当前位置:文档之家› 发电厂锅炉燃料及特性讲解

发电厂锅炉燃料及特性讲解

发电厂锅炉燃料及特性讲解
发电厂锅炉燃料及特性讲解

锅炉燃料及特性

第一节概述

锅炉是将燃料的化学能转换为蒸汽热能的设备。我国是世界上最大的煤炭生产国和消费国,占世界煤产量的25%。我国煤炭资源相对较为丰富,分布也广,而石油和天然气资源相对不足,目前我国火力发电厂的主要燃料是煤,预计到21世纪中叶,我国能源消耗仍是以煤为主。

煤种是锅炉设计的主要依据,煤种的特性会影响炉膛尺寸,燃烧设备和燃料制备系统、受热面大小和布置、烟气处理等等。不同的燃料性能要求配备不同的制粉系统、燃烧器结构和炉膛及锅炉本体型式,随之采取不同的运行参数及操作要求。

燃料特性、锅炉结构和运行方式是影响锅炉性能的三个要素,而后两项的主要依据是燃料特性,只有充分掌握燃料性能,采取相应的设计、运行措施,才能达到锅炉安全经济运行的目的。

第二节煤的主要成分和特性

煤的组成及各种成分,一般按元素分析和工业分析两种方法来进行研究。元素分析只能确定元素含量的质量百分比,它不能表明煤中所含的是何种化合物,因而也不能充分确定煤的性质。但是,元素组成与其他特性相结合可以帮助我们判断煤的化学性质。元素分析比较繁杂,电厂一般只作工业分析,它能了解煤在燃烧时的主要特性。

一、煤的元素分析

煤的元素分析成分,即煤的化学组成成分。

煤的成分包括碳(C)、氢(H)、氧(O)、氮(N)、硫(S)五种主要元素以及水分(W)和灰分(A)。

煤的各种成分性质如下:

1.碳

碳是煤中的主要可燃物质。通常各种煤的含碳量约占其可燃烧成分的50~90%。煤中的碳不是以单质状态存在,而是一部分与氢、氧、硫等结合成挥发性的复杂化合物,其余部分为煤受热析出挥发性化合物后余下的那部分,即固定碳。煤中固定碳含量越高,越不容易着火和燃尽。1公斤碳完全燃烧可放出32866KJ的热量。

2.氢

煤中的氢,一部分与氧结合,叫做化合氢,不能燃烧放热;另一部分在煤受热时会挥发成氢气或各种碳氢化合物形成(C m H n)的气体,它们极易着火和燃烧。1公斤氢完全燃烧时约放出119743KJ的热量。

3.氧和氮

氧和氮都是不可燃元素,它们的存在使煤中的可燃元素相对减少,燃烧放出的热量降低。

煤中含氮量一般不多,只有0.5~2%,但燃烧时会形成有害气体氧化氮(NO x),污染大气。

4.硫

煤中硫可分为有机硫和无机硫两大类。有机硫和煤中的C、H、O等结合成复杂的化合物,均匀地分布在煤中。无机硫包括黄铁矿硫(FeS2)和硫酸盐硫(CaSO4、MgSO4、NaSO4)等。有机硫和黄铁矿硫可以燃烧,合称为可燃硫。硫酸盐不能燃烧,故并入灰分。

煤中可燃硫的含量一般不超过1~2%。硫燃烧时的放热量不多,仅及碳的1/3.5左右。但硫燃烧后形成的SO3和SO2,与烟气中的水蒸汽相遇,能形成H2SO4和H2SO3蒸汽,并在锅炉低温受热面等处凝结,从而腐蚀金属。此外,SO2和SO3随烟气排入大气,对人体和动、植物带来危害。硫是煤中的有害元素。

5.水分

煤的水分是由外部水分和内部水分组成。外部水分,即煤由于自然干燥所失去的水分,又叫表面水分。失去表面水分后的煤中水分称为内部水分,也叫固有水分。

水分的存在使煤中的可燃元素相对减少,同时它在煤燃烧时要汽化、吸热,从而使燃烧温度降低,甚至会使煤难于着火。同时由于水分在煤燃烧后形成水蒸汽,使烟气体积增加,即增加引风机电耗,又带走大量热量,降低锅炉热效率。另外,原煤的水分过大,常会造成煤斗或落煤管道粘结,甚至堵塞,并增加碎煤和制粉的困难。

6.灰分

煤中含有不能燃烧的矿物杂质,它们在煤完全燃烧后形成灰分。灰分的存在不仅使煤中的可燃元素相对减少,还会阻碍空气与可燃质接触,增加不完全燃烧损失。灰分在燃烧时会熔化、沾污受热面(结渣或积灰)、降低传热系数。烟气中的飞灰会磨损受热面,因而限制了烟速的提高,也影响传热效果。同时飞灰随烟气排入大气,会造成环境污染。因此,和水分一样,灰分也是燃料中的有害成分。

二、煤的工业成分分析

工业分析主要测定煤中的水分、挥发分、固定碳和灰分含量,用以表明煤的主要燃烧特性。根据工业分析测定的项目,煤的组成可用水分、挥发分、固定碳和灰分来表示。

三、煤的分析基准表示方法

1.煤的分析基准

为了确切地反映煤的特性,不但要知道煤的成分,还应当知道分析煤成分时煤所处的状态。同一种煤当其所处的状态不同时,分析得出的成分含量,百分数是不同的。常用的基准有收到基、空气干燥基、干燥基和干燥无灰基四种,它们的工业和元素分析结果表达如下:(1)收到基以收到状态的煤为基准来表示煤中各组成成分的百分比。用下标ar表示,它计入了煤的灰分和全水分。其成分可用下列平衡式表示:

工业分析:M ar+A ar+V ar+FC ar=100%

元素分析:C ar+H ar+N ar+S c.ar+O ar+A ar+M ar=100%

式中:M ar,A ar,V ar,FC ar,C ar,H ar,N ar,S c.ar,O ar为煤中的水分、灰分、挥发分、固定碳、碳、氢、氮、可燃硫、氧成分的收到基含量的百分数。

(2)空气干燥基由于煤的外部水分变动很大,在分析时常把煤进行自然风干,使它失去外部水分,以这种状态为基准进行分析得出的成分称为空气干燥基,以下角码ad表示。其成分可用下列平衡式表示:

工业分析:M ad+A ad+V ad+FC ad=100%

元素分析:C ad+H ad+N ad+S c.ad+O ad+A ad+M ad=100%

(3)干燥基以无水状态的煤为基准来表达煤中各组成成分,以下角码d表示。其成分可用下列平衡式表示:

工业分析:A d+V d+FC d=100%

元素分析:C d+H d+N d+S c.d+O d+A d=100%

(4)干燥无灰基除灰分和水分后煤的成分,这是一种假想的无水无灰状态,以此为基准的成分组成,以下角码daf表示。其成分可用下列平衡式表示:

工业分析:V daf+FC daf=100%

元素分析:C daf+H daf+N daf+S c.daf+O daf=100%

煤中本来只有碳、氢和可燃硫三者为可燃成分,但由于氧和氮总是同可燃元素结合在一起,故常把去除水分和灰分后的成分都算作可燃部分,以此为基准进行分析得出煤的干燥无灰基成分。

煤的四种基准各有其用途。当进行锅炉热力计算和热力试验时采用收到基成分:为了避免煤的水分在分析过程中变动,煤样要先进行自然干燥,故在试验室进行煤的分析时采用空气干燥基成分,目前各煤矿提供的分析资料,也多为空气干燥基成分;当确定煤中灰分含量时,需要引用干燥基成分,因为只有在不受水分变化影响的情况下,才能真实的反映灰分的含量;实际上煤中的水分和灰分都容易受外界因素的影响而发生变化,这就势必影响煤中其它成分的含量,因此常用比较稳定的干燥无灰基成分来表明煤的燃烧特性和划分煤的种类。一般同一矿井的煤干燥无灰基成分不会发生很大变化,因此煤矿的煤质资料以干燥无灰基成分为基准比较合理。

2.各种基准的换算

煤的各种基准成分之间,可以互相换算。由一种基质成分换算成另一种基质成分时,只要乘以一个换算系数即可。从表2-2中可以查出煤的各种基质之间的换算系数。

分析结果要从一种基准换算到另一种基准时,可按下式进行

Y=KX0

式中 X0——按原基准计算的某一组成含量百分比;

Y——按新基准计算的同一组成含量百分比;

