核表达操作步骤及注意事项

时间:2010-03-03 14:05:01 来源:作者:点击:1046次

将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:

易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。

表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件:

(1)选择标志的编码序列;

(2)可控转录的启动子;

(3)转录调控序列(转录终止子,核糖体结合位点);

(4)一个多限制酶切位点接头;

(5)宿主体内自主复制的序列。

原核表达一般程序如下:

获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测

一、试剂准备

1、LB培养基。

2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,μm滤膜抽滤,-20℃保存。

二、操作步骤

(一)获得目的基因

1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。

2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。

(二)构建重组表达载体

1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。

2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。

(三)获得含重组表达质粒的表达菌种

1、将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。

2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。

3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

(四)诱导表达

1、挑取含重组质粒的菌体单斑至2ml LB(含Amp50μg/ml)中37℃过夜培养。

2、按1∶50比例稀释过夜菌,一般将1ml菌加入到含50mlLB培养基的300ml培养瓶中,37℃震荡培养至OD600 ≌(最好,大约需3hr)。

3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度0.4mM作为实验组,两组继续37℃震荡培养3hr。

4、分别取菌体1ml,离心12000g×30s收获沉淀,用100μl 1%SDS重悬,混匀,70℃10min。

5、离心12000g×1min,取上清作为样品,可做SDS-PAGE等分析。

三、注意事项

1、选择表达载体时,要根据所表达蛋白的最终应用考虑。如为方便纯化,可选择融合表达;如为获得天然蛋白,可选择非融合表达。

2、融合表达时在选择外源DNA同载体分子连接反应时,对转录和转译过程中密码结构的阅读不能发生干扰。

如何做原核表达(prokaryotic expression)

2010-03-26 22:54:25 来源:易生物实验浏览次数:673 网友评论0 条

首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。主要归结在表达载

体的选择上。

关键词:原核原核表达prokaryoticexpression

人们合成与生物相关的物质是从尿素开始的,1828年,德国化学家维勒人工合成了存在于生物体的这种有机物。在1960年我国科学家采用化学方法首次成功地合成了具有生物活性的蛋白质——胰岛素。随着内切酶的发现和基因工程技术的发展,人们发现用各种不同的载体在原核、真核系统中进行蛋白表达更为行之有效。而这其中大肠杆菌表达系统发展得最为迅速、成熟。原核表达具有操作方便、快捷,需时较短,表达量大,适合工业化生产等优点。虽然也有缺少糖基化和表达后加工等问题,当有了其它多种表达系统后,原核系统仍是我们合成外源蛋白的首选。

在网上看到有人把原核表达技术分成四个等级:初次尝试扫盲、乱棍打枣入门、系统优化中级和自成一体高手,觉得十分有意思。但是根据笔者自己的经验以及耳闻目睹的一些经历告诉我:做表达那是谋事在人,成事在天。有时候你把克隆做出来了,双酶切鉴定没问题,测序没问题,可是就是看不到表达带。原因当然可以分析,实验也是可以改进,但是窜改一下戈尔泰的话:“成功的实验都是一样的,失败的实验各有各的不幸。”在实验遇到瓶颈的时候要如何进行分析,找到问题的症结是我们的实验关键所在。在准备进行原核表达的时候需要考虑的因素很多,市面上可供选择的载体、菌株也很多,要如何进行正确的选择,找到适合自己的载体是十分重要的。所以,现在要对目前常用的一些载体进行介绍,让我们对其相关产品及其表达原理进行了解,以方便实验设计。

首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag

检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。主要归结在表达载体的选择上。

表达载体:我们关心的质粒上的元件包括启动子,多克隆位点,终止密码,融合Tag(如果有的话),复制子,筛选标记/报告基因等。通常,载体很贵,我们可以通过实验室之间交换得到免费的载体。但是要小心,辗转多个实验室和多个实验室成员之手的载体是否保持原来的遗传背景MCS是否还是原来那个MCS是我们要特别注意的。

复制子:通常表达载体都会选用高拷贝的复制子。pSC101类质粒是严谨方式复制,拷贝数低,pCoE1,pMBI(pUC)类的复制子的拷贝数高达500以上,是表达载体常用的。通常情况下质粒拷贝数和表达量是非线性的正相关,当然也不是越多越好,超过细胞的承受范围反而会损害细胞的生长。如果碰巧需要2个质粒共转化,就要考虑复制元是否相容的问题。

筛选标记和报告基因:氨苄青霉素抗性是最常见的筛选标记,卡那霉素或者是新霉素次之,通常是另一个载体的筛选标记用。四环素,红霉素和氯霉素等已经日渐式微。抗性基因的选择要注意是否会对研究对象产生干扰,比如代谢研究中要留意抗性基因编码的酶是否和代谢物相互作用。在表达筛选中要注意的问题应该就是LB倒板前加抗生素的温度,温度过高容易导致抗生素失效。今天耐青霉素的超级细菌泛滥,不知道是否有我们实验人员的功劳呢大家“随便倒掉”已经获得氨苄抗性的大肠杆菌之前有没有经过煮沸或者消毒等处理呢从以前

的一针50万单位到现在100多万个单位,青霉素剂量似乎越来越大了。

对于做表达来说,如果不是要研究启动子的强弱,通常比较少关心或者用到报告基因吧。绿色荧光蛋白是最常用的报告基因了(注意选择适用原核表达版本的GFP),其他还有半乳糖苷酶啊,荧光素酶啊等等。一些融合表达Tag也有报告基因的功能。

启动子、终止子和核糖体结合位点

启动子:启动子的强弱是对表达量有决定性影响的因素之一。从转录模式上看有组成型表达和诱导调控型表达。lac和Tac,PL和PR,T7是最常用的启动子。

组成型表达:表达载体的启动子为组成型启动子,也就是一直努力不停表达目的蛋白的启动子,如pMAL系统。持续性表达通常表达量比较高,成本低,但是不适合表达一些对宿主细菌生长有害的蛋白。因为过量或者有害的表达产物会影响细菌的生长,反过来影响表达量的积累。

诱导调控型表达:表达载体采用诱导型启动子,只有在诱导剂存在的条件下才能表达目的产物。这种方法有助于避免菌体生长前期高表达对菌体生长的影响,又可减少菌体蛋白酶对目标产物的降解。特别适合解决有毒蛋白的表达。另外也有启动子是组成型的,但是启动子所依赖的转录酶是诱导表达的,也属于诱导表达系统。

