当前位置:文档之家› 矿井通风方式方法详解

矿井通风方式方法详解

矿井通风方式方法详解
矿井通风方式方法详解

矿井通风方式

我们从事生产活动的煤矿,按照矿井进风井和回风井的位置关系,一般把矿井通风方式分为四种基本类型:中央式通风、对角式通风、区域式和混合式通风。

一、通风方式

1、中央式通风 : 中央式通风方式又可分为中央并列式和中央分列式(又称中央边界式)两种。?中央并列式通风方式是进风井和回风井都布置在矿区井田的中央,两风井相隔很近(一般相距30~50米)。(如图4—1)

中央分列式通风方式是进风井布置在矿区井田中央,而回风井则布置在矿区井田上部边界沿走向的中央,回风井相隔一定距离。(如图4—2)

2、对角式通风: 对角式通风方式又可分为两翼对角式和分区对角式两种。两翼对角式是进风井布置在矿区井田的中央,两个风井分别布置在矿区井田两翼上部(图4—3);分区对角式是各个采区的上部都开回风井,不开主要回风巷,这种方式叫分区对角式(图4—4)。

3、区域式:在井田的每个生产区域各布置进、回风井,分别构成独立的通风系统(图4—5)

4、混合式通风:混合式通风方式是中央式和对角式组合成的一种混合式通风方式,例如中央并列式与两翼对角式组合(图4—6);中央分列式与两翼对角式组合(图4—7)等。

二、主要优缺点的比较:

中央式通风方式与对角式通风方式相比较,中央式通风方式的回风井筒少,工业广场比较集中;当进风井口及井底车场附近发生火灾需要反风时,反风容易;但通风路线长,并且随着向边界采区开采通风阻力会不断增加,加上两风井靠得近,进、回风井之间的风压差大,所以漏风较大,易引发煤炭自燃。

矿井通风系统图图例

附件二: 矿井通风系统图图例 序号 名称 图例 颜色说明1:50001:2000 1 进风风流红色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔 1mm。(网络图只划风流方向)。 2 回风风流蓝色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔 1mm。(网络图只划风流方向)。 3 测风站棕色 4 永久风门棕色门扇迎向风流。 5 临时风门棕色门扇迎向风流。 6 正反风门棕色 7 防火密闭红色 8 永久密闭棕色 9 临时密闭棕色

10 风桥棕色 11局部通风机红色 1:5000平面图及立体示意图直 径3mm,1:2000平面图直径4mm。12风筒 在风机处和工作面各标注三节, 其余不标。 13调节风窗棕色 14轴流式主扇棕色 15离心式主扇棕色 16防爆门 棕色 棕色 17抽排风机棕色 18抽放泵棕色 19抽放管路红色

矿井安全监测监控系统图图例 分类 设备名称 颜 色 图例符号图例尺寸(毫米) 传感器 甲烷传感器绿直径=8,线宽0.5mm 一氧化碳传感器红直径=8,线宽0.5mm 风速传感器黑直径=8,线宽0.5mm 负压传感器黄直径=8,线宽0.5mm 温度传感器紫直径=8,线宽0.5mm 设备开停传感器蓝直径=8,线宽0.5mm 馈电传感器红直径=8,线宽0.5mm 风门开关传感器蓝直径=8,线宽0.5mm 井 下设备分站(干线扩展器)红 方框:长12 宽4, 线宽0.5mm

分站(干线扩展器)电源箱红 方框:长12 宽4, 线宽0.5mm 断电仪红直径=8,线宽0.5mm 线缆 光纤蓝 在光纤上标出型号, 线宽0.5mm 主通讯电缆黑 在电缆上标出型号, 线宽0.5mm 传感器电缆红 在电缆上标出型号, 线宽0.3mm 其它防雷器(通讯、电源)红 方框:长12 宽4, 线宽0.5mm 监测中心红 方框:长30 宽15, 线宽0.5mm,0.3mm