K——基准换算的比例系数(见表2-2)。

在表示试验项目的分析结果时,须在试验项目的代表符号下端标明基准,才能正确反映燃煤质量。

表2-2 不同基准的换算系数

四、发热量

发热量是燃料的重要特性。单位质量的煤完成燃料时所放出的热量。单位是KJ/kg,用符号Q表示。

煤的发热量分为高位发热量和低位发热量。高位发热量指1kg燃料完全燃烧时放出的全部热量称为高位发热量,它包含燃料燃烧时产生的水蒸汽的汽化潜热,即认为烟气中的水蒸气凝结成水放出它的汽化潜热。但是,锅炉实际运行时,烟气还具有相当高的温度,烟气中的水蒸气不可能凝结成水而放出汽化潜热,故锅炉实际能利用的热量不包括水蒸气的汽化潜热。从高位发热量中扣除烟气中水蒸气汽化潜热后,称为燃料的低位发热量,实际工程中常利用收到基低位发热量。

煤有不同的分析基准,因而也就有不同基质的发热量,通常采用空气干燥基发热量Q ad。煤的各种基质的发热量之间可利用表2—2中的换算系数进行计算,例如:

Q gr.ad=Q gr.daf(100-A ad-M ad)/100 KJ/kg

但各种基准的低位发热量之间的换算却不能这样,因为这时还必须考虑汽化潜热的影响。

由于1kg氢燃烧后生成9kg水蒸汽,所以每公斤燃料燃烧时将形成(9H ar+M ar)/100公斤水蒸汽。如果取水的汽化潜热r=2508KJ/kg,则燃料收到基的高、低位发热量之间的关系为:Q net.ar = Q gr,ar-(54H ar+6M ar)KJ/kg

同理可得:

Q net.ad = Q gr,ad-(54H ad+6M ar)KJ/kg

Q net.d = Q gr,d-54H d KJ/kg

Q net.daf = Q gr,daf-54H daf KJ/kg

根据高、低位发热量之间的关系可解决各种基准低位发热量之间的换算。例如,已知煤的无灰干燥基低位发热量Q daf, net,需求其收到基低位发热量Q ar, net.。为此,可根据高、低发热量之间的关系可得:

Q ar ,net = Q daf, net(100-A ar-M ar)/100-6M ar KJ/kg

由于各种煤的发热量不同,有时差别很大,为使燃用不同煤种的锅炉煤耗有可比性和编制燃煤计划方便,需要规定一种标准煤,其它煤必须折算成标准煤后才能互相比较。

规定把收到基低位发热量Q ar, net=29270KJ/kg的煤叫做标准煤。

实际燃煤量BKg折合成标准煤重量B bz(kg)的公式为:

B bz = BQ net /29270 KJ/kg

式中 B b—标准煤耗量Kg/h

B—实际煤耗量Kg/h

五、煤的其他性能

1.灰的性质

灰的性质主要指它的熔化性和烧结性。熔化性影响炉内的运行工况,烧结性则影响对流受热面的积灰性能。

固态排渣煤粉炉中,火焰中心温度可达1400~1600℃,在这样高的温度下,燃料燃烧后灰分多呈现熔化或软化状态,随烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起被冷却下来,如果液态的渣粒在接近水冷壁或炉墙以前已因温度降低而凝固下来,那么它们附着到受热面管壁上时,将形成一层疏松的灰层,运行中通过吹灰很容易将它们除掉,从而保持受热面的清洁。若渣粒以液体或半液体粘附受热面管壁或炉墙上,将形成一层紧密的灰渣层,即为结渣。

目前判断燃煤燃烧过程是否发生结渣的一个重要依据是灰的熔融性。灰的熔融性是指当它受热时,由固体逐渐向液体转化没有明显的界限温度的特性。灰的熔融性常用灰的变形温度DT,软化温度ST,熔化温度FT来表示,它们是固液相共存的三个温度,而不是固相向液相转化的界限温度,仅表示煤灰形态变化过程中的温度间隔。这个温度间隔对锅炉的工作有较大的影响,当温度间隔值在200~400℃时,意味着固相和液相共存的温度区间较宽,煤灰的粘度随温度变化慢,冷却时可在较长时间保持一定粘度,在炉膛中易于结大渣,这样的灰渣称为长渣。当温度间隔值在100~200℃时为短渣。如果灰熔点温度很高(ST>1350℃),管壁上积灰层和附近烟气的温度很难超过灰的软化温度一般认为此时不会发生结渣,如果灰熔点较低(ST<1200℃),灰粒子很容易达到软化状态,就容易发生结渣。

2.粘结性

所谓煤的粘结性指的是粉碎后的煤在隔绝空气的情况下加热到一定温度时,煤的颗粒相互粘结形成焦块的性质。

煤的粘结性的测定方法以坩锅法最为普遍,它是在实验室条件下用坩锅法测定挥发分产率之后,对所形成的焦块进行观测,根据焦块的外形分为七个等级,称为粘结序数,以此来评定粘结性的强弱。各粘结序数的代表特征是:

1—焦炭残留物均为粉状

2—焦炭残留物粘着,以手轻压即成粉状;

3—焦碳残留物粘结,以手轻压即碎成小块;

4—不熔化粘结,用手指用力压裂成小块;

5—不膨胀熔化粘结,成浅平饼状,表面有银白色金属光泽;

6—膨胀熔化粘结,表面有银白色金属光泽,且高度超过15mm;

7—强膨胀熔化粘结,表面有银白色金属光泽,且高度大于15mm.

六、折算成分和标准煤

1.折算成分

燃料的成分是以质量百分数来表示的,但对于某些成分,例如水分,灰分和硫分,由于它们对锅炉机组的工作的影响较大,只用通过元素分析和工业分析所得到的应用基成分百分数不能完全说明问题。这是因为燃料的发热量有高有低,在一定的锅炉负荷所带进炉内的水分,灰分和硫分,就不但与它们的应用基成分百分数有关,而且与燃料的发热量有关。

在锅炉和设计和运行中,为了更好地鉴别煤地性质,更准确地比较煤中硫、水分、灰分对锅炉工作地影响,常用折算成分的概念来考虑。所谓燃料的折算成分,就是每送入锅炉4182KJ/kg热量(即1000kcal/kg),带入锅炉的水分、灰分和硫分,并用下列各式计算:

折算水分:

,%41824182

,,,net ar ar

net ar ar zs ar Q M Q M M ?==

折算灰分:

,%4182,,net

ar ar

zs ar Q A A ?

=

折算硫分:

,%4182,,net

ar ar

zs ar Q S S ?

= 当煤中的M ar,zs >8%时,称为高水分煤;当A ar,zs >4%时,称为高灰分煤;当S ar,zs >0.2%称为高硫分煤。 2.标准煤 所谓标准煤,就是假设其收到基低位发热量等于29270KJ/kg 的煤。即可用下式计算标准煤耗:

29270

,net ar bz Q B B ?=

kg /h

式中 B bz —标准煤耗量,kg/h ; B —电厂实际煤耗值

net ar Q ,—实际用煤的收到基低位发热量,kJ/kg 。

第三节燃煤的着火及燃烧特性分析

一、影响煤粉气流着火的因素

1.燃料的性质

燃料性质对着火过程影响最大的是挥发分含量V daf, 煤粉的着火温度随V daf的变化规律如图所示2-1。

挥发分V daf增大时,煤粉气流的着火温度显著降低,着火热降低。

原煤水分增大时,着火热也随之增大,同时水分的加热、汽化、过热都要吸收炉内的热量,致使炉内的温度水平降低,从而使煤粉气流卷吸的烟气温度以及火焰对煤粉气流的辐射热也相应降低。

原煤灰分在燃烧过程中不但不能放热,而且还要吸热。同样使煤粉气流的着火推迟,而且也影响了着火的稳定性。

煤粉气流的着火温度也随煤粉的细度而变化,煤粉愈细,着火愈容易。

图2-1 煤粉着火温度与V daf的关系

2.炉内散热条件

减少炉内散热,有利于着火。

3.煤粉气流的初温

提高初温T0可减少着火热。

4.一次风量和一次风速

增大煤粉空气混合物中的一次风量V0,便相应增大着火热,将使着火延迟;减少一次风量,会使着火热显著降低,但是一次风量过低,会由于煤粉着火燃烧初期得不到足够的氧气,而使化学反应速度减慢,阻碍着火燃烧的继续扩展。另外,一次风量还必须满足输粉的要求,否则会造成煤粉堵塞。因此,对应于一种煤种,有一个一次风率的最佳值。

一次风速对着火过程也有一定影响。若一次风速过高,则通过单位截面积的流量增大,

势必降低煤粉气流加热速度,使着火距离加长。但一次风速过低时,会引起燃烧器喷口被烧坏,以及煤粉管道堵塞等故障,所以有一个最合适的一次风速,它与煤种及燃烧器型式有关。一般挥发分比较高的煤,要求的一次风量比较高。

5.燃烧器结构特性

影响着火快慢的燃烧器结构特性,主要是指一、二次风混合的情况。如果一、二次风混合过早,在煤粉气流着火前就混合的话,等于增大了一次风量,相应使着火热增大,推迟着火过程。