融合表达:表达载体的多克隆位点上有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。对于特别小的分子建议用较大的Tag(如GST)以获得稳定表达;而一般的基因多选择小Tag以减少对目的蛋白的影响。His-Tag是最广泛采用的Tag。

分泌表达:在起始密码和目的基因之间加入信号肽,可以引导目的蛋白穿越细胞膜,避免表达产物在细胞内的过度累积而影响细胞生长,或者形成包含体,而且表达产物是可溶的活性状态不需要复性。通常这种分泌只是分泌到细胞膜和细胞壁之间的周质空间。

可溶性表达:大肠杆菌表达效率很高,特别是强启动子,目的蛋白来不及折叠而形成不溶的包含体颗粒,包含体容易纯化但是复性效率不高。分泌表达可以得到可溶的产物,也有部分融合Tag有助于提高产物的可溶性,比如Thio,pMAL系统。

转录终止子对外源基因在大肠杆菌中的高效表达有重要作用——控制转录的RNA长度提高稳定性,避免质粒上异常表达导致质粒稳定性下降。放在启动子上游的转录终止子还可以防止其他启动子的通读,降低本底。转录终止子有两类,Rho因子作用下使转录终止mRNA

和根据模版上的对称序列形成发夹结构而终止mRNA。常见的是rrnB rRNA操纵子的T1T2串连转录终止子。

核糖体结合位点:启动子下游从转录起始位点开始延伸的一段碱基序列,其中能与rRNA16 S亚基3'端互补的SD序列对形成翻译起始复合物是必需的,多数载体启动子下游都有SD

序列,也有些载体没有,适合自带SD序列的基因表达,要留意。

表达菌株:我们往往最容易忽视的一点。不同的表达载体对应有不同的表达菌株,一些特别设计的菌株更有助于解决一些表达难题,这一点生物通会有专门的介绍。同样的,交换获得的免费菌株,要小心其遗传背景是否已经发生改变当心。

注:以上各种特性是可以相互组合的,不是排他的!

首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。主要归结在表达载

体的选择上。

关键词:原核原核表达prokaryoticexpression

几个常用的启动子和诱导调控表达系统

最早应用于的表达系统是Lac乳糖操纵子,由启动子Plac + 操纵基因lacO +

结构基因组成。其转录受CAP正调控和lacI负调控。lacUV5突变能够在没有CAP的存在下更有效地起始转录,该启动子在转录水平上只受lacI 的调控,因而随后得到了更广泛采用。lacI产物是一种阻遏蛋白,能结合在操纵基因lacO

上从而阻遏转录起始。乳糖的类似物IPTG可以和lacI产物结合,使其构象改变离开lacO,从而激活转录。这种可诱导的转录调控成为了大肠杆菌表达系统载体构建的常用元件。tac 启动子是trp启动子和lacUV5的拼接杂合启动子,且转录水平更高,比lacUV5更优越。trc 启动子是trp启动子和lac启动子的拼合启动子,同样具有比trp更高的转录效率和受lacI

阻遏蛋白调控的强启动子特性。在常规的大肠杆菌中,lacI阻遏蛋白表达量不高,仅能满足细胞自身的lac操纵子,无法应付多拷贝的质粒的需求,导致非诱导条件下较高的本底表达,

为了让表达系统严谨调控产物表达,能过量表达lacI阻遏蛋白的lacIq突变菌株常被选为La c/Tac/trc表达系统的表达菌株。现在的Lac/Tac/trc载体上通常还带有lacIq 基因,以表达更多lacI阻遏蛋白实现严谨的诱导调控。IPTG广泛用于诱导表达系统,但是IPTG有一定毒性,有人认为在制备医疗目的的重组蛋白并不合适,因而也有用乳糖代替IPTG作为诱导物的研究。另外一种研究方向是用lacI的温度敏感突变体,30度下抑制转录,42度开发。热诱导不用添加外来的诱导物,成本低,但是由于发酵过程中加热升温比较慢而影响诱导效果,而且热诱导本身会导致大肠杆菌的热休克蛋白激活,一些蛋白酶会影响产物稳定。

以λ噬菌体再起转录启动子PL、PR 构建的载体也为大家所熟悉。这两个强启动子受控于λ噬菌体cI基因产物。cI基因的温度敏感突变体cI857(ts)常常被用于调控PL、PR启动子的转录。同样也是30度下阻遏启动子转录,42度下解除抑制开发转录。同样的,PL、PR 表达载体需要携带cI857(ts)菌株作为表达载体,现在更常见的做法是在载体上携带cI857(ts)基因,所以可以有更大的宿主选择范围。另外一种思路是通过严谨调控cI产物来间接调控PL、PR 启动子的转录。比如Invitrogen的PL表达系统,就是将受trp启动子严谨调控的cI基因溶源化到宿主菌染色体上,通过加入酪氨酸诱导抑制trp启动子,抑制cI 基因的表达,从而解除强大的PL启动子的抑制。

T7启动子是当今大肠杆菌表达系统的主流,这个功能强大兼专一性高的启动子经过巧妙的设计而成为原核表达的首选,尤其以Novagen公司的pET系统为杰出代表。强大的T7启动子完全专一受控于T7 RNA 聚合酶,而高活性的T7 RNA 聚合酶合成mRNA的速度比大肠杆菌RNA聚合酶快5倍——当二者同时存在时,宿主本身基因的转录竞争不过T7表达系统,几乎所有的细胞资源都用于表达目的蛋白;诱导表达后仅几个小时目的蛋白通常可以占到细胞总蛋白的50%以上。由于大肠杆菌本身不含T7 RNA 聚合酶,需要将外源的T7 RNA 聚合酶引入宿主菌,因而T7 RNA 聚合酶的调控模式就决定了T7系统的调控模式——非诱导条件下,可以使目的基因完全处于沉默状态而不转录,从而避免目的基因毒性对宿主细胞以及

质粒稳定性的影响;通过控制诱导条件控制T7 RNA 聚合酶的量,就可以控制产物表达量,某些情况下可以提高产物的可溶性部分。

有何高招且看我为你一一道来:

有几种方案可用于调控T7 RNA 聚合酶的合成,从而调控T7表达系统。

1.噬菌体DE3是lambda噬菌体的衍生株,含有lacI抑制基因和位于lacUV5启动子下的T7 RNA 聚合酶基因。DE3溶源化的菌株如BL21(DE3)就是最常用的表达菌株,构建好的表达载体可以直接转入表达菌株中,诱导调控方式和lac一样都是IPTG诱导。

