当前位置:文档之家› 数据中心空调系统运行指南

数据中心空调系统运行指南

数据中心空调系统运行指南
数据中心空调系统运行指南

数据中心空调系统运行指南

1.1系统内容

1、能源自控系统流程图

2、CR1动力冷冻水、热回收系统

3、CR1动力冷却水系统

4、CR2动力冷冻水系统

5、CR2动力冷却水系统

6、动力站补水系统

7、一层数据机房、配电室冷冻水管道系统

8、二层数据机房冷冻水管道系统

9、数据机房、配电室空调间恒温恒湿机+新风系统

10、风机盘管+新风系统流程图

11、送排风+排烟系统

1.2控制方法及责任划分

1、系统控制:本地(手动)、就地(单机本地自控)、

遥控(远程自控)

2、系统操作划分:远程自控由公司内部人员负责;在自控不能投入或自控出现故障时,启动本地手动、就地遥控由外包人员负责;

1.3系统组成

1.4系统运行方法

1、概述

分控中心工作站就是将建筑物内空调等众多分散设备的安全运行状况、能源使用状况、节能管理实行集中监视和集中控制。必须实行7X24小时专人负责人机结合管理。

①全面掌握空调设备运行信息;

启/停控制及状态监视、故障报警监视、自动控制状

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

数据中心维护_精密空调CRAC

为什么需要精密空调? 现在,恒温恒湿环境控制要求已经远远超出了传统数据中心或计算机室的围,包括更大的一套应用,称为“技术室”。典型的技术室应用包括: ?医疗设备套件(MRI、CAT 扫描) ?洁净室 ?实验室 ?打印机/复印机/CAD 中心 ?服务器室 ?医疗设施(手术室、隔离室) ?电信(交换机室、发射区) 为什么需要精密空调? 在许多重要的工作息处理是不可或缺的一个环节。因此,贵公司的正常运转离不开恒温恒湿的技术室。 IT硬件产生不寻常的集中热负荷,同时,对温度或湿度的变化又非常敏感。温度和/或湿度的波动可能会产生一些问题,例如,处理时出现乱码,严重时甚至系统彻底停机。这会给公司带来大量的损失,具体数额取决于系统中断时间以及所损失数据和时间的价值。标准舒适型空调的设计并非为了处理技术室的热负荷集中和热负荷组成,也不是为了向这些应用提供所需的精确的温度和湿度设定点。精密空调系统的设计是为了进行精确的温度和湿度控制。精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证技术室四季空调正常运行。 温度和湿度设计条件 保持温度和湿度设计条件对于技术室的平稳运行至关重要。设计条件应在72-75°F (22-24°C)以及 35-50% 的相对湿度 (R.H.)。与环境条件不合适可能造成损坏一样,温度的快速波动也可能会对硬件运行产生负面影响。这就是即使硬件未在处理数据也要使其保持运行状态的一个原因。相反,舒适型空调系统的设计只是为了在夏天 95°F

(35°C)的气温和48% R.H.的外界条件下,使室的温度和湿度分别保持80°F (27°C)和 50% R.H.的水平。相对而言,舒适型空调系统的设计只是为了在夏天95°F (35°C)的条件和48% R.H.的外界条件下,保持80°F (27°C)和50% R.H.。舒适空调没有专用的加湿及控制系统,简单的控制器无法保持温度所需的设定点的整定值(23±2°C),因此,可能会出现高温、高湿而导致环境温湿度场大围的波动。 环境不适合所造成的问题 如果技术室的环境运行不当,将对数据处理和存储工作产生负面影响。结果,可能使数据运行出错、宕机,甚至使系统故障频繁而彻底关机。 1、高温和低温 高温、低温或温度快速波动都有可能会破坏数据处理并关闭整个系统。温度波动可能会改变电子芯片和其他板卡元件的电子和物理特性,造成运行出错或故障。这些问题可能是暂时的,也可能会持续多天。即使是暂时的问题,也可能很难诊断和解决。 2、高湿度 高湿度可能会造成磁带物理变形、磁盘划伤、机架结露、纸粘连、MOS 电路击穿等故障发生。 3、低湿度 低湿度不仅产生静电,同时还加大了静电的释放。此类静电释放将会导致系统运行不稳定甚至数据出错。 欲了解更多APC相关容,请登录.apc./cn 技巧:精密空调系统工作原理及维护过程解析 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。