燃烧器的尺寸也影响着火的稳定性。燃烧器出口截面积愈大,煤粉气流着火时离开喷口的距离就愈远,着火拉长了。从这一点来看,采用尺寸较小的小功率燃烧器代替大功率燃烧器是合理的。这是因为小尺寸燃烧器既增加了煤粉气流着火的表面积,同时也缩短了着火扩展到整个气流截面所需要的时间。

6.锅炉负荷

锅炉负荷降低时,送进炉内的燃料消耗量相应减少,而水冷壁总的吸热量虽然也减少,但减少的幅度较少,相对每公斤燃料来说,水冷壁的吸热量反而增加了。致使炉膛平均烟温下降,燃烧器区域的烟温也降低,因而对煤粉气流的着火是不利的。当锅炉负荷到一定程度时,就会危及到着火的稳定性,甚至可能熄火。因此,着火稳定性常常限制了煤粉锅炉负荷的调节范围。

二、燃煤的燃烧特性

1.碳氢比C/H

燃煤元素分析成分的碳氢比C/H,可以表示煤的燃烧难易程度,碳氢比愈高,说明燃煤的含碳量愈高,燃烧愈困难,也愈难于燃尽。

2.燃料比FC/V daf

燃料比是煤的工业分析成分中固定碳(FC)与干燥无灰基V daf的比值,它说明燃煤着火和燃尽的难易程度。燃煤的燃料比愈大,说明这种煤的固定碳含量愈高,挥发分含量愈少,燃煤的着火温度愈高,着火愈困难,也愈难于燃尽。

3.反应指数T15

反应指数T15是指煤样在氧气流中加热,使其温升速度达到15℃/min时所需要的加热温度。很显然,煤的反应指数愈大,表明这种煤越难着火和燃烧。挥发分愈低的煤,其反应指数愈高,煤的着火、燃烧愈困难,这完全符合挥发分对着火、燃烧影响的规律。但反应指数比之用常规工业分析方法测得的挥发分含量,更能准确地判断煤的燃烧性能。

4.燃烧分布曲线

煤的燃烧分布曲线是表示煤样的燃烧速度随温度变化的关系。煤的燃烧分布曲线是对煤的着火、燃烧性能进行综合判断的依据。如果煤种的燃烧分析曲线相似,则它们在锅炉中的燃烧情况也基本相同。

5.热解曲线

煤的热解曲线可判断煤中挥发分随温度升高析出的情况。

6.煤的燃尽率曲线

煤的燃尽率曲线可以判断煤燃烧的快慢和燃尽的时间。

三、煤的热分解机理

当煤粒被加热到超过超过一定温度后,即进入热分解阶段,放出挥发分并形成焦炭。煤在热分解时放出挥发分的重量和成分与热解的条件有关。

煤的结构既复杂且又极不稳定,在热分解过程中的分解方式、热解产物的数量及性质均受外界因素的影响,如升温速度、加热温度、加热时间、周围气体的压力、成分和反应器的型式、煤的颗粒尺寸和流体动力条件等。

热分解的过程是使煤中的热不稳定物质不断热解挥发,剩余部分不断地缔合增碳,形成热稳定产物。煤的热分解的发生是由于加热使温度升高,分子的振动加剧,当振动强度大于键的生成能时,分子和原子间的键断裂而引起的,同时发生一系列串联或并联的化学反应。一般情况下,在105℃以前,主要析出水分和部分气体,直到300℃,水分才能完全析出。在温度上升至200~300℃时,析出的水分称为热解水,并伴有气态物质CO和CO2,还有少量焦油析出。当温度达到300~550℃时,大量焦油和气体开始析出,并被称为初次挥发物,其主要成分为CH和同系物,及CO、CO2等。这些物质通过煤粒孔隙或燃料层向外扩散时,还有可能再次热分解或热解形成二次挥发物。当温度达到500~750℃时,半焦开始热解,含氢较多的气体开始析出。在759~1000℃时,半焦继续热解并析出少量含氢为主的气体,半焦形成焦炭。

第四节煤的分类及各类煤的特征

一、发电用煤分类

我国现行煤炭分类方法是以干燥无灰基挥发分的产率,和最大胶质层厚度作为分类标准的。此分类方法对发电用煤并不完全合适。如贫煤和瘦煤,最大胶质厚度是不同的,但对于煤粉燃烧过程来说,二者几乎没有什么差别。同样,弱粘煤和不粘煤、气煤和肥煤,在燃烧特性上差别也不大。因此,对于发电用煤来说,目前的分类方法在烟煤范围内分得过细;而在无烟煤、褐煤范围内,又显得过于笼统。此外一些对锅炉燃烧过程有重要影响的特性,却没有作为分类指标。

为了能更合理地利用煤炭,为运行锅炉配合质量适宜的煤种,使电厂能获得较大的技术经济效益和社会效益,西安热工研究所和北京煤化学研究院,共同提供了我国发电煤粉锅炉用煤分类GB7562-87(VAMST),如表2-3。

该国标是以煤的干燥无灰基挥发分V daf、干燥基灰分A d、收到基水分M ar、干燥基全硫S d.t 和灰熔融性软化温度ST作为主要的分类指标,以收到基低位发热量Q https://www.doczj.com/doc/bc11077153.html,.p作为V daf和ST的辅助分类指标。因Q https://www.doczj.com/doc/bc11077153.html,.p是V daf、A d、M d.t的函数,所以Q https://www.doczj.com/doc/bc11077153.html,.p是一个综合指标。其数值大小标志着燃烧过程炉内温度水平的高低。表中各分类指标V、A、M、S、ST(即挥发分、灰分、水分、硫分、灰熔融性软化温度)等级的划分,是根据锅炉燃烧安全、经济性等方面的现场统计资料和非常规的煤质特性实验室指标数据,通过有序量最优化分割法计算,并结合经验确定的。

二、常用的动力煤特性

1.无烟煤

无烟煤是煤化程度最深的煤类,即含碳量最高;挥发分含量低(在10%以下);不易点燃,燃烧缓慢,燃烧时没有烟,只有很短的蓝色火焰;杂质少而发热量高;无结焦性。无烟煤呈黑色而有金属光泽;重度较大,质硬不易研磨。由于挥发分低故不易点燃,贮藏较稳定,一般不会自燃。为保证着火和稳燃,在锅炉设计中常需要采取一些特殊措施,对低灰熔点的无烟煤还须同时解决着火稳定性和结渣之间的矛盾。

2.烟煤

烟煤是一种碳化程度较高的煤,次于无烟煤,挥发分含量范围较广(约为20~40%)。

表2-3 发电煤粉锅炉用煤我国分类标准(VAMST)

与褐煤相比,它的挥发分较少,密度较大,吸水性较小,含碳量增加,氢和氧的含量减少。烟煤的最大特点是具有粘结性,这是其他固体燃料所没有的。应当指出的是,不是所有的烟煤都具有同样的粘结性。大部分烟煤都容易点燃,火焰长,其发热量一般比无烟煤低。外表呈灰黑色,有光泽,质较松,有的焦结性强,个别含氢量多,灰分、水分少的优质烟煤,其发热量可超过无烟煤。但是也有灰分甚高的劣质烟煤,它的发热量很低。

3.贫煤

贫煤的碳化程度与烟煤相近,它的性质介于烟煤与无烟煤之间,其挥发分含量较低(约为10~20%),不易点燃;火焰较短,焦结性差。发热量介于无烟煤与一般烟煤之间。

4.褐煤

褐煤的形成年限较短,外观呈棕褐色,无光泽,质软易碎。其碳化程度低,挥发物可达40%或更高。褐煤的挥发物开始析出温度低,容易着火。但它的吸水能力强,含水分高,多数情况下其总水分均大于20%。褐煤的含碳量低,杂质多,故通常发热量低;褐煤的机械强度很差,易破碎;在空气中易风化,且易自燃,故不宜远距离运输和长时间贮存。