2.另一种策略是用不含T7RNA聚合酶的宿主菌克隆目的基因,即可完全避免因目的蛋白对宿主细胞的潜在毒性而造成的质粒不稳定。然后用λCE6噬菌体侵染宿主细胞——CE6是lamb da噬菌体含温度敏感突变(cI857ts)和pL/pR启动子控制T7RNA 聚合酶的衍生株,在热诱导条件下可以激活T7 RNA 聚合酶的合成。

此了噬菌体之外,还可以通过共转化质粒提供T7 RNA 聚合酶。比如有人用受溶氧浓度控制的启动子调控T7 RNA聚合酶合成,据说这比较适合工业化发酵的条件控制。

由于T7 RNA 聚合酶的调控方式仍有可能有痕量的本底表达,控制基础表达的手段之一是培养基外加葡萄糖,有助于控制本底表达水平。二是采用带有T7lac启动子的载体——在紧邻T7 启动子的下游有一段lacI操纵子序列编码表达lac 阻遏蛋白(lacI),lac阻遏蛋白可以作用于宿主染色体上T7 RNA 聚合酶前的lacUV5 启动子并抑制其表达,也作用于载体T7 lac 启动子,以阻断任何T7RNA聚合酶导致的目的基因转录。pLacI工转化也是同样的原理。如果这还不够,更为严谨调控手段还有——在宿主菌中表达另一个可以结合并抑制T7 RNA 聚合酶的基因——T7融菌酶,降低本底。常用的带溶菌酶质粒有pLysS和pLysE,相容的ori 都不会影响后继的表达质粒转化,前者表达的溶菌酶的水平要比后者低得多,对细胞生长影响小,而pLysE会明显降低宿主菌的生长水平,容易出现过度调节,增加蛋白表达的滞后时间,从而降低表达水平。通过几种不同方法来巧妙调控T7聚合酶合成,T7启动子发展出了史上功能最强大,最丰富的表达系统。

真核表达载体和原核表达载体的区别

浏览次数:456次悬赏分:30 |提问时间:2010-7-22 19:52 |提问者:紫云鸠|问题为何被关闭

越详细越全面越好

推荐答案

主要是因为原核和真核表达系统所需的表达元件不同。

比如说启动子,终止子在两种表达系统中是不一样的。

带有真核表达元件的是真核载体,能在真核生物内表达;

带有原核表达元件的是原核载体,能在原核生物内表达。

两者都具有的为穿梭载体。

1)真核表达载体和原核表达载体就是能在真核生物或原核生物中表达的载体,它们一般都带有能在真核生物或原核生物中表达的必需表达元件;

2)真核表达和原核表达的目的都是为了能够大量获得自己所需要的目的基因的表达产物,最好有生物活性,以便下一步的实验需要.

3)原核表达载体一般只能在原核生物中表达外源基因,但有些穿梭载体可以分别在真核和原核生物中表达它们的表达元件.

原核表达

原核表达

将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋

白的生物学活性及构象。

表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体

应具有以下几种元件:

(1)选择标志的编码序列;

(2)可控转录的启动子;

(3)转录调控序列(转录终止子,核糖体结合位点);

(4)一个多限制酶切位点接头;

(5)宿主体内自主复制的序列。

原核表达一般程序如下:

获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测。

一、试剂准备

1、LB培养基。

2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):IPTG溶于100ml ddH2O中,μm滤膜抽滤,-20℃

保存。

二、操作步骤

(一)获得目的基因

1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和

下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。

2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形

成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。

(二)构建重组表达载体

1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行

琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。

2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。

(三)获得含重组表达质粒的表达菌种

1、将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑

取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。

2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,

重复亚克隆或亚克隆至不同酶切位点。

3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

(四)诱导表达

1、挑取含重组质粒的菌体单斑至2ml LB(含Amp50μg/ml)中37℃过夜培养。

2、按1∶50比例稀释过夜菌,一般将1ml菌加入到含50mlLB培养基的300ml培养瓶中,37℃

震荡培养至OD600≌(最好,大约需3hr)。

3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度作为实验组,两组继续

37℃震荡培养3hr。

4、分别取菌体1ml,离心12000g×30s收获沉淀,用100μl 1%SDS重悬,混匀,70℃10min。

5、离心12000g×1min,取上清作为样品,可做SDS-PAGE等分析。

三、注意事项

1、选择表达载体时,要根据所表达蛋白的最终应用考虑。如为方便纯化,可选择融合表达;

如为获得天然蛋白,可选择非融合表达。

2、融合表达时在选择外源DNA同载体分子连接反应时,对转录和转译过程中密码结构的阅

读不能发生干扰。

原核表达的原理与实验方案

Time:2010-01-31 AM 09:32Author:bioer Hits: 388 times

一、原核表达的原理

1、E . coli 表达系统

E . coli 是重要的原核表达体系。在重组基因转化入E . coli 菌株以后,通过温度的控制,诱导其在宿主菌内表达目的蛋白质,将表达样品进行SDS-PAGE 以检测表达蛋白质。

2、外源基因的诱导表达

提高外源基因表达水平的基本手段之一,就是将宿主菌的生长与外源基因的表达分成两个阶段,以减轻宿主菌的负荷。常用的有温度诱导和药物诱导。本实验采用异丙基硫代-β-D-半乳糖苷(IPTG)诱导外源基因表达。

不同的表达质粒表达方法并不完全相同,因启动子不同,诱导表达要根据具体情况而定。

二、原核表达的材料

1、诱导表达材料

( 1 ) LB (Luria-Bertani))培养基

酵母膏(Yeast extract) 5g

蛋白胨(Peptone) 10g

NaCl 10g

琼脂(Agar) 1-2%

蒸馏水(Distilled water) 1000ml pH

适用范围:大肠杆菌

( 2 ) IPTG 贮备液:

2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃保存。

( 3 ) l× 凝胶电泳加样缓冲液:

50 mmol / L Tris -CI ( pH 6 . 8 )

50 mmol / L DTT

2 % SDS (电泳级)

% 溴酚蓝

10 % 甘油

2、大肠杆菌包涵体的分离与蛋白纯化材料

1 )酶溶法

(1)裂解缓冲液:

50 mmol / L Tris-CI ( pH 8 . 0 )