矿井通风系统图纸绘制及图例

矿井通风图纸绘制 为规范矿井通风图纸的绘制质量,便于指导矿井“一通三防”工作,提高矿井通风管理水平,根据公司实际,特对矿井通风图纸绘制及管理规范如下:一、总体要求: 1、图纸整体布局合理、美观,图面整洁,线条均匀光滑。 2、标注内容完整、准确,充分反映井下的实际情况。为保证图的正确、美观和统一,要求按照附表《煤矿通风安全图例》绘制。 3、图名一律标在图框内,位置在图的上框线下方。图框距左边界25 mm,距其它三个边界各10 mm,图框线宽度2 mm。 4、在每张图的右下角绘制图签,并有相关领导签字。图签上方绘制该图图例,要求完整、准确。 5、需要标明的内容用直线引出,引线不宜过长,并且方向一致。 6、图纸绘制及内容标注,线条宽度0.3mm(通风系统平面图中经常变动的通风设施、风流风向的标注可用铅笔绘制)。二、矿井通风图纸的绘制要求及标注内容 1、矿井通风系统图 (1)在1:2000、1:3000或1:5000采掘工程平面图上绘制。 (2)图上标注内容:风机、各类通风设施(含密闭、风门、风桥等)、风流方向、局扇、测风站、测风点、防爆门。 (3)主扇标注的内容:主扇型号、电机型号、铭牌功率、实际功率、实际叶片角度、转速、排风量、主扇风压等,标注格式自定。 (4)测风(站)点标注的内容:断面积、风速、风量、温度、编号,标注格式自定。 (5)风流方向均用箭头线标注,风流分支处必须标明风流方向。图纸的上方绘制指北针长30mm,宽4mm的箭头标示。 (6)多煤层同时开采的矿井还应绘制分层通风系统图。(7)有矿长、总工程师签字,并随着采掘变化及时修改。2、避灾线路图 (1)在采掘工程平面图上绘制。 (2)使用不同符号标志采掘工作面发生火灾、瓦斯/煤尘爆炸、水灾事故后

矿井通风阻力计算

第三章 井巷通风阻力 本章重点和难点: 摩擦阻力和局部阻力产生的原因和测算 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 第一节 井巷断面上风速分布 一、风流流态 1、管道流 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。 (1)雷诺数-Re 式中:平均流速v 、管道直径d 和流体的运动粘性系数γ。 在实际工程计算中,为简便起见,通常以R e =2300作为管道流动流态的判定准数,即: R e ≤2300 层流, R e >2300 紊流 (2)当量直径 对于非圆形断面的井巷,Re 数中的管道直径d 应以井巷断面的当量直径de 来表示: 因此,非圆形断面井巷的雷诺数可用下式表示: γ d v e R ? =

对于不同形状的井巷断面,其周长U 与断面积S 的关系,可用下式表示: 式中:C —断面形状系数:梯形C =4.16;三心拱C =3.85;半圆拱C =3.90。(举例见P38) 2、孔隙介质流 在采空区和煤层等多孔介质中风流的流态判别准数为: 式中:K —冒落带渗流系数,m 2; l —滤流带粗糙度系数,m 。 层流,R e ≤0.25; 紊流,R e >2.5; 过渡流 0.252300,紊流 巷道条件同上,Re=2300层流临界风速: V=Re×U×ν/4S =2300×4.16×3×15×10-6/(4×9)=0.012m/s<0.15 二、井巷断面上风速分布 (1)紊流脉动 风流中各点的流速、压力等物理参数随时间作不规则变化。 (2)时均速度 瞬时速度 v x 随时间τ的变化。其值虽然不断变化,但在一足够长的时间段 T 内,流速 v x 总是围绕着某一平均值上下波动。 (3)巷道风速分布

矿井通风基本知识复习课程

矿井通风基本知识

矿井通风基本知识 一、矿井通风概述 (一)矿内空气 矿内空气是矿井井巷内气体的总称。它包括地面进入井下的新鲜空气和井下的有毒有害气体、浮尘。矿内空气的主要来源是地面空气,但地面空气进入井下后,化学成分和物理状态会发生一系列的变化,因而矿内空气与地面空气在性质上和成分上均有较大差别。 地面空气进入井下后,由于煤岩中涌出各种气体以及可燃物的氧化,其成分发生变化。风流在经过采掘面等用风地点之前,气成分变化不大,称为新鲜空气或新风;风流经过采掘工作面等用风地点后,其成分发生较大的变化,称为污浊空气或乏风。 1.矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。 (2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%