数据中心空调系统应用白皮书

数据中心空调系统应用白皮书

目录 一引言 (5) 1.1目的和范围 (5) 1.2编制依据 (5) 1.3编制原则 (6) 二术语 (6) 三数据中心分级 (8) 3.1概述 (9) 3.2 数据中心的分类和分级 (9) 四:数据中心的环境要求 (10) 4.1 数据中心的功能分区 (10) 4.2 数据中心的温、湿度环境要求 (11) 4.2.1 数据中心环境特点 (11) 4.2.2 国标对数据中心环境的规定和要求 (12) 4.3 数据中心的其它相关要求 (16) 五: 数据中心的机柜和空调设备布局 (18) 5.1 机柜散热 (19) 5.1.1数据中心机柜 (19) 5.1.2 机柜的布局 (21) 5.2 机房空调及其布置 (23) 5.2.1 机房空调概述 (23) 5.2.2 机房空调送回风方式 (25) 5.2.3 机房空调布局 (25) 六:数据中心空调方案设计 (26) 6.1 数据中心的制冷量需求确定 (26) 6.2 数据中心的气流组织 (29) 6.2.1 下送上回气流组织 (29) 6.2.2 上送下(侧)回气流组织 (33) 6.2.3 局部区域送回风方式 (36) 6.3 空调系统的冷却方式选择 (37) 6.4 空调设备的选择 (46) 七: 数据中心中高热密度解决方案 (48) 7.1 区域高热密度解决方案 (48) 7.2 局部热点解决方式 (50) 7.3高热密度封闭机柜 (52) 7.4其它高热密度制冷方式 (54) 八: 数据中心制冷系统发展趋势 (54) 8.1数据中心发展趋势: (54) 8.2 数据中心制冷系统发展趋势 (57) 九机房环境评估和优化 (58) 附件一:数据中心要求控制环境参数的原因 (62) 附件二:机房专用空调机组 (70)