1 mmol / L EDTA

100 mmol / LNaCI

(2)50 mmol / L 苯甲基磺酰氟(PMSF )。

(3)10 mg / mL 溶菌酶。

(4)脱氧胆酸。

(5)1 mg / mL DNase I。

2 )超声破碎法

( 1 ) TE 缓冲液。

( 2 ) 2×SDS -PAGE 凝胶电泳加样缓冲液:

100 mmol / L Tris-HCI ( pH 8 . 0 )

100 mmol / L DTT

4 %SDS

%溴酚蓝

20%甘油

三、实验方案

1、外源基因的诱导表达

( 1 )用适当的限制性内切核酸酶消化载体DNA 和目的基因。

( 2 )按连接步骤连接目的基因和载体,并转化到相应的宿主菌。

( 3 )筛选出含重组子的转化菌落,提取质粒DNA 作限制性内切核酸酶图谱,DNA 序列测定,确定无误后进行下一步。

( 4 )如果表达载体的原核启动子为PL 启动子,则在30-32 ℃培养数小时,使培养液的OD600达,迅速使温度升至42 ℃继续培养3-5h ;如果表达载体的原核启动子为tac 等,则37 ℃培养细菌数小时达到对数生长期后加IPTG 至终浓度为1 mmol / L。继续培养3-5h 。

( 5 )取上述培养液1 mL,1000g 离心,1 min ,沉淀,加100 μL 聚丙烯酰胺凝胶电泳上样缓冲液后,作SDS -PAGE 检测。

2、大肠杆菌包涵体的分离与蛋白质纯化

1 )细菌的裂解

常用方法有:①高温珠磨法;②高压匀浆;③超声破碎法;④酶溶法;⑤化学渗透等。前三种方法属机械破碎法,并且方法①、②已在工业生产中得到应用,后三种方法在实验室研究中应用较为广泛。下面介绍酶溶法和超声破碎法的实验步骤。

(1)酶溶法

常用的溶解酶有溶菌酶、β-1,3 -葡聚糖酶、β-1,6 -葡聚糖酶、蛋白酶、壳多糖酶、糖苷酶等。溶菌酶主要对细菌类有作用,而其他几种酶对酵母作用显著。主要步骤为:

① 4 ℃,5000rpm 离心,15 min ,收集诱导表达的细菌培养液(100 mL )。弃上清,约每克湿菌加3 mL 裂解缓冲液,悬浮沉淀。

②每克菌加8μLPMSF及80μL 溶菌酶,搅拌20 min ;边搅拌边每克菌加4 mg 脱氧胆酸(在冷室中进行)。

③37 ℃,玻棒搅拌,溶液变得粘稠时每克菌加20μL DNase I。室温放置至溶液不再粘稠。

(2 )超声破碎法

声频为15-20 kHz 的超声波在高强度声能输入下可以进行细胞破碎,在处理少量样品时操作简便,液体量损失较少,同时还可对染色体DNA 进行剪切,大大降低液体的粘稠度。

①收集1 L 诱导表达的工程菌,40 ℃,5000r pm 离心,15 min ;弃上清,约每克湿菌加3 mLTE 缓冲液。

②按超声处理仪厂家提供的功能参数进行破菌;10 000g 离心,15min ,分别收集上清液和沉淀。

③分别取少量上清和沉淀,加入等体积的2× 凝胶电泳加样缓冲液,进行SDS -PAGE 。

注意事项:超声破碎与声频、声能、处理时间、细胞浓度、菌种类型等因素有关,应根据具体情况掌握;超声波破菌前,标本经3 -4 次冻溶后更容易破碎。

2 )包涵体的分离

蛋白质在细菌中的高水平表达,常形成相差显微镜下可见的细胞质颗粒,即为包涵体,经离心沉淀后可用Triton-X100 / EDTA 或尿素洗涤,若为获取可溶性的活性蛋白,须将洗涤过的包涵体重新溶解并进行重折叠。

(1)试剂与配制

①洗涤液I:

% Triton X -100

10 mmol / L EDTA ( pH 8 . 0 )

溶于细胞裂解液中。

②2×凝胶电泳加样缓冲液。

(2)细胞裂解混合物12 000g 离心,15 min , 4 ℃;弃上清,沉淀用9× 洗涤液l 悬浮;室温放置5 min ; 12 000g 离心15 min , 4 ℃;吸出上清,用100 μL 水重新悬浮沉淀;分别取10 μL上清和重新悬浮的沉淀,加10 μL 2× 凝胶电泳加样缓冲液,进行SDS-PAGE 。

3 )包涵体的溶解和复性

(1)试剂与配制

①缓冲液I:

1 mmol / L PMSF

8mol /L 尿素

10 mmol / L DTT

溶于前述裂解缓冲液中。

②缓冲液Ⅱ:

50 mmol / L KH2PO4

1 mmol / L EDTA ( pH 8 . 0 )

50 mmol / L NaCI

2 mmol / L 还原型谷胱甘肽

1 mmol / L 氧化型谷胱甘肽

③KOH 和HCI

④2×凝胶电泳加样缓冲液。

(2)用100 μL 缓冲液I 溶解包涵体;室温放置lh ;加9×缓冲液Ⅱ,室温放置30 min ,用KOH 调pH 到;用HCI 调至pH 8 . 0 ,在室温放置至少30 min ;1000g 离心,15 min ,室温;吸出上清液并保留,用100 μL 2×凝胶电泳加样缓冲液溶解沉淀;取10 μL 上清,加

10 μL 2× 凝胶电泳加样缓冲液,与20 μL 重新溶解的沉淀进行SDS-PAGE 。

四、注意事项

(1)不同的大肠杆菌表达载体带有不同的启动子和诱导成分。实验者必须根据特定系统和用途决定相应的实验方案。

(2)表达和检测时,应设置对照组,如转化载体和非诱导细胞。

(3)由于大肠杆菌中表达的重组蛋白质缺少哺乳动物细胞特异的翻译后加工,所以,其生物活性无法与天然蛋白质相提并论

原核表达

目录

1 定义

2 原核表达系统

1 定义

2 原核表达系统

展开

编辑本段1 定义

广义的原核表达,是指发生在原核生物内的基因表达。

狭义的原核表达,常出现于生物工程中。是指通过基因克隆技术,将外源目的基因,通过构建表达载体并导入表达菌株的方法,使其在特定原核生物或细胞内表达。

编辑本段2 原核表达系统

一个完整的表达系统通常包括配套的表达载体和表达菌株。如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。