5.低质煤

就目前的技术水平而言,凡是单独燃用有困难,或燃烧不稳定,或燃烧经济性较差,或煤中有害杂质含量较高的煤,统称为低质煤(或劣质煤)。

《锅炉常用煤种基本燃料特性试验研究》文献综述

《锅炉常用煤种基本燃料特性试验研究》文献综述我国目前的能源现状 我国是一个油气资源短缺而煤炭资源相对丰富的国家,一次能源结构中以上是煤。预计到世纪中叶,甚至到世纪末,我国以煤为主的能源结构将不会改变。对照我国的经济状况,我国的经济自改革开放以来取得了高速增长,能源的生产和消费也相应增加,目前己成为世界第二大能源生产和消耗国,其中煤炭消费量已连续十年居世界第一位。而我国目前的煤炭转化过程普遍存在效率低、污染严重等问题,要实现全面、协调、可持续发展,必须大幅度提高煤炭转化的效率、并大幅度降低污染物排放,煤的高效、清洁利用,是我国经济和社会可持续发展的战略选择,是保证我国能源稳定可靠供应以及可持续发展的重要科技基础。在相当长的时期内,我国以煤为主的能源结构将难以改变,为了满足未来经济、社会和环境协调发展对能源的需求,煤炭的洁净利用必须以科学的发展观,依靠科技进步,走出一条兼顾效率、环保和经济的新型工业化道路[]。 根据第届世界能源会议提供的资料,世界煤炭经济可采储量为亿吨。年世界煤炭资源在一次能源中所占比例为,预计到年这个百分比将达到;年亚洲煤炭在一次能源中占,预计到年煤的比例将达到;年我国煤炭占一次能源的,估计到年煤在一次能源中的比例仍有左右。可见,在今后年内中国以煤炭为主的能源结构不会发生显著变化。年,我国的发电装机容量为亿千瓦,其中火力发电占,到年仍将占左右。因此,近几十年煤炭仍将在我国电力事业中占据主导作用。 虽然我国的煤炭生产量很高,但人口众多,人均拥有量和人均消费量并不高。以年为例,煤炭的人均储量原苏联是我国的倍,美国是倍。年我国的能源生产总量位居世界第三位,但人均能源消费水平仅及世界平均值的。并且我国的煤炭利用率很低,以我国年煤炭产量亿吨计算,按我国的能源利用水平,有效利用的煤炭只有亿吨,如在日本可利用亿吨,也就是说我们浪费了亿吨,浪费了将近当年产量的一半[]。而且,由于我国煤炭供选率较低,运输能力不足以及国家有关对锅炉等燃烧设备尽量燃用劣质煤的政策等原因,造成用煤企业不可能燃用单一煤种,而不得不燃用两种或两种以上[]的混煤。近年来,火力发电厂的装机容量越来越大,单机容量以由年代的—为主发展到现在的—为主力机组[]。 煤的基本燃料研究的意义

锅炉动态特性与调节答案

锅炉动态特性与调节 一、 填空题(每空1分,共20分) 1、按传热方式,过热器大体可分为(对流式过热器),辐射式过热器,(半辐射式过热器)。 2、空气预热器的作用是利用锅炉 ( 尾部烟气的余热 ) 加热燃烧所用的 ( 空气)。 3、表示灰渣熔融特性的三个温度分别叫(变形温度),(软化温度),(熔化温度)。 4、安全门是锅炉的重要 (保护设备),必须在 ( 热态下进行调试才能保证其动作准确可靠)。 5、冷炉上水时,一般水温高于汽包壁温,因而汽包下半部壁温( 高于) 上半部壁温,当点火初期燃烧很弱时汽包下半部壁温很快( 低于) 上半部壁温。 6、当汽包上半部壁温高于下半部壁温时,上半部金属受(轴向压应力),下半部金属受(轴向拉应力)。 7、锅炉点火初期,加强水冷壁下联箱放水,其目的是促进(水循环),使受热面受热( 均匀),以减少汽包壁( 温差)。 8、转动机械轴承温度,滑动轴承不高于(700℃),滚动轴承不高于(800℃)。 9、影响锅炉受热面积灰的因素主要有:烟气流速,飞灰颗粒度,(管束的结构特性),烟气与管子的流向。 10、虚假水位现象是由于负荷突变,造成压力变化,引起(锅炉水状态发生改变)而引起的。 二、判断题(每题1分,共20分) 1、 金属在一定温度和应力作用下逐渐产生塑性变形的现象就是蠕变。(√) 2、 在正常情况下,送风量过大会使过热蒸汽温度上升,送风量过小会使 第1页(共 5页)

过热蒸汽温度降低。(√) 3、主蒸汽管道保温后,可以防止热传递过程的发生。(×) 4、锅炉是火力发电厂三大主要设备之一。(√) 5、锅炉蒸发设备的主要任务是吸收燃料燃烧放出的热量,将水加热成过 热蒸汽。(×) 6、下降管一般布置在炉外,不受热,并加以保温。(√) 7、为了保证水循环的安全可靠,循环倍率的数值不应太小。(√) 8、蒸汽中的盐分主要来源于锅炉给水。(√) 9、锅炉排污可分为定期排污和连续排污两种。(√) 10、过热器各并排管蒸汽吸热不匀的现象叫做过热器的热偏差。(√) 11、管式空气预热器,管内走空气,管外走烟气。(×) 12、影响锅炉管子外部磨损的主要因素是飞灰速度。(√) 13、尾部受热面的低温腐蚀主要是由于水的腐蚀。(×) 14、煤的成分中氧是杂质。(√) 15、灰熔点低容易引起受热面结渣。(√) 16、给水流量不正常地大于蒸汽流量时,汽包水位上升。(√) 17、对流过热汽的出口蒸汽温度是随着锅炉负荷的增加而降低。(×) 18、锅炉安全阀的总排气能力应等于最大连续蒸发量。(×) 19、给水温度升高,在同样的炉内负荷下,锅炉的蒸发量就会提高,其他 工况不变的情况下,过热汽温会上升。(×) 20、汽压稳定决定于锅炉蒸发量与外界负荷之间是否处于平衡状态。(√) 1. 锅炉负荷对过热汽温有何影响?为什么? 答:锅炉负荷增加时,燃料增加,烟量增加,烟速增加,烟侧对流放热系数增加,且传热温差增大,导致烟气放热量增大,另外负荷增加引起蒸汽

锅炉燃料油基本知识

锅炉燃料油基本知识 河南太康银晨锅炉https://www.doczj.com/doc/bc11077153.html,官网每日一帖: (1)什么是燃料油? 绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪点不低于37.8°C的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011,亦称Heavy Fuel 011)也可是馏分燃料油(Healing 011)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。 燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定. 1、燃料油的自然属性 燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。(1)粘度 粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。 目前国内较常用的是40°C运动粘度(馏分型燃料油)和100°C运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度(80°C、100°C)作为质量控制指标,用80°C运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是Stokes,即斯托克斯,简称斯。当流体的动力粘度为1泊,密度为1g/cm3时的运动粘度为1斯托克斯。CST是Centistokes的缩写,意思是厘斯,即1斯托克斯的百分之一。 (2)含硫量 燃料油中的硫含量过高会引起金属设备腐蚀的和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。在石油的组分中除碳、氢外,硫是第三个主要组分,虽然在含量上远低于前两者,但是其含量仍然是很重要的一个指标。按含硫量的多少,燃料油一般又有低硫(LSFO)与高硫(HSFO)之分,前者含硫在1%以下,后者通常高达3.5%甚至4.5%或以上。另外还有低蜡油(Low Sulfur Waxy Residual 缩写LSWR),含蜡量高有高倾点(如40至50°C)。在上海期货交易所交易的是高硫燃料油(HSFO)。(3)密度 为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15°C下之密度作为石油的标准密度。 (4)闪点 是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温

锅炉汽包给水控制要点

过程控制系统设计与实践 工艺过程及要求 6号课题:锅炉汽包给水控制系统(该题目不要有任何改动) 该课题由第六组4名同学完成。 汽包水位是影响锅炉安全运行的重要因素,水位过高会破坏汽水分离装置的正常工作,水位过低会引起水冷壁破裂。锅炉汽包给水控制的任务是使给水量适应锅炉蒸发量,使汽包中水位保持一定范围内。工艺上要求: 1)正常运行时水位波动范围:±30~50mm。 2)异常情况:±200mm。事故情况:>±350mm。 3)出现事故时能进行报警。 4)保持稳定的给水量。给水量不应该时大时小地剧烈波动,否则对省煤 器和给水管道的安全运行不利。 图1 汽包给水系统工艺流程图

目录 1 引言 (1) 1.1 论文选题背景 (1) 1.2 锅炉汽包给水系统 (1) 1.2.1 工作过程 (1) 1.2.1 控制对象及控制任务 (1) 2 给水控制基本方案 (2) 2.1 单冲量控制系统 (2) 2.2 双冲量控制方案 (3) 2.3 三冲量控制系统 (4) 2.4 几种控制方案的比较 (4) 2.5 最优方案 (5) 3 系统的实现 (6) 3.1 引起“虚假水位”原因分析 (6) 3.2 汽包水位检测元件 (7) 3.2.1 测量的问题 (7) 3.2.2 检测元件的型号选择 (8) 3.2 给水阀的选择 (8)

3.2.1 气开气关的选择 (8) 3.2.2 调节阀的型号选择 (8) 3.3 调节器的选择 (9) 3.3.1 控制规律与正反作用确定 (9) 3.3.2 调节器的型号选择 (10) 3.3 流量检测元件的选择 (10) 3.4 仪器仪表清单 (11) 4 结束语 (12) 参考文献 (13) 附录..................................... 错误!未定义书签。