数据中心机房制冷空调系统运维技术考核题目答案参考

数据中心(机房)制冷空调系统运维技术考核题目答案参考 类数据机房温湿度范围?单点温湿度波动范围? A类机房温湿度要求:23±1℃,40--55% ;单点温度波动小于5℃/h,湿度波动小于5%/h 参考:GB50174《电子信息系统机房设计规范》 2.空调回风参数:温度25℃,相对湿度50%;求露点温度? ℃参考:标准大气压湿空气焓湿图;此题关注会查空气状态点对应的露点温度和湿球温度 3.自然冷却模式、预冷模式、普通制冷模式的切换依据,对应的环境湿球温度值是多少? 湿球温度<10℃适合自然冷却模式,10--15℃之间适合预冷模式,>15℃适合普通制冷模式 参考:水冷自控系统供冷模式转换控制逻辑 4.机房空调送风距离多少米为宜?6-10m为宜 5.数据机房采用地板送风,风速范围多少m/s为宜? ( m/s最佳)参考:GB50174《电子信息系统机房设计规范》 6.数据机房新风正压要求数值? 机房与走廊;机房与室外参考:GB50174《电子信息系统机房设计规范》 7.数据机房新风量:人均参考值?每平米参考值?按机房换气次数每小时几次为宜? 按工作人员每人40m3/h;每平米25--30 m3/h;机房换气次数次/h(人员进出的机房取4次/h) 8.计算:900个标准机柜(13A)需要多大面积的机房合适?如选用艾默生冷水型机房空调P3150G至少需要多少台?按4-5台以上备份1台的标准,最多需要多少台?需要多大冷量的冷水机组提供冷源?需要多大风量的新风空调提供机房正压? 每个机柜加上冷热通道,平均面积取;×900=2070㎡(可分成4个㎡模块间,每个模块225台机柜) 每平米可用制冷量不能小于+每平米维护结构热负荷=每平米冷量需求 总冷量需求:×2070=3312KW 查艾默生冷水型空调样本:P3150G标准冷量为;需留有20%的预留(使用系数取) 艾默生P3150G冷水型空调单机净冷量:×= ○标准需求台数:3312÷≈28台;冗余配置(4+1):28÷4=7台(需配备机7台);含备机需28+7=35台 ○IT设备功耗转换成热量系数(取计算);13A机柜功耗,转换为热量÷≈ 总热负荷:×900=3429KW,除以P3150G空调单机净冷量≈29台,按冗余配置(4+1),需配备机7台;含备机需29+7=36台 ○空调系统制冷量取IT负载的倍;IT总负载:×900=2574KW;空调系统总制冷量:2574×= 除以P3150G空调单机净冷量≈28台,按冗余配置(4+1),需配备机7台;含备机需28+7=35台 ●需要冷量为3429KW(约1000RT)的冷水机组(离心式)1台提供冷源 新风量每平米25--30 m3/h(取30 m3/h);总新风需求30×2070=62100 m3/h,建议规划4个模块间单独提供新风62100÷4=15525 m3/h,需要新风量15525 m3/h的组合空调4台 9.制冷设备能效比EER是如何计算的? EER即制冷设备的制冷性能系数,也称能效比,表示制冷设备的单位功率制冷量。EER值越高,表示制冷设备中蒸发吸收的热量较多,压缩机耗电较少。数学计算公式:EER=制冷量(KW)/制冷消耗功率(KW) 单位:W/W或KW/h/W 10.冷站(动力站)COP是如何计算的? 冷水机组实际制冷量和配套设备(压缩机-马达+冷冻水循环泵+冷却水循环泵+冷却塔风机-马达)实际输入功率之比 11.数据机房PUE是如何计算的?绿色节能机房PUE标准? PUE是评价数据中心能源效率的指标,是数据中心消耗的所有能源(电能)与IT负载使用的能源(电能)之比PUE=数据中心总设备能耗/IT设备能耗;基准是2,越接近1表明能效水平越好 绿色节能机房PUE标准:以下 12.接题目8,匹配适合该冷水机组的冷却塔参数(流量)?冷却塔设在楼顶距冷站(动力站)20米,匹配适合该冷水机组的冷却循环泵参数(扬程和流量)?匹配适合该冷水机组和机房空调的冷冻循环泵参数(扬程和流量)(注:水泵出口至管网最高点垂直高度15米)? 水量需求:冷凝器()/RT 蒸发器(3/h)/RT

数据中心机房空调系统气流组织研究与分析

数据中心机房空调系统 气流组织研究与分析 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1)投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义:? (2-1) 式中:t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出:

数据中心空调系统设计论文

某数据中心空调系统设计 【摘要】本文介绍数据中心空调系统设计,主要包括空调冷源、空调水系统、空调风系统、控制系统等。阐述数据中心空调系统安全运行的必要条件及减少能耗的主要节能措施。 0.项目概况 本项目位于浙江省某科技园区,数据中心建筑面积为29991m2,机房按A级[1]标准设计。 1.机房需求及系统简介 1.1数据中对空调系统安全要求 数据中心空调负荷较大,一旦制冷系统出现故障,IT设备散热量无法及时消除,机房温度很快超过IT设备厂商对机房环境温度的要求,可能会导致宕机或者IT设备损坏。因此设计须避免空调制冷系统的单点故障,保证系统7*24h不间断供冷,并且能在线维护。空调采用温湿度独立控制空调系统。制冷机按N+1设置备用,同时蓄冷罐作为应急备用冷源,保证系统断电时不间断供冷。其次管路方面:冷源侧及末端均采用环路设计,保证系统不间断运行。 1.2数据中心节能要求 近年来新建数据中心在逐步降低PUE值。为了评价数据中心的能源效率,行业中采用PUE值进行考核,规定PUE= 数据中心总设备能耗/IT设备能耗;显然PUE越接近1,表明能效水平越好。本工程空调系统,节能设计体现在以下四个方面:首先冷源方面:提高冷冻水出水温度及采用变速驱动的离心机有效提高其满负荷及部分负荷