时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人体影响较大,能强烈刺激眼和呼吸器官,使喉咙和支气管发炎,呼吸麻痹,严重时会引起肺水肿。二氧化硫的主要来源:含硫矿物氧化、燃烧、在含硫矿体中爆破,以及从含硫矿层中涌出。 (4)二氧化氮:二氧化氮是一种红褐色气体,极易溶于水,它与水结合形成硝酸,对眼睛、鼻腔呼吸及肺部组织起破坏作用,引起肺水肿,但起初只感觉到呼吸道受刺激、咳嗽,经过6~24小时后才出现中毒征兆。俗称的炮烟熏人,其实质就是二氧化氮中毒。二氧化氮的主要来源是井下爆破。 (5)氨气:氨气是一种无色、具有强烈的刺激臭味的气体,易溶于水,毒性很强。氨气对人体上呼吸道黏膜有较大刺激作用,引起咳嗽,使人流泪、头晕,严重时可至肺水肿。氨气主要来源是井下爆破。 (二)矿井气候条件要求 煤矿作业人员在井下工作时,需要一个适宜的气候条件,包括适宜的温度、湿度、风速。(1)采掘工作面的进风流中,氧气浓度不低于20%,二氧化碳浓度不超过0.5%。

矿井通风设计及风量计算方法

矿井通风设计施工时的基本原则和要求

通风系统合理可靠的含义

通风网络图的绘制 矿井风量计算办法 按照《煤矿安全规程》第一百零三条:“煤矿企业应根据具体条件制定风量计算方法,至少每5年修订1次”,要求,根据《煤矿井工开采通风技术条件》(AQ1028-2006)、《煤矿通风能力核定标准》(AQ1056-2008),结合本矿开采的实际情况,制定本办法。 一、全矿井需要风量的计算 全矿井总进风量按以下两种方式分别计算,并且必须取其最大值: 1、按井下同时工作的最多人数计算矿井风量: Q 矿进=4×N×K 矿通 (m3/min) 式中:Q 矿进 ——矿井总进风量,m3/min; 4——每人每分钟供给风量,m3/min.人; N——井下同时工作的最多人数,人; K 矿通——矿井通风需风系数(抽出式取K 矿通 =~)。 2、按各个用风地点总和计算矿井风量: 按采煤、掘进、硐室及其他巷道等用风地点需风量的总和计算: Q 矿进=(∑Q 采 +∑Q 掘 +∑Q 硐 +∑Q 其他 )×K 矿通 (m3/min) 式中:∑Q 采 ——采煤工作面实际需要风量的总和,m3/min; ∑Q 掘 ——掘进工作面实际需要风量的总和,m3/min; ∑Q 硐 ——硐室实际需要风量的总和,m3/min; ∑Q 其他 ——矿井除了采、掘、硐室地点以外的其他巷道需风量的总和,m3/min。 K 矿通——矿井通风需风系数(抽出式K 矿通 取~)。 二、采煤工作面需要风量 按矿井各个采煤工作面实际需要风量的总和计算: ∑Q 采=∑Q 采i +∑Q 采备i (m3/min) 式中:∑Q 采 ——各个采煤工作面实际需要风量的总和,m3/min; Q 采i ——第i个采煤工作面实际需要的风量,m3/min; Q 采备i ——第i个备用采煤工作面实际需要的风量,m3/min。 每个采煤工作面实际需要风量,按工作面气象条件、瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量等规定分别进行计算,然后取其中最大值。有符合规定的串联通风时,按其中一个采煤工作面实际需要的最大风量计算。 1、按气象条件计算: Q 采=Q 基本 ×K 采高 ×K 采面长 ×K 温 (m3/min)