火力发电厂锅炉自动控制系统

火力发电厂锅炉给水自动控制系统 工业锅炉的汽包水位是运行中的一个重要参数,维持汽包水位是保持汽轮机和锅炉安全运行的重要条件,锅炉汽包水位过高会造成汽包出口蒸汽中水分过多,使过热器受热面结垢而导致过热器烧坏,同时还会使过热汽温急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低则可能导致锅炉水循环工况破坏,造成水冷壁管供水不足而烧坏。 1.串级三冲量给水控制 如今的汽包水位自动控制基本上都是通过分散控制系统(DCS)来实现的,而控制策略基本上已串级三冲量给水控制为主,单回路调节已不能适应大型锅炉汽包水位的控制,如今已很少采用,串级三冲量给水控制由于引入了蒸汽流量和给水流量信号,对快速消除,平衡水位有着明显的效果,因此被广泛采用。 1.1 串级三冲量给水控制系统工作原理 如图 4.1 所示,串级三冲量给水控制系统由主调节器PI1(控制器1)和副调节器PI2(控制器2)串联构成。主调节器接受水位信号H f为主控信号,其输出去控制副调节器。副调节器接受主调节器信号I H外,还接受给水量信号I W和蒸汽流量信号I D。副调节器的作用主要是通过内回路进行蒸汽流量D 和给水流量W 的比值调节,并快速消除水侧和汽侧的扰动。主调节器主要是通过副调节器对水位进行校正,使水位保持在给定值。 串级三冲量给水控制系统有以下特点:两个调节器任务不同,参数整定相对独立。主调节器的任务是校正水位,副调节器的任务是迅速消除给水和蒸汽流量扰动,保持给水和蒸汽量平衡。给各整定值的整定带来很大的便利条件。在负荷变化时,可根据对象在内外扰动下虚假水位的严重程度来适当调整给水流量和蒸汽流量的作用强度,更好的消除虚假水位的影响,改善蒸汽负荷扰动下水位控制的品质。给水流量和蒸汽流量的作用强度之间是相互独立的,这也使整定工作更加方便自由。

电厂锅炉燃油系统

第1章燃油系统 1.1系统概述: 火力发电厂中配置燃油系统的主要目的是大型燃煤锅炉在启停和非正常运行的过程中,用来点燃着火点相对较高的煤,和在低负荷以及燃用劣质煤时造成锅炉的燃烧不稳,会直接影响整个机组的稳定运行,这时也会利用燃油来进行助燃,使锅炉的燃烧得到稳定。以确保整个机组的稳定运行。 我公司燃油系统是利用#0轻柴油做助燃油,在每个火嘴的中心风筒中配有以额定流量为1.2吨的油枪,油枪采用简单机械雾化压力调节的方式,在炉前油系统的进出口上均装有精密的流量测量装置。吹扫方式采用压缩空气的吹扫方式。 1.2燃油系统的主要流程: 炉前油系统的主要配置包括燃油流量测量装置,进油调节阀,进油跳闸阀,油泄漏试验阀,校验阀,油角阀,回油跳闸阀,以及火检,安全阀,手动阀,管路,滤网,温度,压力的测点等等常规配置。 系统的流程:#0轻柴油从燃油泵房出来,进入厂区燃油的进油母管然后分三路分别送到三台炉中,这里仅以#1炉的炉前油系统为例: 首先油经过一个手动门,进入以油滤网然后进入一个能精密测量的油流量测量装置,进入油调节阀(调节阀门后的油母管的压力)然后进入进油跳闸阀(油泄漏试验阀进行旁路)进入炉前油的母管分前墙和后墙两个支母管,从上到下依次经过D.C.B.A四层火嘴,且母管到各个火嘴都加装油角阀(油角阀和进回油的跳闸阀都进控制保护逻辑起到快速关闭的作用)然后在炉膛燃烧器的下部经两个手动门汇集到一根母管上经回油跳闸阀回到油泵房的回油母管上去。 在燃油系统的投运和退出以及长时间停运的过程中,为了防止油管道中集聚水和油杂质,造成油管路的堵塞或油枪投运后的燃烧情况不好,因此在燃油系统中加装了一套空气吹扫装置,其主要分两部分,管路吹扫和油枪的吹扫,油枪的吹扫主要是油枪投运前要对油枪进行水和油污的吹扫,油枪退出后,油枪的吹扫主要是要对油枪中的残油进行吹扫,油管路的吹扫主要是对管路中的油的沉淀物进行定期的吹扫,防止长期集聚造成油管路的堵塞。 吹扫系统的流程:压缩空气过来经过一个空气压力控制站,分两根母管分别进入前后墙和各个油枪进行配对使用。然后经过一个疏水装置进行一次疏水后,最后将残渣冲到废水系统中去。至于油管路中的吹扫主要是利用在油母管上装有临时的吹扫管道进行定期的吹扫。 1.3油的燃烧机理: 燃油的物理特性: 粘度是表示液体流动所产生阻力的大小,油的粘度是评价粘性油品的流动性指标,它对油的输送和燃烧(雾化条件)有直接影响。燃油的粘度与油的组成成分、温度压力等因素有关。 粘性:是液体手外力作用流动时,在液体分子间或流团间呈现的内摩擦力,粘性的大小常用动力粘度,运动粘度和恩氏粘度来表示。 在工程上油的粘度一般以恩氏粘度来表示,恩氏粘度是指在一定的油温下200毫升油流出的时间与20℃的同体积的蒸馏水从恩氏粘度计流出的时间之比。

电站锅炉常见阀门简介及其特点

电站锅炉常见阀门简介及其特点 一. 阀门的一般知识 阀门是锅炉的重要管路附件,主要用来接通或切断流通介质(水、蒸汽、油和空气等)的通路,改变介质的流动方向,调节介质流量和压力,以及保证压力容器和管道的工作压力不超限。 阀门是一种通用件,其规格、参数一般以“公称直径”、“公称压力”和“工作温度”来表示。“公称直径”是阀门的通流直径系列规范化后的数值,基本上代表了阀门与管道接口处的内径(但不一定是内径的准确数值。) “公称压力”是指阀门在某一规定温度下的允许工作压力,该规定温度是根据阀门的材料来确定的。例如,对于碳钢阀门,其“公称压力”则是指200℃时的允许工作压力。金属材料的强度是随着温度升高而降低。因此,当介质温度高于“公称压力”的规定温度时,选择阀门的“公称压力”就必须放余量,并限定在材料的容许最高温度下工作。 “工作温度”是阀门工作时所允许的介质温度。 二. 阀门的分类 1.阀门按用途可分为以下几类: 1)关断类:这类阀门只用来截断或接通流体,如截止阀、闸阀、球阀等。 2)调节类:这类阀门用来调节流体的流量或压力,如调节阀、减压阀和节流阀等。 3)保护门类:这类阀门用来起某种保护作用,如安全阀、逆止阀及快速关闭门等。 2.阀门按压力可分为: 1)低压阀,Pg≤1.6MPa(16千克/厘米2); 2)中压阀,Pg=2.5~6.4MPa(25~64千克/厘米2); 3)高压阀,Pg=10~80MPa(100~800千克/厘米2); 4)超高压阀,Pg≥100 MPa(1000千克/厘米2); 5)真空阀,Pg低于大气压力。 3.阀门按工作温度可分为: 1)低温阀:t<-30℃; 2)中温阀:120℃≤t≤450℃; 3)高温阀:t>450℃; 4)常温阀:-30℃≤t<120℃。 4.阀门按驱动方式可分为:手动阀、电动阀、气动阀、液动阀等。 三. 阀门型号的表示 阀门型号是用符号与数字表示阀门的结构与性能。阀门型号一般用如下7个单元组成: ①②③④⑤—⑥⑦ 1)第1单元用一汉语拼音字母表示阀门的结构类别。如Z表示闸板阀,Q表示球形阀等。 2)第2单元用一位数字表示阀门的驱动方式。如6表示气动、9表示电动等,一般手动时该单元代号可省略。 3)(第3单元用一位数字表示阀门与管道的连接方式。如1表示内螺纹连接,6表示焊接等。 4)第4单元用一位数字表示阀门结构型式。如1表示明杆楔式单闸板,6表示

DRZT01-2004火力发电厂锅炉汽包水位测量系统技术规定

DRZT 01-2004 火力发电厂锅炉汽包水位测 量 系统技术规定 1适用范畴本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行爱护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2汽包水位测量系统的配置 2.1锅炉汽包水位测量系统的配置必须采纳两种或以上工作原理共存的配置方式。锅炉汽包至少应配置1 套就地水位计、3 套差压式水位测量装置和2 套电极式水位测量装置。 新建锅炉汽包应配置1 套就地水位计、3 套差压式水位测量装置和3 套电极式水位测量装置或1 套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2锅炉汽包水位操纵和爱护应分别设置独立的操纵器。在操纵室,除借助DCS 监视汽包水位外,至少还应当设置一个独立于DCS 及其电源的汽包水位后备显示外表(或装置)。 2.3锅炉汽包水位操纵应分别取自3 个独立的差压变送器进行逻辑判定后 的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O) 模件或3条独立的现场总线,引入分散操纵系统(DCS)的冗余操纵器。 2.4锅炉汽包水位爱护应分别取自3 个独立的电极式测量装置或差压式水位测量装置(当采纳6 套配置时)进行逻辑判定后的信号。当锅炉只配置2个电极式测量装置时,汽包水位爱护应取自2 个独立的电极式测量装置以及差压式水位测量装置进行逻辑判定后的信号。 3个独立的测量装置输出的信号应分别通过3 个独立的I/O 模件引入DCS 的冗余操纵器。 2.5每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电