表达载体

为了获得高水平的基因表达产物,人们通过综合考虑控制转录、翻译、蛋白质稳定性及向胞外分泌等诸多方面的因素,设计出了许多具有不同特点的表达载体,以满足表达不同性质、不同要求的目的基因的需要。

通常关心的表达载体质粒上的元件包括:启动子、多克隆位点、终止密码、融合Tag(如果有的话)、复制子、筛选标记或报告基因等。

复制子:通常表达载体都会选用高拷贝的复制子。pSC101类质粒是严谨方式复制,拷贝数低,pCoE1,pMBI(pUC)类的复制子的拷贝数高达500以上,是表达载体常用的。通常情况下质粒拷贝数和表达量是非线性的正相关,当然也不是越多越好,超过细胞的承受范围反而会损害细胞的生长。如果碰巧需要2个质粒共转化,就要考虑复制元是否相容的问题。

筛选标记和报告基因:氨苄青霉素抗性是最常见的筛选标记,卡那霉素或者是新霉素次之,通常是另一个载体的筛选标记用。四环素,红霉素和氯霉素等已经日渐式

微。抗性基因的选择要注意是否会对研究对象产生干扰,比如代谢研究中要留意抗性基因编码的酶是否和代谢物相互作用。在表达筛选中要注意的问题应该就是LB倒板前加抗生素的温度,温度过高容易导致抗生素失效。对于做表达来说,如果不是要研究启动子的强弱,通常比较少关心或者用到报告基因吧。绿色荧光蛋白是最常用的报告基因了。其他还有半乳糖苷酶、荧光素酶等。一些融合表达Tag也有报告基因的功能。

启动子:启动子的强弱是对表达量有决定性影响的因素之一。从转录模式上看有组成型表达和诱导调控型表达。lac和Tac,PL和PR,T7是最常用的启动子。

终止子:转录终止子对外源基因在大肠杆菌中的高效表达有重要作用,即控制转录的RNA长度提高稳定性,避免质粒上异常表达导致质粒稳定性下降。放在启动子上游的转录终止子还可以防止其他启动子的通读,降低本底。转录终止子有两类,Rho 因子作用下使转录终止mRNA和根据模版上的对称序列形成发夹结构而终止mRNA。常见的是rrnB rRNA操纵子的T1T2串连转录终止子。

核糖体结合位点:启动子下游从转录起始位点开始延伸的一段碱基序列,其中能与rRNA16S亚基3'端互补的SD序列对形成翻译起始复合物是必需的,多数载体启动子下游都有SD序列,也有些载体没有。

表达菌株

表达菌株是我们往往最容易忽视的一点。目前绝大多数重要的目的基因都是在大肠杆菌中表达的。不同的表达载体对应有不同的表达菌株,一些特别设计的菌株更有助于解决一些表达难题。

yhbdxs:实验思路是这样的,将目的基因连接到含有GFP的表达载体上,得到GFP 和目的基因的融合蛋白,再纯化。

我现在还没有选定用哪个载体,请你们帮帮我,太多不清楚的地方了。

:通常在进行原核表达实验时,选择使用pET系列载体居多。但是pET系列载体不带有GFP基因,其上的His Tag标签是专门用于分离纯化的。通常情况下,目的基因与GFP蛋白融合,用于真核表达的实验较多。

yhbdxs:谢谢的回答,我爱!!希望给我带来好运气!

由于时间紧迫,真核表达周期长,只能选择原核表达了。

1、用clontech的pGFP载体可以做原核表达吗

2、先把目标基因连接到GFP载体上,切下来,连接到pET载体上,可以吗

3、为什么pET系列载体不带有GFP基因啊

:clontech的pGFP载体是原核表达载体,应该符合你的实验要求,但是我没有使用过,因此对其具体操作注意不是很了解。如果你一定要求使用pET载体表达带有GFP报告基因的目的基因,在进行载体构建时,加入GFP报告基因与目的基因融合应该是可行的。不过这样构建起来也是挺麻烦的,不如使用商品化载体方便些。

yhbdxs:在进行载体构建时,加入GFP报告基因与目的基因融合应该是可行的。如果这样的话,是不是要用到一个辅助载体啊,就是说我一共要用三个载体:

目的基因先克隆到T载体送去测序,然后亚克隆到含有GFP的载体融合,最后再把融合基因连接到pET载体上,进行表达,是这样的思路吗

我很急,一直在这里等着看结果呢,谢谢

:我认为在进行载体构建时,需要根据你的实验要求选择实验步骤:

1.如果在进行目的基因与GFP基因融合时,中间有酶切位点可以满足你的实验要求,可以:

1).将目的基因扩增后克隆至中间载体上测序。(目的基因去除终止密码子)

2).将1).测序好的片段通过酶切位点克隆至pET载体上。

3).如果你现有的GFP基因两侧的酶切位点满足已克隆目的基因的pET载体MCS 的要求,可以直接将GFP基因克隆至2).构建好的载体上。

但是这样在目的基因与GFP基因间会存在有酶切位点,至少一个。并且在进行GFP基因克隆时,需要严格考查读码框的准确性,不可以移码。

2.如果在进行目的基因与GFP基因融合时,中间必须紧密相连,不允许有其它碱基,可以:

1).将目的基因扩增后克隆至中间载体上测序。(目的基因去除终止密码子)

2).克隆GFP基因,T载体即可。

3).使用1)./2).质粒为模板,设计引物搭链扩增目的基因与GFP基因,两侧加入与pET MCS相匹配的酶切位点。并克隆至T载体,测序。

4).将3).测序好的片段通过酶切位点克隆至pET载体上。

3.如果在进行目的基因与GFP基因融合表达后,你需要进一步将GFP融合蛋白切除,那么依据2.所示步骤,在进行第3).步搭链扩增时,还需要在搭链引物上设计蛋白酶识别位点,其余相同。以便在进行蛋白表达后,可以使用蛋白酶将GFP 融合蛋白切除。

表达载体的构建方法及步骤

表达载体的构建方法及步骤 令狐采学 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型:

(1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。 (3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。 (5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与

真核生物基因表达的调控

真核生物基因表达的调控 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、 2、 3、 4、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、无操纵子和衰减子。 大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在转录后水平、翻译水平以及翻译后水平。