的性能系数;其次;冬季采用免费供冷(Free Cooling)技术;第三数据机房采用温湿度独立处理的空调系统;第四数据机房服务器采用封闭冷通道的冷却方式、避免冷风和热风的混合,从而提高末端冷却的效率。 2.空调负荷及室内参数 2.1、机房内空调负荷:主要有围护结构、人员、灯光、新风、IT设备负荷等。湿负荷主要为:工作人员进入机房及新风机故障导致新风未经处理而引入机房的偶然性湿负荷。负荷特点:新风量小、显热负荷大、湿负荷很小、空调送风量大、空调系统全年制冷运行,IT设备负荷占比重最大。本项目数据中心IT设备散热量为14400kW,UPS间散热量为1536 kW,空调冷负荷为17506 kW。 2.2、数据中心室内设计参数 数据中心的设计温、湿度详见表1。洁净度要求:室内悬浮颗粒物0.15mg/m3以下或在静态条件下每升空气中大于等于0.5μm的尘粒数应少于18000粒,并保持必要的正压。 3、空调系统 3.1、空调冷源 冷源选用6台离心式冷水机组(5用1备)单台机组制冷量3825kW,冷却水进出制冷机温度32/37℃,冷冻水供回水温度为12/18℃;单台机组的制冷量调节范围15%~100%。主要用来消除机房内的显热负荷。新风机组冷源采用3台制冷量为693kW风冷热泵机组(2用1备)。热泵机组夏季冷冻水供回水温度为7/12℃。主要作

数据中心能耗分析

数据中心能耗实例分析 前言:本文着重分析了影响数据中心能耗的因素,从数据中心的空调、UPS、运维等方面对其能耗进行了综合分析。本文认为影响数据中心能耗的关键因素是空调系统,并以2个数据中心的空调系统为例,结合作者在数据中心建设和运维中的经验,提出了数据中心节能的建议。 一、数据中心节能的必要性 近年国内大型数据中心的建设呈现快速增长的趋势,金融、通信、石化、电力等大型国企、政府机构纷纷建设自己的数据中心及灾备中心。随着物联网、云计算及移动互联概念的推出,大批资金投资到商业IDC的建设中。数据中心对电力供应产生了巨大的影响,已经成为一个高耗能的产业。在北京数据中心较集中的几个地区,其电力供应都出现饱和的问题,已无法再支撑新的数据中心。目前某些数据中心移至西北等煤炭基地,利用当地电力供应充足、电价低的优势也不失为一个明智的选择。 随着数据中心的不断变大,绿色节能数据中心已经由概念走向实际。越来越多的数据中心在建设时将PUE值列为一个关键指标,追求更低的PUE值,建设绿色节能数据中心已经成为业内共识。例如,微软公司建在都柏林的数据中心其PUE值为1.25。据最新报道Google公司现在已经有部分数据中心的PUE降低到1.11。而我们国内的PUE平均值基本在1.8~2.0,中小规模机房的PUE值更高,大都在2.5以上。我们在数据中心绿色节能设计方面与国外还存在很大差距,其设计思想及理念非常值得我们借鉴。 根据对国内数据中心的调查统计,对于未采用显著节能措施的数据中心,面积为1000平方米的机房,其每年的用电量基本都在500多万kWH左右。因此对于新建的大型数据中心,节能的必要性十分重要。 从各大数据中心对电力的需求来看,数据中心已经成为重要的高耗能产业而非“无烟工业”,建设绿色、节能的数据中心急需从概念走向实际。 二、影响数据中心能耗的因素 数据中心的能耗问题涉及到多个方面,主要因素当然是空调制冷系统,但UPS、机房装修、照明等因素同样影响着数据中心的能耗,甚至变压器、母线等选型也影响着能耗。例如,对UPS而言,根据IT设备的实际负荷选择合理的UPS 容量,避免因UPS效率过低而产生较大的自身损耗。同时,选择更加节能的高频UPS、优化UPS拓扑结构都可起到节能的效果。 1、UPS对数据中心能耗的影响 UPS主机的自身损耗是影响数据中心能耗的一项重要因素。提高UPS的工作