锅炉燃烧器基本知识

下面就一台油气两用燃烧器来阐述燃烧器的构造 就单独一台油气两用的燃烧器而言,从系统和燃烧器结构所实现功能的不同,可分为五大子系统:燃料系统、送风系统、点火系统、监测系统、电控系统。 1、燃料系统 燃料系统的功能在于保证燃烧器燃烧所需的燃料 燃油燃烧器的燃料系统主要有:油管及接头、油泵、电磁阀、喷嘴、重油预热器。油管及接头:用于传输燃油 油泵:使油形成一定的压力的机构,输出油压一般在10bar(1bar=1Kg/cm2)以上,以满足雾化和喷油量的要求,分为单管输出和双管输出两种。有些燃烧器油泵与风机马达同轴连接,有些有单独的油泵电机驱动 电磁阀:用于控制油路的通断,多为二通阀和三通阀。 喷嘴:主要作用是雾化油滴。油嘴的主要参数有喷射角(30°、45°、60°、8 0°)、喷射方式(实心、空心、半空心)和喷油量。同等压力下,较小喷油量的喷嘴,雾化效果较好。 重油预热器:重油燃烧器的特有设备,用于加热重油至一定的温度,减小粘度,以增加重油的雾化效果,其温度控制装置与燃烧器控制电路连锁。 燃气燃烧器的燃料系统主要有:过滤器、调压器、电磁阀组、电磁阀泄露检测器、点火电磁阀组。 过滤器:其作用是防止杂质进入电磁阀组和燃烧器内。 调压器:主要作用是降压稳压,一般用于高压供气系统中,其入口压力不能低于100mbar(1bar=1Kg/CM2)。 电磁阀组:一般由安全电磁阀和主电磁阀组成,有分体式和一体式,一体式电磁阀组内一般还组合有稳压阀和过滤网。安全电磁阀一般为快开快闭式。主电磁阀一般为二级式,并有快开快闭式和慢开快闭式之分。 电磁阀泄露检测器:其作用是检测电磁阀组的关闭是否严密。一般用于功率大于1400Kw的燃烧器上。 点火电磁阀组:一般有手动球阀、稳压器、电磁阀组成、主要用于功率较大的燃烧器。 二、送风系统

电站锅炉证C卷司炉考试(带答案)

考试内容电站车间班组岗位 日期工号姓名分数判卷人 2020年7月 2020年度司炉证理论考试模拟试卷(C卷)一.单选题(每题1分,共40分) 1、《中华人民共和国特种设备安全法》第三十三条规定,特种设备使用单位应当在特种设备损入使用前或者投入使用后三十日内,问负责特种设备安全监督管理的部门办理使用登记,取得使用登记证书。( C )应当置于该特种设备的显著位置. A、使用证书 B、登记证号 C、登记标志 D、登记机关名称 2、《中华人民共和国特种设备安全法》规定,特种设备安全管理人员、检测人员和作业人员应当按聪家有关规定取得( B ).方可从事相关工作。 A、合格成绩 B、相应资格 C、行业认可 3、锅炉正常停炉一般是指( A ) A计划停炉 B非计划停炉 C因事故停炉 D节日检修 4、电站锅炉的工作压力往往是指( D )压力。 A、省煤器入口; B、汽包; C、过热器入口; D、过热器出口。 5、定压运行是保持主蒸汽压力和( C )保持不变。 A、流量 B、容量 C、温度 6、对流式过热器的气温特性,当锅炉负荷增大时,燃料消耗量( A ),由于水冷壁吸热增长很少,将有较多的热量随烟气离开炉膛,对流过热器中的烟速和烟温(),过热器中工质的焓随之()。 A增加提高增大 B增加提高减小C减小增大减小 D增加下降不变 7、对于低压锅炉,蒸发吸热量占工质总吸热量的( A )。 A.70% B.60% C.50% D.40% 8、对于无烟煤,为了有利于燃烧要求煤粉经济细度R90( B )。 A.大些好 B.小些好 C.与褐煤相同 D.其他选项都不对 9、额定蒸发量大于( A )的锅炉,应装设自动给水调节器。 A、4吨小时 B、2吨小时

直流蒸汽锅炉和汽包蒸汽锅炉的特点分析

直流蒸汽锅炉和汽包蒸汽锅炉的特点分析 两者相比较,直流蒸汽锅炉的水处理要求更高,适合直流的就适合汽包蒸汽锅炉,适合汽包蒸汽锅炉的不一定适合直流蒸汽锅炉。(文章来源:河南永兴锅炉集团https://www.doczj.com/doc/bc11077153.html,转载请注明!) 一、直流蒸汽锅炉介绍: 直流锅炉没有汽包,工质一次通过蒸发部分,即循环倍率为1。直流蒸汽锅炉的另一特点是在省煤器、蒸发部分和过热器之间没有固定不变的分界点,水在受热蒸发面中全部转变为蒸汽,沿工质整个行程的流动阻力均由给水泵来克服。如果在直流锅炉的启动回路中加入循环泵,则可以形成复合循环蒸汽锅炉。 即在低负荷或者本生负荷以下运行时,由于经过蒸发面的工质不能全部转变为蒸汽,所以在锅炉的汽水分离器中会有饱和水分离出来,分离出来的水经过循环泵再输送至省煤器的入口,这时流经蒸发部分的工质流量超过流出的蒸汽量,即循环倍率大于1。当锅炉负荷超过本生点以上或在高负荷运行时,由蒸发部分出来的是微过热蒸汽,这时循环泵停运,锅炉按照纯直流方式工作。二、直流蒸汽锅炉的技术特点: (1)取消汽包,能快速启停。与自然循环蒸汽锅炉相比,直流锅炉从冷态启动到满负荷运行,变负荷速度可提高一倍左右。(2)适用于亚临界和超临界以及超超临界压力锅炉。 (3)蒸汽锅炉本体金属消耗量最少,锅炉重量轻。一台300MW 自然循环蒸汽锅炉的金属重量约为5500t~7200t,相同等级的直流蒸汽锅炉的金属重量仅有4500t~5680t,一台直流蒸汽锅炉大约可节省金属2000t。加上省去了汽包的制造工艺,使锅炉制造成本降低。 (4)水冷壁的流动阻力全部要靠给水泵来克服,这部分阻力约占全部阻力的25%~30%。所需的给水泵压头高,既提高了制造成本,又增加了运行耗电量。 (5)直流锅炉启动时约有30%额定流量的工质经过水冷壁并被加热,为了回收启动过程的工质和热量并保证低负荷运行时水冷壁管内有足够的重量流速,直流锅炉需要设置专门的启动系统,而且需要设置过热器的高压旁路系统和再热器的低压旁路系统。加上直流锅炉的参数比较高,需要的金属材料档次相应要提高,其总成本不低于自然循环锅炉。 (6)系统中的汽水分离器在低负荷时起汽水分离作用并维持一定的水位,在高负荷时切换为纯直流运行,汽水分离器起到一个蒸汽联箱的作用。 (7)为了达到较高的重量流速,必须采用小管径水冷壁。这样,不但提高了传热能力而且节省了金属,减轻了炉墙重量,同时减小了锅炉的热惯性。 (8)水冷壁的金属储热量和工质储热量最小,即热惯性最小,使快速启停的能力进一步提高,适用机组调峰的要求。但热惯性小也会带来问题,它使蒸汽锅炉水冷壁对热偏差的敏感性增强。当煤质变化或炉内火焰偏斜时,各管屏的热偏差增大,由此引起各管屏出口工质参数产生较大偏差,进而导致工质流动不稳定或管子超温。 (9)为保证足够的冷却能力和防止低负荷下发生水动力多值性以及脉动,水冷壁管内工质的重量流速在MCR 负荷时提高到2000 ㎏/(㎡*s)以上。加上管径减小的影响,使直流锅炉的流动阻力显著提高。600MW 以上的直流锅炉的流动阻力一般为5.4MPa~6.0MPa。 (10)汽温调节的主要方式是调节燃料量与给水量之比,辅助手段是喷水减温或烟气侧调节。由于没有固定的汽水分界面,随着给