矿井通风阻力测定方法

矿井通风阻力测定方法 2007/12/14/12:53 来源:国际能源网 MT/T440—1995 中华人民共和国煤炭工业部1996—03—08批准1996—08—01 实施 1.主题内容与适用范围 本标准规定了矿井通风阻力测定用仪器、测定步骤、测定结果 计算和处理。 本标准适用于煤矿井巷通风阻力测定。 2.术语 2.1主要路线 测定矿井通风阻力时,所选定的从入风井口(或井底车场),经入风大巷、采区、回风大巷,回风井至 风峒的通风路线。 2.2次要路线 测定矿井通风阻力时,所选定的除主要路线外的通风路线。 3.仪器 以下计量器具均应检定,并在有效期内使用。 a.普通型空盒气压计: 测量范围80~107kPa(相当于600~800mmHg),最小分度值50Pa; b.倾斜压差计: 测量范围0~3000Pa,最小分度值10Pa; c.精密气压计: 测量范围83.6~114kPa,最小分度值25Pa; d.通风干湿温度计: 测量范围-25~+50℃,最小分度值0.2℃;

e.皮托管: 校正系数0.998~1.004; f.低速风速表: 测量范围0.2~5m/s,启动风速≤0.2m/s; g.中速风速表: 测量范围0.4~10m/s,启动风速≤0.4m/s; h.高速风速表: 叶轮:测量范围0.8~25m/s,启动风速≤0.5m/s; 杯式:测量范围1.0~30m/s,启动风速≤0.8m/s; i.秒表: 最小分度值1s; j.钢卷尺: 2m钢卷尺:测量范围0~2m,最小分度值1.0mm; 30m钢卷尺:测量范围0~30m,最小分度值1.0mm; k.橡胶管(或塑胶管): 内径4~5mm; l.橡胶管接头: 内径3~4mm,外径5~6mm,长度50~80mm。 4.测定步骤 4.1测定路线选择 在通风系统图上选择测定的主要路线和次要路线。同时,要考虑一个工作班内将该路线测完;当测定 路线较长时,可分段、分组测定。 4.2测点选择 首先在通风系统图上按选定测定路线布置测点,并按顺序编号。然后再按井下实际情况确定测点位置, 并作标记。

煤矿常用计算公式汇总

煤矿巷道及通风计算公式 一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V 表=n/t (m/s) (一般为侧身法测风速) 式中:V 表:计算出的表速; n :见表读数; t :测风时间(s ) V 真=a+ b ×V 表 式中:V 真:真风速(扣除风表误差后的风速); a 、 b :为校正见表常数。 V 平=K V 真=(S-0.4)×V 真÷S 式中:K 为校正系数(侧身法测风时K=(S-0.4)/S ,迎面测风时取1.14); S 为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q :井巷中的风量(m 3/s );S :测风地点的井巷断面积(m 2); V :井巷中的平均风速(m/s ) 例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s ,问此巷道风量是多少。 例2:某煤巷掘进断面积3m 2,风量36 m 3/min ,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q 瓦) Q 瓦=QC (m 3/min ) 式中Q :为工作面的风量;C :为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度) 例:某矿井瓦斯涌出量3 m 3/min ,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q 瓦) q 瓦=1440Q 瓦*N T (m 3/t )

式中Q 瓦 :矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月);T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK (m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算 Q 采=100×q 采 ×K CH4 (m3/min) 式中100:为系数;q 采 :采煤工作面瓦斯涌出量(相对); K CH4:瓦斯涌出不均衡系数(取1.4 ~ 2.0) 2、按采面气温计算: Q 采 =60×V×S (m3/min) 式中60:为系数; V:采面的风速(温度为18~20℃时取0.8~1.0m/s,温度为20~23℃时取1.0~1.5 m/s); S:采面平均断面积。 3、按采面人数计算: Q采=4N (m3/min) 4、按炸药量计算: Q采=25A (m3/min) 式中25:为系数;A:为一次性爆破的最多炸药量 5、按风速进行校验: 15≤Q采≤240 (m/min)或0.25≤Q采≤4 (m/s) 式中15与0.25:为工作面最低风速(m/min)(m/s) 240与4:为工作面最高风速(m/min)(m/s) 例:某采面工作人数15人,一次性爆破炸药5kg,温度20度,瓦斯涌出量为1 m3/min,请问采面需风量是多少。 七:掘进工作面需风量的计算