【分享】数据中心水冷空调系统设计指南

【分享】数据中心水冷空调系统设计指南 1. 概述 近年来随着云计算技术的快速发展,全球数据中心开始向着巨型化的方向发展,单机柜功率密度不断提高,5KW、7KW、10KW甚至几十KW功率机柜已逐步成为常规配置。新一代数据中心更显著的表现为:规模更大、密度更高、制冷要求更高、局部过热成为常态等特点。数据机房的高功率密度化对空调系统的制冷及机房散热提出了更高的要求,空调系统短时间的供冷中断都会造成IT设备过热宕机,传统风冷空调的制冷方式已无法满足机房制冷需求。如何保障新一代数据中心空调系统的能够长期、持续、稳定的为数据中心机房提供所需的环境温度、湿度成为每个数据中心运维管理人员必须面临的问题,而空调系统的供电方式对上述保障要求能否达到起着关键作用。从国内数据中心的发展来看,由于功率密度的提高,新一代数据中心尤其是大型数据中心基本采用制冷效率更高的水冷空调系统来满足持续上升的制冷需求。本文中笔者主要结合自身工作经验主要针对水冷空调系统 的供电方案设计及一些常见问题进行分析和探讨。 2. 新一代数据中心与传统数据中心的差异 传统数据中心一般功率密度较低,多数单机柜功耗低于2KW,在空调系统故障停止供冷时,只要保持IT设备供电连续,通

过增加风机、开窗等手段仍可保持数据中心连续不中断运行,因此在传统数据中心的运维管理中空调系统的重要性往往 不像供电那样受到重视。新一代数据中心对运维管理的重点进行了重新定义,空调系统与数据中心供电一样决定着数据中心能否安全稳定运行。笔者在工作中按照ASHARE标准 测试方法,利用假负载对模拟了一个设计功耗5KW/机柜机 房失去空调制冷后机房温度上升情况。试验选择一个350平米机房内,机房内安装机柜158个。测试前启动假负载和空调,使机房温度达到数据机房正常运行稳定状态。关闭机房两侧末端空调模拟空调失去供冷。空调制冷系统停止运行后,靠机房空间的冷量只能维持不到3分钟。由此可见随着IT 设备功率密度的不断提升,数据机房允许的空调停止运行时间已成为分钟级,在此条件下通过运维人员“现场维修”来排 除空调系统故障恢复机房制冷已不再可能。空调系统短时间停止运行都会造成机房内热量的快速堆积,并引发设备高温宕机,因此保障空调系统安全稳定运行的供电系统的重要性也进一步凸显。 3. 高功率密度数据中心水冷空调系统的供电设计注意事项 新一代数据中心典型的空调水冷系统的结构基本都是由下 属三大部分组成:(1) 由冷却塔+冷却水泵+冷却水供水及回水管路组成的空调冷却水系统;(2) 由冷水机组+冷冻水泵+ 冷冻水供水、回水管路组成的空调冷冻水系统;(3) 由分水器