火力发电厂锅炉课程设计

* 《火力发电厂锅炉课程设计》 学校:XXXXX大学 班级:热能与动力工程(专升本) 姓名: XXXXXX 日期:X年X月X日

400t/h一次中间再热煤粉锅炉 第一章设计任务书 一、设计题目:400t/h一次中间再热煤粉锅炉 二、原始资料 1.锅炉蒸发量 1 D 400t/h 2.再热蒸汽流量 2 D 350t/h 3.给水温度 gs t 235℃ 4.给水压力 gs P 15.6MPa 5.过热蒸汽温度 1 t540℃ 6.过热蒸汽压力 1 p 13.7MPa 7.再热蒸汽(进)温度 2 t'330℃ 8.再热蒸汽(出)温度 2 t''540℃ 9.再热蒸汽(进)压力 2 p' 2.5MPa 10.再热蒸汽(出)压力 2 p'' 2.3MPa ※注:以上压力为表压。 11.周围环境温度20℃ 12.燃料特性 (1) 燃料名称:设计煤种数据(17) (2) 设计煤种数据: (表一) 工业分析(ar)% 固定碳 45.30 灰分 22.39 挥发分 25.5 水分 8.0 低位发热量 21.65

元素分析 (ar ) 碳 55.66 氢 3.69 氧 8.46 氮 0.89 硫 0.91 灰渣特性 灰变形温度 1160℃ 灰软化温度 1250℃ 灰熔融温度 1330℃ (3) 煤的可燃基挥发分:r V =100ar V / (100-ar W -ar A )=36.63% (4) 煤的低位发热量y dw Q =21650kj/kg (5) 灰熔点:1t 、2t 、3t <1500℃ 13.制粉系统 中间储仓式,热风送粉,筒式钢球磨煤机 14.汽包工作压力 15.2MPa 提示数据:排烟温度假定值py t =146℃;热空气温度假定值rk t =320℃ 注:以上压力为表压。 第二章 设计计算说明书 第一节 煤的元素分析数据校核和煤种判断 一、煤的元素各成分之和为100%的校核 ar C +ar O +ar S +ar H +ar N +ar W +ar A =55.66+8.46+0.91+3.69+0.89+8+22.39=92% 二、元素分析数据校核 (一)干燥无灰基(可燃基)元素成分计算 干燥无灰基元素成分与收到基(应用基)元素成分之间的换算因子为 K=100/(100-ar W -ar A )=100/(100-8-22.39)=1.4366 则干燥无灰基元素成分应为(%) daf C =K ar C =1.4366×55.66=79.96 daf H =K ar H =1.4366×3.69=5.30 daf O ==K ar O =1.4366×8.46=12.15 daf N =K ar N =1.4366×0.89=1.28 daf S =K ar S =1.4366×0.91=1.31 (二) 干燥基灰分的计算

燃料油基本知识

燃料油综述 一、燃料油基本知识 什么是燃料油? 绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸 汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪 点不低于37.8 °C 的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011, 亦称Heavy Fuel 011 )也可是馏分燃料油(Healing 011 )。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。 燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity ),硫含量(Sulfur Content ),倾点(Pour Point) 等供发电厂等使用的燃料油还对钒(Vanadium )、钠(Sodium) 含量作有规定. 1、燃料油的自然属性 燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃 化合物、胶质、沥青质多。 (1)粘度 粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测 定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity) ,美国惯用赛氏粘度(Say

锅炉汽包水位调整总结

300MW机组锅炉汽包水位调整技术的探讨 【摘要】阐述了300MW机组锅炉汽包水位的变化机理和锅炉汽包水位调整技术,对锅炉运 行过程中汽包水位的一些关键问题从不同角度进行了探讨,为运行人员提供了科学的操作依据、实践经验和技术支持。【关键词】锅炉水位调整 1、前言锅炉的汽包水位由于调整不当,将造成两种水位事故。一种是汽包满水事故,指锅炉 汽包水位严重高于汽包正常运行水位的上限值,使锅炉蒸汽严重带水,蒸汽温度急剧下降,发生水冲击,损坏管道和汽轮机组。另一种是汽包缺水事故,指锅炉水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。这种事故的发生轻者造成机组非计划停运,严重时可造成汽轮机和锅炉设备的严重损坏。在机组正常启停和运行中通过科学的判断分析和正确的高水平的调整汽包水位,才能很好的防止恶性事故的发生和间接地降低发电厂的生产成本。 2、汽包水位的变化机理 2.1 锅炉启动过程中的汽包水位变化投入炉底部加热后,辅汽在炉 水中凝结成为炉水,使汽包水位缓慢上升。锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化。当1.8t/h的油枪增投至两支及以上时,由于热量平衡的 破坏,使炉内温度上升,炉水吸热开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,随炉水吸热量的增加,当水冷壁内水循环流速加快后,大量汽水混合物进入汽包后汽水分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。随着汽包压力的升高,这种蒸发速度会降低,但在实践中观察该现象不太明显。当到达冲转参数(主蒸汽压力4.2Mpa,主蒸汽温度320℃)关闭35%旁路的过程中,蒸发量下降,单位工质吸收的热量增加,微观分析,分子运动速度加快,对汽包、水冷壁、过热器的撞击次数增多,宏观观察,汽包压力又进一步升高,送一方面使汽水混合物比容减小,另一方面饱和温度升高,很多已生成的蒸汽凝结为水,水中气泡数量减小汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂闸冲转后水位的变化相反。机组并网后负荷50Mw给水主副阀切换时,由于给水管路直径的变大使给水流量加大汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加汽包水位的变化不太明显。2.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位的变化锅炉的上述四大转机任意跳闸1台,相当于炉内燃烧减弱,水冷壁吸热量减少,炉水体积缩小,汽泡减少,使水位暂时下降。从实际事故中观察,跳1台引风机后的10s内,给水自动以2t/s的速度增加,其水位下降速率仍然高达6.2mm/s。同时气压也要下降,饱和温度相应降低,炉水中汽泡数量又将增加,水位又会上升,还由于负荷的下降,给水量不变,如果人工不干预,水位最终会上升。这就是平时所说的先低后高。2.3高加事故解列后汽包水位的变化高加事故解列,就是汽轮机的一二三段抽汽量 突然快速为零的过程。对于锅炉来说,发生了2个工况的变化,一个是蒸汽流量减少压力升高,另一个是给水温度降低100℃引起的炉水温度降低,水位将先低后高。2.4 突然掉大焦和一次风压突升后汽包水位的变化这种情况相当于燃烧加强的结果,水冷壁吸热量增加,炉水体积膨胀,汽泡增多,使水位暂时上升:同时气压也要升高,饱和温度相应升高,炉水中汽泡数量又将减少,水位又会下降;随后蒸发量增加,但给水未增加时,水位又进一步下降,即水位先高后低。从实际生产中观察,上升不明显,但下降较快,事故发生10s后,虽然给水以1t/s的速度增加,水位仍以1.7mm/s的速度下降。2.5 锅炉安全门动作和负荷突变后汽包水位的变化当锅炉安全门动作或负荷突增时,汽包压力将迅速下降,送时一方面汽水比容增大,另一方面使饱和温度降低,促使生成更多的蒸汽,汽水混合物体积膨胀,形成虚假高水位。但是由于负荷增大,炉水消耗增加,炉水中的汤泡逐渐逸出水面后,水位开始迅速下降,即先高后低。当安全门回座或负荷突降时,水位变化过程相反。3 锅炉启动过程中汽包水位的调整(1)经过高加水侧锅炉冷态启动上水正常后,投入底部加热之前给电子水位计测量筒进行灌水,使电子水位能正确显示,防止在启动过程中水位误差过大造成汽包水位无法投入和MFT误动事故。(2)锅炉底部