矿井通风设备选型

矿井通风设备选型 一、通风方式和通风系统 (一)通风方式 本矿井通风方法为机械抽出式。矿井采用中央并列式通风。 (二)通风系统 进风井为主斜井、副斜井,回风井为回风斜井。 投产期通风系统:主斜井、副斜井进风,回风斜井回风,新鲜风流从主斜井、和副斜井进入,经运输暗斜井、轨道暗斜井、运输大巷、轨道大巷、运输下山、轨道下山、运输石门、采面运输巷至10701采面,乏风经回风斜巷进入回风斜井,然后排至地面。 本矿按煤与瓦斯突出矿井进行设计。在风井场地设通风机,通风方式为并列式。 选用型高效节能防爆对旋轴流通风机;当矿井初期风量和负压较小时,可调节风机叶片安装角度和采用变频方式改变风机的转速来满足矿井通风要求。 反风方式,采用风机反转反风。 二、回风斜井通风设备选型 ㈠计依据: 容易时期风量:73m3/s;负压:860.6Pa 困难时期风量:73m3/s;负压:1174.6Pa 回风井的井口海拔标高为+1316m,当地大气密度ρ1=1.03kg/m3。 ㈡通风设备选型: 根据矿井通风资料,经多方案比较筛选后可供选择的方案列于表7-2-1。 表7-2-1 回风斜井通风机选型比较表

由表7-2-2可知GAF型轴流通风机,投资高、占地面积大、土建费用高、土建施工工期长。而FBCDZ风型风机具有投资低,占地面积小,土建费用低,安装、维护简单等优点。故推荐方案一。 经技术经济比较,回风井选用风机FBCDZ-8-No21B型,740 r/min,一台工作,一台备用。配套电机为防爆电动机(660V,132kW,740r/min),每台风机额定风量为48~107m3/s,额定风压为670~2600Pa。风机特性曲线参见图7-2-2。 根据本矿井前后期负压变化较大的特点,在调整好需要的叶片角度后,通过变频调速达到实际所需风量,可实现风机前后期均处于较佳的工况点运行。 风机订货前应由厂家针对本矿井风量、负压情况对风机选型进行校验,设计

矿井通风阻力参数及其计算复习思考题

第四章矿井通风阻力参数及其计算复习思考题 1、矿井风流以层流为主还是以紊流为主?为什么? 2、阻力和风阻是不是一回事? 3、尼古拉茨实验研究提示了井巷粗糙度、雷诺数与λ系数之间的什么关系? 4、由测定得知,某梯形巷道断面5m2,长500m,当通过的风量为25m2/s时,压差为3.75mmH2O,分别按工程单位制和法定单位制,求算譔巷道的摩擦阻力系数。 5、影响摩擦的因素有哪些? 6、假若井筒直径D=4m,摩擦阻力系数α=0.04N?s2/m4,深度L=325m,通过的风量为3000m3/min,问井筒的风阻有多大?压差有多大? 7、风流以240m/min的速度从断面为10m2的巷道突然进入断面为4m2巷道,问引起的能量损失为多少? 8、某通风巷道的断面由2m2,突然扩大到10m2,若巷道中渡过的风量为20m3/s,巷道的摩擦阻力系数为0.016N?s2/m4,示巷道突然扩大处的通风阻力。 9、为什么要降低矿井风阻?用什么方法? 10、何谓矿井等积孔? 11、矿井风阻特性曲线表示什么?作风阻为1.962N?S2/m8的风阻特性曲线。 12、对某巷道经过实测获得如下资料:

(1)如图3-1,两支皮托管间距为200m,倾斜压差计的倾斜系数为0.4,在压差计上的读数为第一次16.5mm、第二次16.2mm、第三次16.3mm。 (2)巷道断面如图3-2,a=3m、b=3.5m、c=2.4m、d=2.3。 图3-1用倾斜压差计测压差图3-2巷道断面 表3-1测风记录 顺序风表顺序读数(格)风表测风时间 零点读数6039 - 1 6545 1min55s 2 7130 2min10s 3 7590 1min40s (3)用翼式风表测风(侧身法)记录如表3-1。 (4)风表按图3-3校正。 (5)该巷道的气温为150C,气 压750mmHg,相对湿度80%。根据 以上数据,求标准状况下该巷道的 摩擦阻力系数、摩擦风阻、等积孔, 并作出风阻特性曲线。图3-5