数据中心精密空调工作原理及维护

数据中心精密空调工作原理及维护 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向四周空气中释放,使高温高压的气体制冷剂重新凝聚成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中精密空调的维护 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等,因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。下面是我们在日常工作中对数据中心机房专用精密空调的一些维护经验和学习体会。 1、控制系统的维护 对空调系统的维护人员而言,在巡视时第一步就是看空调系统是否在正常运行,因此我们首先要作以下的一些工作。 1)从空调系统的显示屏上检查空调系统的各项功能及参数是否正常; 2)如有报警的情况要检蹭楔警记录,并分析报警原因; 3)检查温度、湿度传感器的工作状态是否正常; 4)对压缩机和加湿器的运行参数要作到心中有数,特殊是在天天早上的第一次巡检时,要把前一天晚上压缩机的运行参数和以前的同一时段的参数进行对比,看是否有大的变化,根据参数的变化可以判定计算机机房中的计算机设备运行状况是否有较大的变化,以便合理地调配空调系统的运行台次和调整空调的运行参数。当然,对目前而言有些比较老的空调系统还不能够读出这些参数,这就需要晚上值班的工作人员多观察和记录。 2、压缩机的巡回检查及维护 1)听―用听声音的方法,能较准确的判断出压缩机的运转情况。因为压缩机运转时,它的响声应是均匀而有节奏的。假如它的响声失去节奏声,而出现了不均匀噪音时,即表示压缩机的内部机件或气缸工作情况有了不正常的变化。 2)摸―用首摸的方法,可知其发热程度,能够大概判断是否在超过规定压力、规定温度的情况下运行压缩机。 3)看―主要是从视镜观察制冷剂的液面,看是否缺少制冷剂。 4)量―主要是测量在压缩机运行时的电流及吸、排气压力,能够比较正确判断压缩机的运行状况。当然对压缩机我们还需要检查高、低压保护开关、干燥过滤器等其他附件。 3、冷凝器的巡回检查及维护 1)对专业空调冷凝器的维护相称于对空调室外机的维护,因此我们首县痂要检查冷凝器的固定情况,看对冷凝器的固定件是否有松动的迹象,以免对冷媒管线及室外机造成损坏。 2)检查冷媒管线有无破损的情况(当然从压缩机的工作状况及其它的一些性能参数也能 够判断冷媒管线是否破损)检查冷媒管线的保温状况,特殊是在北方地区的冬天,这是一件比较重要的工作,如果环境温度太低而冷媒管线的保温状况又不好的话,对空调系统的正常运转有一定的影响。 3)检查风扇的运行状况:主要检查风扇的轴承、底座、电机等的工作情况,在风扇运行时是否有异常震惊机风扇的扇也在转动时是否在同一个平面上。 4)检查冷凝器下面是否有杂物影响风道的畅通,从而影响冷凝器的冷凝效果;检查冷凝器的翅片有无破损的状况。

数据中心精密空调选型推荐方案

数据中心 机房精密空调系统 技 术 方 案 书

目录 第一部分空调型号推荐 (1)机房空调选型说明 机房设计要求 中心机房属于中型重要程度很高的机房,具有高热密度、高显热比等特点,必须保障其高可靠性,应保障其环境控制的年平均无故障时间达到%。 机房内有严格的温、湿度要求,机房内按国标GB2887-89《计算机场地安全要求》的规定配置空调设备:

同时,主机房区的噪声声压级小于70分贝 主机房内要维持正压,与室外压差大于帕 送风速度不小于3米/秒 在表态条件下,主机房内大于微米的尘埃不大于18000粒/升 为使机房能达到上述要求,应采用精密空调机组才能满足要求。 空调负荷的确定 机房主要热量的来源 ?设备负荷(计算机及机柜热负荷); ?机房照明负荷; ?建筑维护结构负荷; ?补充的新风负荷; ?人员的散热负荷等。 ?其他 数据中心机房主要的热负荷来源于服务器计算机以及电源设备的发热量及维护结构的热负荷。因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷补充的新风负荷、人员的散热负荷等。并考虑机房实际情况和用户要求,推荐艾默生品牌下的PEX系列和SDC2系列。 精密空调扩容需求原因: ?机房内现有空调于2010年投入使用,已经使用8年,使用年限较久 ?空调管道大平均为50m,过长的管道会导致空调制冷量降低 ?机房后期服务器等设备扩容需要有一定的空调冷量预留

(2)方案一(艾默生空调Liebert PEX系列) 新增两套PEX3100F系统,地板下送风,天花板上回风。 ●考虑到机房实际情况和用户要求,采用下送风方式,推荐选用艾默生精密环 境控制设备Liebert PEX系列空调产品PEX 3100F空调系统。 ●PEX 3100F机组单机显冷量为,两套总显冷量为,同时每套系统均为双压缩 机系统,冬季以及房间设备同时工作率较低时,部分机组可工作于单套制冷系统节能方式,若一套设备的某个压缩机故障不影响正常使用。 ●单套PEX3100F机组送风风量为25800m3/h,两套总送风风量为51600m3/h, 空调选用EC风机,采用了高效可调速控制电机,可大大减少能耗并延长部件寿命,为最终用户提供最大的价值。 PEX3100F冷却方式: 推荐方案配置表