生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。 从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多倍性,在植物中是非常普遍的现象。基因组拷贝数增加使可供遗传重组的物质增多,这可能构成了加速基因进化、基因组重组和最终物种形成的一种方式。 c.基因重排:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。通过基因重排调节基因活性的典型例子是免疫球蛋白结构基因的表达。在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的。

原核表达步骤

Chi l 原核表达基本试验步骤 将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件: (1)选择标志的编码序列; (2)可控转录的启动子; (3)转录调控序列(转录终止子,核糖体结合位点); (4)一个多限制酶切位点接头; (5)宿主体内自主复制的序列。 原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测,其中包括: 一、试剂准备 (1)LB培养基。 (2)1M IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于10ml ddH2O

中,0.22μm滤膜抽滤,-20℃保存。 CCY的IPTG是1M的,用时进行1000倍稀释。 二、操作步骤 (一)获得目的基因 1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。 2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。 (二)构建重组表达载体 1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。 2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。我们用Soultion I连接。 (三)获得含重组表达质粒的表达菌种 1、将连接产物转化大肠杆菌BL21,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

原核&真核表达载体构建

原核、真核表达载体构建 真核表达载体和原核表达载体的区别:主要是因为原核和真核表达系统所需的表达元件不同。 比如说启动子,终止子在两种表达系统中是不一样的。 带有真核表达元件的是真核载体,能在真核生物内表达; 带有原核表达元件的是原核载体,能在原核生物内表达。两者都具有的为穿梭载体。 ㈠原核表达载体指:能携带插入的外源核酸序列进入原核细胞中进行复制的载体。 原核表达载体调控原件 1.启动子 启动子是DNA链上一段能与RNA聚合酶结合并起始RNA合成的序列,它是基因表达不可缺少的重要调控序列。没有启动子,基因就不能转录。由于细菌RNA聚合酶不能识别真核基因的启动子,因此原核表达载体所用的启动子必须是原核启动子。原核启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。在转录起始点上游5~10 bp处,有一段由6~8个碱基组成,富含A和T的区域,称为Pribnow 盒,又名TATA 盒或-10区。来源不同的启动子,Pribnow 盒的碱基顺序稍有变化。在距转录起始位点上游35 bp 处,有一段由10 bp组成的区域,称为-35区。转录时大肠杆菌RNA聚合酶识别并结合启动子。-35区与RNA聚合酶s亚基结合,-10区与RNA聚合酶的核心酶结合,在转录起始位点附近DNA被解旋形成单链,RNA聚合酶使第一和第二核苷酸形成磷酸二酯键,以后在RNA聚合酶作用下向前推进,形成新生的RNA 链。原核表达系统中通常使用的可调控的启动子有Lac(乳糖启动子)、Trp(色氨酸启动子)、Tac(乳糖和色氨酸的杂合启动子) 、lPL (l噬菌体的左向启动子)、T7噬菌体启动子等。 2. SD序列 1974年Shine和Dalgarno首先发现,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3~9 bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3¢末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。以后将此序列命名为Shine-Dalgarno序列,简称SD序列。它与起始密码子AUG之间的距离是影响mRNA转录、翻译成蛋白的重要因素之一,某些蛋白质与SD序列结合也会影响mRNA与核糖体的结合,从而影响蛋白质的翻译。另外,真核基因的第二个密码子必须紧接在ATG 之后,才能产生一个完整的蛋白质。 3.终止子 在一个基因的3¢末端或是一个操纵子的3'末端往往有特定的核苷酸序列,且具有终止转录功能,这一序列称之为转录终止子,简称终止子(terminator)。转录终止过程包括:RNA聚合酶停在DNA模板上不再前进,RNA的延伸也停止在终止信号上,完成转录的RNA从RNA聚合酶上释放出来。对RNA聚合酶起

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

原核表达步骤

原核表达步骤

Chi l 原核表达基本试验步骤 将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件: (1)选择标志的编码序列; (2)可控转录的启动子; (3)转录调控序列(转录终止子,核糖体结合位点); (4)一个多限制酶切位点接头; (5)宿主体内自主复制的序列。 原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测,其中包括: 一、试剂准备 (1)LB培养基。 (2)1M IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于10ml ddH2O

中,0.22μm滤膜抽滤,-20℃保存。 CCY的IPTG是1M的,用时进行1000倍稀释。 二、操作步骤 (一)获得目的基因 1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。 2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。 (二)构建重组表达载体 1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。 2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。我们用Soultion I连接。 (三)获得含重组表达质粒的表达菌种 1、将连接产物转化大肠杆菌BL21,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

原核表达步骤

1.将已经成功转有重组表达载体pET-28a-CYP83A1的表达菌 E. coli.BL21(DE3)在LB固体培养基(50μg/mL Kan)上划线接种培 2.挑取单菌落,接种于5mL的LB液体培养基(50μg/mL Kan)中,37℃,180r/min振荡培养过夜。 3.取500μL过夜培养的菌液转接入100mL新的LB液体培养基(50μg/mL Kan)中,37℃,190r/min振荡培养到菌液OD600 =0.6~0.8。 4.分组培养:实验组加入终浓度为1mmol/L的IPTG,对照组不加IPTG,37℃,190r/min诱导培养6h。 5.8000r/min离心2min,收集细菌,用1×PBS(0.01mol/L)缓冲液悬浮。 6.冰上超声波破碎,功率30w,工作5s,间歇5s,总时间2min。 7.4℃、12000r/min离心10min,分离上清与沉淀,取100μL上清与等体积的2×上样缓冲液混合;用200μL1×上样缓冲液悬浮沉淀,沸水浴5min后,对上清和沉淀进行SDS-PAGE检测。

重组质粒在大肠杆菌中的诱导表达及SDS-PAGE分析 挑测序正确的单克隆接种到3mLLB(50μg·mL-1Kan)培养基中,振荡培养12h后,将菌液按1﹕100的比例加入到300mL LB(50μg·mL-1Kan)培养基中200r/min37℃振荡培养至OD600为0.5—0.6时,加入IPTG(使终浓度为1mmol·L-1)进行诱导表达,分别在37℃诱导4h,4℃保存备用。未加IPTG诱导的pET-28a-CsFOMT收集作为阴性对照。诱导全部完成后,各取50mL 菌液离心收集细菌,加入SDS上样缓冲液,悬浮混匀,100℃3min,12000r/min离心1min,取上清4℃保存备用。另取50mL菌液离心收集菌体后用1×PBS(PH7.4)将沉菌悬起,经过超声波细胞破碎(20mm的变幅杆,400W,超声2s,间隔5s,重复60次),10000r/min离心10min分离上清和沉淀,上清和沉淀样品中分别加入SDS上样缓冲液,混匀,沸水浴,取上清和沉淀分别进行SDS-PAGE(5%浓缩胶,12%分离胶),然后分析蛋白表达结果