矿井通风基本知识

矿井通风基本知识 一、矿井通风概述 (一)矿内空气 矿内空气就是矿井井巷内气体的总称。它包括地面进入井下的新鲜空气与井下的有毒有害气体、浮尘。矿内空气的主要来源就是地面空气,但地面空气进入井下后,化学成分与物理状态会发生一系列的变化,因而矿内空气与地面空气在性质上与成分上均有较大差别。 地面空气进入井下后,由于煤岩中涌出各种气体以及可燃物的氧化,其成分发生变化。风流在经过采掘面等用风地点之前,气成分变化不大,称为新鲜空气或新风;风流经过采掘工作面等用风地点后,其成分发生较大的变化,称为污浊空气或乏风。 1.矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍就是以氧气与氮气为主,另外包含少量其它气体。 2、矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳就是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源就是:火灾、爆破工作、瓦斯与煤尘爆炸。 (2)硫化氢:硫化氢就是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0、05%时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫就是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人体影响较大,能强烈刺激眼与呼吸器官,使喉咙与支气管发炎,呼吸麻痹,严重时会引起肺水肿。二氧化硫的主要来源:含硫矿物氧化、燃烧、在含硫矿体中爆破,以及从含硫矿层中涌出。 (4)二氧化氮:二氧化氮就是一种红褐色气体,极易溶于水,它与水结合形成硝酸,对眼睛、鼻腔呼吸及肺部组织起破坏作用,引起肺水肿,但起初只感觉到呼吸道受刺激、咳嗽,经过6~24小时后才出现中毒征兆。俗称的炮烟熏人,其实质就就是二氧化氮中毒。二氧化氮的主要来源就是井下爆破。 (5)氨气:氨气就是一种无色、具有强烈的刺激臭味的气体,易溶于水,毒性很强。氨气对人体上呼吸道黏膜有较大刺激作用,引起咳嗽,使人流泪、头晕,严重时可至肺水肿。氨气主要来源就是井下爆破。

矿井通风基本知识通用版

安全管理编号:YTO-FS-PD207 矿井通风基本知识通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

编写人:xxxxx 审核人:xxxxx 矿井通风基本知识通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、矿井通风概述 (一)矿内空气 1. 矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。 (2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人

矿井通风系统图图例电子版本

矿井通风系统图图例

附件二: 序号名称 图例 颜色说明1:5000 1:2000 1 进风风流红色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔1mm。(网络图只划风流方向)。 2 回风风流蓝色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔1mm。(网络图只划风流方向)。 3 测风站棕色 4 永久风门棕色门扇迎向风流。 5 临时风门棕色门扇迎向风流。 6 正反风门棕色 7 防火密闭红色 8 永久密闭棕色 9 临时密闭棕色 10 风桥棕色 11 局部通风机红色1:5000平面图及立体示意图直径3mm,1:2000平面图直径4mm。 12 风筒在风机处和工作面各标注三节,其余不标。 13 调节风窗棕色 14 轴流式主扇棕色 15 离心式主扇棕色 16 防爆门 棕色 棕色 17 抽排风机棕色 18 抽放泵棕色 19 抽放管路红色 仅供学习与交流,如有侵权请联系网站删除谢谢2

分类设备名称颜 色 图例符号图例尺寸(毫米) 传感器 甲烷传感器绿直径=8,线宽0.5mm 一氧化碳传感器红直径=8,线宽0.5mm 风速传感器黑直径=8,线宽0.5mm 负压传感器黄直径=8,线宽0.5mm 温度传感器紫直径=8,线宽0.5mm 设备开停传感器蓝直径=8,线宽0.5mm 馈电传感器红直径=8,线宽0.5mm 风门开关传感器蓝直径=8,线宽0.5mm 井下设备 分站(干线扩展器)红 方框:长12 宽4, 线宽0.5mm 分站(干线扩展器)电源箱红 方框:长12 宽4, 线宽0.5mm 断电仪红直径=8,线宽0.5mm 线缆 光纤蓝 在光纤上标出型号, 线宽0.5mm 主通讯电缆黑 在电缆上标出型号, 线宽0.5mm 传感器电缆红 在电缆上标出型号, 线宽0.3mm 其它防雷器(通讯、电源) 红 方框:长12 宽4, 线宽0.5mm 监测中心红 方框:长30 宽15, 线宽0.5mm,0.3mm 仅供学习与交流,如有侵权请联系网站删除谢谢3