火力发电厂中热能动力锅炉的燃料及其燃烧探究

火力发电厂中热能动力锅炉的燃料及其燃烧探究 发表时间:2018-10-01T18:05:33.407Z 来源:《基层建设》2018年第26期作者:刘滨[导读] 摘要:电力资源供需问题始终阻碍着电力企业的发展,为了有效地处理这个问题,需要创新新型技术来改善。 身份证号:13020219820421XXXX 摘要:电力资源供需问题始终阻碍着电力企业的发展,为了有效地处理这个问题,需要创新新型技术来改善。文章从热能动力锅炉的概述出发,对电厂发电锅炉燃料以及对火电厂锅炉的燃烧进行了探究,最后提出了加强火电厂热能动力锅炉燃烧效率的策略。 关键词:热能动力锅炉;燃料;燃烧;电力资源 1 热能动力锅炉概述 热能动力锅炉其本质就是一类能量转化装置,给锅炉输送的能量包含燃煤中的化学、电力能、空气和燃料所携带的内能等能源类型,而依托锅炉装置进行能量转化,给外界送出携带一定能量的饱和水蒸汽或过热蒸汽,还输送出具有很高温度的热水及有机热载体。热能动力锅炉燃料燃烧的基本工作过程是:首先,预热阶段,在燃料进行燃烧之前,对将要燃烧的燃料进行烘干、挥发、预热的过程;其次,燃烧阶段,该阶段主要是指燃料经过充分的预热后,在燃烧炉内充分进行化学反应并放出燃烧热,将这些热量传送给锅炉盘管内的水,促使水吸收热量后温度升至所需要的范围或者使水转变成具有相应压力蒸汽的热力装置。在燃烧炉内,燃料通过不断的燃烧反应进而不断产生热量,在依靠热辐射和热传导的方式,将热量传送到锅炉内盘管传热表面,从而把自身温度降低一定幅度,且从烟筒口排入大气;最后,燃尽阶段,该阶段主要是焦炭中的可燃物质已经燃烧的所剩无几,只有在炭灰内部还残留少量没有燃尽的物质,所以在这个过程中需要提供足够的空气,使其充分燃烧,产生热能。 2 火力发电厂热能动力锅炉的燃烧分析 2.1 燃料的燃烧形式 在热能动力锅炉当中,燃料的燃烧主要有以下三种形式: 2.1.1 分层次的燃烧 主要应用于固体可燃物质的燃烧过程中,根据锅炉内的可燃物质的特征,按照特定的薄厚程度分布在锅炉的炉排上进行燃烧。这种燃烧形式,可以适用于多种原料煤的燃烧,并且对于煤炭固体颗粒大小没有要求。其优点在于:燃料的层次所蕴含的能量很多,燃烧的进程比较稳定;新添加的可燃物质,可以和已经燃烧起来的原料实现接触,所以锅炉中途熄灭的可行性小。其缺点在于:只能适用在采用固体作为燃料的情况下,并且需要保障燃料与周围的空气充分融合,否则就容易因空气供给不达标引起燃烧不充分,进而影响效益。 2.1.2 悬浮状态下的燃烧 主要指把可燃物质加工成粉末形状、喷雾形状或者气体形状,并将空气一同送进锅炉中进行燃烧。为保证燃烧是在悬浮情况下进行的,就需要炉膛高度较高。悬浮状态下的燃烧形式,其优点在于:可燃物质能够迅速着火,燃烧得比较充分,效率也比较高;燃料对于负荷量改变的适应性较强,较容易进行自动形式的燃烧控制。其缺点在于:在某些情况下,燃料的运动与周围空气并不同步,产生的粉末较多。 2.1.3 旋风情况下的燃烧 主要指的是可燃物质和周围的空气,沿着切线的角度被送进锅炉内部,产生运动速度很高的气流,形成强度较大的螺旋状态运动,并实现燃烧。其优点在于:燃烧的流程稳定,遗留的燃料物质很少;能够运用在多种类型煤炭的燃烧上;节省燃料成本,具有较强的利用剩余燃料的能力。其缺点在于:在通风操作时,会损失较多的能量;锅炉设施的构造相对复杂,在实现灰量较大的煤原料燃烧时,会损失一部分物理状态的热量。 2.2 热能动力锅炉燃烧的控制措施 通常,对于热能动力锅炉的燃烧控制主要在对燃料量的控制、送风量的控制以及引风量的控制。首先,对于燃料的控制,主要是按照锅炉蒸汽的负荷要求,燃烧量的控制是最重要的一个系统,因为锅炉给风的多少直接影响到送风和引风的控制。对于燃料的控制主要的目的就是消除燃料的内部扰动,改善系统的品质,由于各个部分联系比较紧密,所以各个部分之间的影响不能够忽略,所以必须要注意燃料的品质和燃料供给装置的机械的数量。在送风量的控制方面,为了保证经济的燃烧,所以我们需要为了燃料量的变化来改变相应的送风量,送风量的任务也就是让送风量与燃料量相互协调,可以让锅炉的燃烧效率达到最高,最终使锅炉的经济效益达到人们的要求。而在引风量的控制系统中,因为需要炉膛的压力满足在一定的标准之内,所以在引风量与送风量之间需要有一个良好的平衡,同时炉膛的压力也是直接关联到锅炉燃烧过程的安全和经济运行,压力大喷火甚至爆炸,压力小冷风入炉膛,影响燃烧。 3 提高火力发电厂热能动力锅炉燃烧效率的策略 3.1 提高火力发电厂中汽轮机的工作效率 在火力发电厂中,通常都是采用的汽轮机将蒸汽的热能转变为动力势能来进行发电。但是,因为在汽轮机当中,当内部的汽流经过喷嘴和叶片出现摩擦时,由于叶片间隙的漏汽,导致汽轮机在蒸汽的热能转化过程中,会有部分的热能损耗。因此在实际操作过程中,我们需要通过提高蒸汽流过动叶栅时的相对速度或者是采用渐缩型叶片等措施来减小叶片出口边的厚度,最终实现减少喷嘴和叶片的摩擦而造成动能的损耗问题。 3.2 采取合理送风措施 合理送风要求对于保障锅炉的充分燃烧具有重要意义,因此我们需要加强对送风过程中的各个环节进行合理优化,合理地控制送风过程中的风速和风量,因此,当风速不够时,就会造成喷燃器的温度过高而烧坏,并导致煤粉的沉淀,而风速过大时就会推迟煤粉着火时间,导致燃烧不充分,所以一定要加强控制送风的风速和风量,确保风粉充分混合。 3.3 科学合理地选择燃煤类型 通常由于选择的燃煤种类不同,其相应的锅炉炉型在结构上也会有所差别。因此在选用燃煤过程中,如果选用的燃煤符合锅炉的功能,那么就容易影响锅炉的运行状况,不仅容易导致锅炉损坏,同时还无法达到预期的经济效益,所以,我们在燃煤选择过程中,一定要重视那些影响锅炉运行的重要因素。并且,需要安排相关研究人员,在选用燃煤过程中,可以事先开展相应的燃烧试验,进而合理地选出合适的燃煤类型。

电站锅炉概况

电站锅炉概况 电站锅炉的基本特征 火力发电厂的生产过程 目前,发电厂主要是火力发电厂,水力发电厂和核能发电厂几种。此外,还有少量的风能,太阳能和潮汐发电厂。火力发电厂是利用煤,石油或天然气等燃料进行发电的,其中燃煤电厂是我国目前主力的火力发电厂。燃料在锅炉中燃烧并放出热量,加热给水,形成饱和蒸汽,经过进一步加入后成为具有一定温度和压力的过热蒸汽,过热蒸汽经蒸汽管道进入汽轮机膨胀做功,带动发电器转子旋转发电。在汽轮机中做完功德蒸汽排入凝汽器,在凝汽器中,蒸汽被冷却成凝结水,凝结水经凝结水泵升压后进入低压加热器,利用汽轮机的抽气加热后进入除氧器除氧,除氧后的凝结水连同补给水由给水泵打入高压加热器中利用汽轮机抽气进一步提高温度后,重新回到锅炉中利用。火力发电厂的生产就是不断地重复上述循环的过程。 电厂锅炉的构成 1.燃烧系统 煤粉是由原煤经过制粉系统的一系列设备制备而成的。从原煤仓落下的原煤经给煤机送入磨煤机中,同时由空气预热器出来的一部分热空气经排粉机也送入磨煤机中,将煤加热和干燥,同时热空气本身也是输送煤粉的介质。离开磨煤机的煤粉和空气混

合物经燃烧器送入炉膛中进行燃烧。 外界冷空气是经送风机升压后送往空气预热器的。冷空气在空气预热器中被烟气加热后,一部分热空气送入磨煤机,用于干燥和输送煤粉,这部分热空气称为一次风;另外一部分热空气则直接经燃烧器送入炉膛,这部分热空气称为二次风。二次风在炉膛中与已经着火的煤粉气流混合,并参加燃烧反应。 煤粉和空气经燃烧器送入炉膛后,在炉膛中进行悬浮燃烧发出热量。炉膛周围布置大量的冷壁管,炉膛上布置着顶棚过热器和屏式过热器等受热面,水冷壁和顶棚过热器等是锅炉的辐射受热面。高温火焰和烟气在炉膛中向上流动时,主要以辐射换热的方式不热量传递给水冷壁和过热器馆内的水或蒸汽,烟气自身温度也不断地降低下来。 烟气离开炉膛以后进入水平烟道,然后再向下进入垂直烟道。在锅炉本体的烟道内布置着过热器,再热器,省煤器和空气预热器的受热面。过热器和再热器布置在烟气温度较高的地方,称为高温受热面。而省煤器和空气预热器布置在烟气温度较低的尾部烟道内,称为低温受热面或稳步受热面。 烟气流经过一系列受热面是,不断放出热量而逐渐冷却下来,离开空气预热器的烟气温度已经相当的低,通常在110-160℃之间。由于煤粉锅炉的烟气中夹杂有大量的飞灰,为了防止环境污染,锅炉的排烟首先要经过除尘器,使大部分飞灰被捕捉下来。最后,比较情节的烟气通过引风机由烟囱排入大气。

相关主题
文本预览
相关文档 最新文档