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

想和大家讨论讨论原核表达载体

【建议】想和大家讨论讨论原核表达载体 原核表达载体,如pet系列,型号从小到大,那么多,往往让新手选择起来不知所措。所以希望和大家讨论讨论到底他们是怎么演变的,每个的优缺点,是不是号越大的就越好等新手们往往困惑不已的问题。 希望下面的讨论分系列进行,如pet系列、pgex系列等 这篇文章是我从网上找的关于pet载体的介绍,只要你耐心的看完,相信能有个基本的了解关于pet载体及应用。更详细的内容请高手进行补充 pET,原核表达金标准(转) pET 载体中,目标基因克隆到T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供T7 RNA 聚合酶来诱导表达。Novagen 的pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括36 种载体类型、15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。 优点 ·是原核蛋白表达引用最多的系统 ·在任何大肠杆菌表达系统中,基础表达水平最低 ·真正的调节表达水平的“变阻器”控制 ·提供各种不同融合标签和表达系统配置 ·可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌 ·许多载体以LIC 载体试剂盒提供,用于迅速定向克隆PCR 产物 ·许多宿主菌株以感受态细胞形式提供,可立即用于转化 阳性pFORCE TM 克隆系统具有高效克隆PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。 pET 系统概述 pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。根据最初由Studier 等开发的T7 启动子驱动系统,Novagen 的pET 系统已用于表达成千上万种不同蛋白。 控制基础表达水平 pET 系统提供6 种载体- 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。 宿主菌株 质粒在非表达宿主菌中构建完成后,通常转化到一个带有T7 RNA 聚合酶基因的宿主菌(λ DE3 溶原菌)中表达目标蛋白。在λ DE3 溶原菌中,T7 RNA 聚合酶基因由lacUV5 启动子控制。未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。而宿主菌带有pLysS 和pLyE 时调控会更严紧。pLys 质粒编码T7 溶菌酶,

13 生物化学习题与解析--基因表达调控

基因表达调控 一、选择题 (一) A 型选择题 1 .基因表达调控的最基本环节是 A .染色质活化 B .基因转录起始 C .转录后的加工 D .翻译 E .翻译后的加工 2 .将大肠杆菌的碳源由葡萄糖转变为乳糖时,细菌细胞内不发生 A .乳糖→ 半乳糖 B . cAMP 浓度升高 C .半乳糖与阻遏蛋白结合 D . RNA 聚合酶与启动序列结合 E .阻遏蛋白与操纵序列结合 3 .增强子的特点是 A .增强子单独存在可以启动转录 B .增强子的方向对其发挥功能有较大的影响 C .增强子不能远离转录起始点 D .增强子增加启动子的转录活性 E .增强子不能位于启动子内 4 .下列那个不属于顺式作用元件 A . UAS B . TATA 盒 C . CAAT 盒 D . Pribnow 盒 E . GC 盒 5 .关于铁反应元件( IRE )错误的是 A .位于运铁蛋白受体 (TfR) 的 mRNA 上 B . IRE 构成重复序列 C .铁浓度高时 IRE 促进 TfR mRNA 降解 D .每个 IR E 可形成柄环节构 E . IRE 结合蛋白与 IRE 结合促进 TfR mRNA 降解 6 .启动子是指 A . DNA 分子中能转录的序列 B .转录启动时 RNA 聚合酶识别与结合的 DNA 序列 C .与阻遏蛋白结合的 DNA 序列 D .含有转录终止信号的 DNA 序列 E .与反式作用因子结合的 RNA 序列 7 .关于管家基因叙述错误的是 A .在同种生物所有个体的全生命过程中几乎所有组织细胞都表达 B .在同种生物所有个体的几乎所有细胞中持续表达 C .在同种生物几乎所有个体中持续表达 D .在同种生物所有个体中持续表达、表达量一成不变 E .在同种生物所有个体的各个生长阶段持续表达 8 .转录调节因子是 A .大肠杆菌的操纵子 B . mRNA 的特殊序列 C .一类特殊的蛋白质 D .成群的操纵子组成的凋控网络 E .产生阻遏蛋白的调节基因 9 .对大多数基因来说, CpG 序列高度甲基化 A .抑制基因转录 B .促进基因转录 C .与基因转录无关 D .对基因转录影响不大 E .既可抑制也可促进基因转录 10 . HIV 的 Tat 蛋白的功能是 A .促进 RNA po l Ⅱ 与 DNA 结合 B .提高转录的频率

原核表达步骤总结

原核表达步骤 原核表达先要将基因克隆到原核表达载体上,然后通过转化到 JM109或BL21等菌株中,诱导表达蛋白,然后进行蛋白纯化。本实验方案的前提是,目的基因已克隆到载体,并已转进入JM109菌株中。 1.鉴定目的蛋白是否在大肠杆菌JM109或BL21中大量表达 (1)制样 1 . 挑取经过双酶切鉴定的单克隆菌落于700ul LB培养基,加入0.7ul Amp(100mg/mL),37o C200r/min摇床培养,过夜活化。 2. 以1:50比例(200ul),将活化的过夜培养物加入10mL LB液体培养基中,加入10uLAmp(100mg/ml),37o C200r/min摇床扩大培养2h-3h,期间取样监控菌液的OD值,控制菌液OD600在0.6-1.0之间,以使大肠杆菌处于最适合表达外源蛋白的生长状态。(一般3h时,菌液浓度及达到标准,但是不同的基因对菌的影响不同,所以第一次实验时需要确定这个最佳时间) 3. 从10ml扩大培养物中取3ml菌液作为不加IPTG的空白对照(CK),其余7ml菌液加入7ul IPTG(储存浓度为0.5mol/l),使IPTG 终浓度达到0.5mmol/l。以200r/min的转速,37o C摇床培养3h。 4. 以5000r/min离心2min收集菌体,倾倒上清,每个离心管收集3ml培养物。 5. 加入1ml dH2O,将管底沉淀用振荡器打散以充分洗涤,8000r/min 离心2min,倾倒上清。 6. 重复步骤5。将离心管中的水倒干净。 (二)菌落SDS-PAGE 1. 在收集的菌体中加入200ul 1×SDS PAGE loading buffer(可根据沉淀的量增加或减少loading buffer的量,一般200ul比较合适)。用漩涡器剧烈震荡,确保将管底沉淀震散。 2. 将样品于100℃恒温加热器上开盖加热10min(Marker也要加热)。样品凉后,12000r/min离心3min,取每管的上清点样。上样量一般30ul—40ul,marker 20ul。 (3)SDS-PAGE分析 1. 根据目的片段的大小,制作不同浓度的分离胶 蛋白分子量 (kDa)凝胶浓度 (%) 4-4020