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

矿井通风安全技术措施

瓦斯防治措施 1、必须建立和健全各级领导及各业务部门的“一通三防”管理工作责任制。各 矿矿长必须定期主持研究“一通三防”工作(矿每月至少一次),并保证这一工作所需的人、财、物。矿总工程师全面负责“一通三防”技术业务管理工作。各矿副职对其分管范围内的安全工作负责。各采掘区(队)长对所辖区内“一通三防”工作全面负责。安监部长及驻矿安全监察站(站)长负责对防止重大瓦斯煤尘事故的安全措施的实施情况进行监督检查。 2、要确保矿井通风系统良好,采掘工作面通风系统稳定,风量符合作业规程的 规定,通风系统不合理或风量不足的要停产整顿。局部通风设施必须由指定人员负责管理,严禁随意停开局扇和不按标准安装、维护风筒。严格矿井瓦斯管理和检查制度,必须按《煤矿安全规程》要求配齐瓦斯检查人员。瓦斯检查员配备不足的由矿长负责,瓦斯检查出现空班漏检或弄虚作假由通风区(队)长负责。回采工作面上隅角瓦斯积聚,掘进工作面高顶瓦斯积聚都要采取有效措施处理,凡因未制定措施而引起瓦斯煤尘事故的由矿总工程师负责,措施执行不力而发生事故,由分管矿长和采掘区(队)长负责。 3、瓦斯矿井的高瓦斯区域和瓦斯涌出异常区内的采掘工作面必须按高瓦斯采掘 工作管理,由各矿制订具体标准、管理办法和编制安全措施报公司各安全职能部门审批。 4、矿井要建立矿井安全监测系统。掘进工作面迎头必须按规定悬挂瓦斯监控探 头。装备安设和维修由矿井机电队队长负责:瓦斯监测仪器的日常使用管理由采掘区(队)长负责。矿井必须建立专门的安全监测队伍,负责从事日常仪器的管理和维修工作。所有监测仪器的维修费用,必须予以保证。 5、矿井的放炮员必须配备便携式瓦检仪。放炮必须严格执行“一炮三检”(装 药前、放炮前、放炮后)制和“三人连锁放炮”(放炮员、班组长、瓦检员)制。每个炮眼必须按规定充填炮泥。 6、要切实加强瓦斯排放、巷道贯通和盲巷管理工作。排放瓦斯和巷道贯通要认 真编制安全措施并执行有关规定。所有井下盲巷和临时停风地点必须按照《煤矿安全规程》要求设置密闭和栅栏,定期检测瓦斯和氧气浓度,并严禁任何人员违章进入。 7、要加强矿井防火和电气设备管理,坚决消灭引爆火源。要严格井下明火作业 的审批手续,特别是井下胶带运输机的防火措施和安全保护措施要严格把关。井下检修电器必须先检查瓦斯,并严禁带电作业。井下流动电钳工要配备便携式瓦检仪。 8、要认真落实综合防尘措施。采掘工作面及各生产环节必须实现湿式作业,采 取综合防尘措施,消除煤尘堆积和飞扬。凡有瓦斯、煤尘爆炸危险的矿井必须按规定设置隔爆设施。