数据中心空调系统制冷量确定方法

数据中心空调系统制冷量确定方法 数据中心温度是确保服务器等IT设备正常稳定运行的先决条件,温度对计算机设备的额电子元器件、绝缘材料以及记录介质都有较大的影响。在正常工作的服务器中,一般CPU的温度最高,当电子芯片的温度过高时,非常容易出现电子漂移现象,服务器就可能出现宕机甚至烧毁。因此机房环境温度与设备运行的可靠性之间有必然联系。数据中心机房建设的国家标准GB50174-2008《电子信息机房设计规范》对机房开机时的环境的要求如下表所示: 为使数据中心能达到上述要求,应采用机房专用空调(普通民用空调、商用空调与机房专用空调的差异对比不在本文讨论范围)。如果数据中心机房环境不能满足以上要求会对服务器等IT设备造成以下影响: 温度无法保持恒定-造成电子元气件的寿命降低 局部温度过热-设备突然关机 湿度过高-产生冷凝水,短路 湿度过低-产生有破坏性的静电 洁净度不够-机组内部件过热,腐蚀 IDC机房的热源不是唯一的,由多种成分组成,按《电子信息机房设计规范》中规定,机房的热负荷应包括下列内容: 计算机和其他设备的散热 建筑围护结构的传热 太阳辐射热 人体散热、散湿 照明装置散热 新风负荷 热负荷的计算方法很多,有精确算法、估算法,本文结合各种算法,针对主要热源进行精确计算。当上述各项热负荷之和确定后,就可以初步确定对空调机制冷能力的要求。对于中高档机房,应优先选用模块化机房专用空调,这样对机房将来的运行、扩容和改造都十分有利。 数据中心热负荷及其计算方法

1、机房热负荷计算方法一:各系统累加法 (1)设备热负荷: Q1=P×η1×η2×η3(KW) Q1:计算机设备热负荷 P:机房内各种设备总功耗(KW) η1:同时使用系数 η2:利用系数 η3:负荷工作均匀系数 通常,η1、η2、η3取0.6~0.8之间,考虑制冷量的冗余,通常η1×η2×η3取值为0.8。 (2)机房照明热负荷: Q2=C×S(KW) C:根据国家标准《计算站场地技术要求》要求,机房照度应大于2001x,其功耗大约为20W/M2。以后的计算中,照明功耗将以20W/M2为依据计算。 S:机房面积 (3)建筑维护结构热负荷 Q3=K×S/1000(KW) K:建筑维护结构热负荷系数(50W/m2机房面积) S:机房面积 (4)人员的散热负荷: Q4=P×N/1000(KW) N:机房常有人员数量 P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为130W/人。 (5)新风热负荷计算较为复杂,我们以空调本身的设备余量来平衡,不另外计算。 以上五种热源组成了机房的总热负荷,即机房热负荷Qt=Q1+Q2+Q3+Q4。由于上述(3)(4)(5)计算复杂,通常是采用工程查表予以确定。但是因为数据中心的规划与设计阶段,非常难以确定,所以实际在数据中心中通常采用设计估算与事后调整法。 2、机房热负荷计算方法二:设计估算与事后调整法 数据中心机房主要的热负荷来源于设备的发热量及维护结构的热负荷。 因此,要了解主设备的数量及用电情况以确定机房专用空调的容量及配置。根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房设备功耗及机房面积,按经验进行测算。 采用“功率及面积法”计算机房热负荷。 Qt=Q1+Q2

数据中心设计方案(机房)

计算机数据中心机房系统设计方案 (模板)