真核生物与原核生物基因表达调控的区别

原核生物和真核生物基因表达调控特点的比较1.相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平 真核基因的表达调 控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启 动子,由sita因子决定基因表的的特异性 真核基因转录起始需要基础特异两类转录因子 依赖DNA-蛋白质、蛋白质-蛋白质相互作用 调控转录激活D.原核基因表达调控主要采用操纵子模型 转录出多顺反子RNA 实现协调调节 真核基因转录产物为单顺反子RNA 功能相关蛋白的协调表达机制更为复杂。真核生物基因表达调控的环节主要在转录水平 其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子 与RNA聚合酶结合 、阻遏蛋白 负调控 、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性 不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合 可明显提高稳定性)、翻译产物及小分子RNA的调控作用。真核生物基因表达的调控环节较多 在DNA水平上可以通过染色体 丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA 的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录 真核生物基因表达需要转录因子、启动子、沉默子和增强子。葡萄糖存在 乳糖不存在 此时无诱导剂

原核表达 操作

蛋白质的表达、分离、纯化实验 标签: 蛋白质 表达 分离 纯化 蛋白质表达、分离、纯化可以:(1)探索和研究基因的功能以及基因表达调控的机理;(2)供作结构与功能的研究;(3)作为催化剂、营养剂等。 详细 实验方法 原核表达法 实验方法原理 携带有目标蛋白基因的质粒在大肠杆菌BL21中,在 37℃,IPTG 诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA )使镍离子(Ni 2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC )。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 实验材料 大肠杆菌BL21 试剂、试剂盒 LB 液体培养基氨苄青霉素Washing BufferElution BufferIPTG 蒸馏水胰蛋白胨酵母粉氯化钠 仪器、耗材 摇床离心机层析柱离心管移液枪枪头盒烧杯玻璃棒 实验步骤 一、试剂准备 1. LB 液体培养基:Trytone 10 g , yeast extract 5 g ,NaCl 10 g ,用蒸馏水配至1000 mL 。 2. 氨苄青霉素:100 mg/mL 。 3. 上样缓冲液:100 mM NaH 2PO 4,10 mM Tris ,8M Urea ,10 mM 2-ME , pH8.0。 4. Washing Buffer :100 mM NaH 2PO 4,10 mM Tris ,8 M Urea ,pH6.3。 5. Elution Buffer :100 mM NaH 2PO 4,10 mMTris ,8M Urea , 500 mM

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

原核细胞表达纯化实验设计

原核生物分离纯化实验设计 将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件: (1)选择标志的编码序列; (2)可控转录的启动子; (3)转录调控序列(转录终止子,核糖体结合位点); (4)一个多限制酶切位点接头; (5)宿主体内自主复制的序列。 原核表达一般程序如下: 获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测 操作步骤 (一)获得目的基因 1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。 2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。 (二)构建重组表达载体 1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。 2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。 (三)获得含重组表达质粒的表达菌种 1、将连接产物转化大肠杆菌BL21,根据重组载体的标志(抗Ampr)作筛选,挑取单克隆,碱裂解法小量抽提质粒,双酶切初步鉴定。 2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 3、以此重组质粒DNA转化表达宿主菌的感受态细胞。 (四)诱导表达 1、挑取含重组质粒的菌体涂板,挑单克隆至5ml LB(含Amp50μg/ml)中37℃过夜培养。 2、按1∶50比例稀释过夜菌,一般将1ml菌加入到含50mlLB培养基的300ml培养瓶中, 37℃震荡培养至OD600≌0.4-1.0(最好0.6,大约需3hr)。 3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度0.4mM作为实验组,两组继续37℃震荡培养3hr。 4、收菌,离心12000g×30s收获沉淀,每毫升菌液按50ulPBS重悬,加入1%TritonX-100(v/v),β-巯基乙醇(v/v)。PMSF(终浓度1mM); 一下步骤在冰上操作: 5、超声破碎菌体,15000g,10min离心取上清,在上清中加入适量GST-beads,轻轻晃动令

原核生物基因表达调控概述

原核生物基因表达调控概述 基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。 1.基因表达调控意义 在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。 2.原核基因表达调控特点 原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。细菌的转录和翻译过程几乎在同一时间内相互偶联。 细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。这种蛋白质合成及其基因表达的控制称为翻译水平的调控。 二.原核生物表达调控的概念 (1)细菌细胞对营养的适应

细菌必须能够广泛适应变化的环境条件。这些条件包括营养、水分、溶液浓度、温度,pH等。而这些条件须通过细胞内的各种生化反应途径,为细胞生长 的繁荣提供能量和构建细胞组分所需的小分子化合物。 (2)顺式作用元件和反式作用元件 基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。RNA聚合酶是典型的反式作用因子。 顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其 自身同处于一个DNA分子上的基因;这种基因DNA序列通常不编码蛋白质, 多位于基因旁侧或内含子中。位于转录单位开始和结束位置上启动子和终止子,都是典型的顺式作用元件。 (3)结构基因和调节基因 结构基因是编码蛋白或RNA基因。细菌的结构基因一般成簇排列,多个结 构基因受单一启动子共同控制,使整套基因或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞核组织器官基本成分的结构蛋白,有催化活性的酶和各种调节蛋白等。调节基因是编码合成那些参与基因表达调控的RNA和蛋白质的特异性DNA序列。调节基因编码的调节物通过与DNA上的特定位点 结合控制转录是调控关键。 (4)操纵基因和阻遏蛋白 操纵基因是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录,阻遏蛋白是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏蛋白物一起合成于操纵基因,阻遏蛋白操纵因子结构基因的转变,阻遏蛋白可被诱导物变构失活,从而导致不可阻遏或去阻遏。

相关主题
文本预览
相关文档 最新文档