目录 1.机房设计方案4 1.1概述4 1.1.1概述4 1.1.2工程概述说明4 1.1.3设计原则4 1.1.4建设内容实施5 1.1.5设计依据5 1.1.6引用标准6 1.1.7设计指标7 1.1.9设计思想及特点9 1.1.10绿色数据中心建设9 1.2装饰装修工程11 1. 2.1机房的平面布局和功能室的划分11 1.2.2装修材料的选择11 1.2.3机房装饰的特殊处理14 1.3供配电系统(UPS系统)15 1. 3.1供配电系统设计指标15 1.3.2供配电系统构成16 1.3.3供配电系统技术说明17 1.3.4供配电设计17 1.3.5电池18 1.4通风系统(新风和排风)18 1. 4.1设计依据18 1.4.2设计目标19 1.4.3设计范围19 1.4.4新风系统19 1.4.5排烟系统19 1.4.6风幕机系统20 1.5精密空调系统20 1. 5.1机房设备配置分析20 1.6防雷接地系统21 1. 6.1需求分析21 1.6.2系统设计22 1.7综合布线系统23 1. 7.1系统需求分析23 1.7.2机房布线方案23 1.7.3子系统主要技术说明24 1.8门禁系统24

1.8.1需求分析24 1.8.2系统设计24 1.9机房视频监控26 1.9.1项目概述26 1.9.2设计原则26 1.9.3总体目标27 1.9.4设计依据27 1.9.5机房视频监控规划28 1.10环境集中监控系统30 1.10.1概述30 1.10.2设备监控分析30 1.10.3机房动环设备集中监控平台一套31 1.10.4设计依据32 1.10.5设计原则32 1.10.6系统选型32 1.10.7系统组成33 1.11机柜系统34 1.11.1设备机柜技术要求分析34 1.12消防系统35 1.1 2.1七氟丙烷灭火系统35

数据中心空调制冷系统设计要求

数据中心空调制冷系统设计要求 1、空气调节的要求 (1)温度要求 保持温度恒定:一般功率密度的数据中心,温度应控制在23±(1~2)℃之内。 温度是确保IT设备正常运行的基础条件,温度对IT设备的电子元器件、绝缘材料以及记录介质都有较大的影响。如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会下降约25%;对于电容器而言,温度每增加10℃,其使用寿命会下降50%。绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱;温度过低,绝缘材料会变脆,使结构强度变弱。空调的冷风并非直接冷却IT设备内部,而需要几次间接冷却接力。因此,保持适当的环境温度十分必要(夏季可设置在上限;冬季设置在下限为佳)。这样既考虑了设备运行的可靠性,同时也可以节约电能。 23±(1~2)℃是保障IT设备正常运行的最佳进风温度。当因制冷设备供电终端或者设备本身故障时,机房温度会迅速提高。通常IT设备会给出最高进风温度限制,典型值是32 ℃,当进风温度超过此值时,IT设备会发出报警并自动关机停止运行。 (2)相对湿度要求 保持湿度恒定:相对湿度控制在50±5%之内。

当相对湿度较高时,水蒸气在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间形成通路;当相对湿度过低时,容易产生较高的静电电压。 试验表明:在数据中心机房中,如果相对湿度为30%,静电电压可达5000V;相对湿度为20%,静电电压可达10000V;相对湿度为5%,静电电压可达50000V。相对湿度范围是40%~70%是全国各地的总范围。对于沿海及长年湿润地区,建议设定值在(55%±5%)RH,这样可以避免过多的除湿工作而造成潜热的浪费;对于华北、西北及其他较干旱地区,建议设定值在(45%±5%)RH,这样可以避免过多的加湿工作造成潜热的浪费,同时可以减少加湿器的清洁工作。 (3)机房洁净度和正压的要求 空气洁净度:在每升空气中大于0.5μm的颗粒应小于18000粒,在机房中,室内装潢材料脱落、纸张短纤维、衣物纤维、人员进出携带的粉尘等,都是机房内灰尘粒子的来源。因此必须建立严格的机房管理制度。另外,严把室内装潢的质量关也非常重要,新建成的机房一定要将灰尘清理干净。 机房灰尘的来源之一是室外的空气。通过洁净新风在机房中形成正压,可以抵制外界尘土从门缝等处进入。机房与其他房间、走廊间的压差不应小5Pa,与室外静压差不应小于10Pa。当然正压也不宜过大。 对于屏蔽机房来讲,由于密封性好,有可能正压值过大(若新风较大的话),这种情况下可安装余压阀(加波导窗);一般机房的余压阀均无用。 2、对空调送风量的要求

相关主题
文本预览
相关文档 最新文档