矿井通风总阻力计算

华蓥市老岩湾煤业有限公司 矿井通风总阻力计算 沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。 通风摩擦阻力计算公式如下: h= 2 3 Q S P L a ??? 式中:h —— 通风摩擦阻力,Pa ; α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。 经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。 五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔 a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易 为: R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N 2S 2/m 8 A 易 =易易h Q /19.1 =1.19330.4÷99.573 =1.51m 2

b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为: R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N 2S 2/m 8 A 1 =11/19.1h Q =1.19315.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N 2S 2/m 8 A 2 =22/19.1h Q =1.19312.55÷51.401 =0.75 m 2 A 难= () 111 11121)(19.1Q Q h Q h Q Q Q +++? = () 55.1295.1551 .40155.1242.48995.15)55.1295.15(19.1+?+?+? =1.6(m 2) 式中: R 易-为矿井通风容易时期的矿井风阻,N 2S 2/m 8; A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N 2S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;

矿井通风系统图纸绘制及图例

矿井通风系统图纸绘制及图例

矿井通风图纸绘制 为规范矿井通风图纸的绘制质量,便于指导矿井“一通三防”工作,提高矿井通风管理水平,根据公司实际,特对矿井通风图纸绘制及管理规范如下:一、总体要求: 1、图纸整体布局合理、美观,图面整洁,线条均匀光滑。 2、标注内容完整、准确,充分反映井下的实际情况。为保证图的正确、美观和统一,要求按照附表《煤矿通风安全图例》绘制。 3、图名一律标在图框内,位置在图的上框线下方。图框距左边界25 mm,距其它三个边界各10 mm,图框线宽度2 mm。 4、在每张图的右下角绘制图签,并有相关领导签字。图签上方绘制该图图例,要求完整、准确。 5、需要标明的内容用直线引出,引线不宜过长,并且方向一致。 6、图纸绘制及内容标注,线条宽度0.3mm(通风系统平面图中经常变动的通风设施、风流风向的标注可用铅笔绘制)。二、矿井通风图纸的绘制要求及标注内容 1、矿井通风系统图 (1)在1:2000、1:3000或1:5000采掘工程平面图上绘制。 (2)图上标注内容:风机、各类通风设施(含密闭、风门、风桥等)、风流方向、局扇、测风站、测风点、防爆门。 (3)主扇标注的内容:主扇型号、电机型号、铭牌功率、实际功率、实际叶片角度、转速、排风量、主扇风压等,标注格式自定。 (4)测风(站)点标注的内容:断面积、风速、风量、温度、编号,标注格式自定。 (5)风流方向均用箭头线标注,风流分支处必须标明风流方向。图纸的上方绘制指北针长30mm,宽4mm的箭头标示。 (6)多煤层同时开采的矿井还应绘制分层通风系统图。(7)有矿长、总工程师签字,并随着采掘变化及时修改。2、避灾线路图 (1)在采掘工程平面图上绘制。 (2)使用不同符号标志采掘工作面发生火灾、瓦斯/煤尘爆炸、水灾事故后

矿井通风方式

矿井通风方式 概念:指矿井进风井和出风井的布置方式。 根据哪些因素选择矿井通风方式 选择矿井通风方式一般根据煤层瓦斯含量高低、煤层埋藏深度和赋存条件、冲击层厚度、煤层自燃倾向性、小窑塌陷漏风情况、地形地貌状态以及开拓方式等因素综合考虑确定。 主要有哪几种基本类型 (1)、中央式通风。中央式通风是指进风井和回风井大致位于井田走向的中央,中央式通风又分为中央并列式和中央边界式两种形式。 (2)、对角式通风。对角式通风是指进风井位于井田中央,回风井分别位于井田浅部走向两翼边界采区的中央,对角式通风又分为两翼对角式和分区对角式两种形式。 (3)、混合式通风。混合式通风是大型矿井和老矿井进行深部开采时常用的一种通风方式。一般进风井和回风井由3个或3个以上井筒或斜井按(1)、(2)两种方式组合而成,分为中央分列与对角混合式、中央并列与对角混合式、中央并列与中央分列混合式三种形式。 什么是中央并列式通风 进风井和出风井并列位于井田走向中央的通风方式。 中央并列式通风的适用条件是什么?有哪些优缺点 适用条件:中央并列式通风适用于煤层倾角较大、走向不长、投产初期暂未设置边界安全出口,且自然发火不严重的矿井。

优缺点: (1)、初期投资少、采区生产集中,便于管理。 (2)、节省回风井工业场地,占地少、压煤少。 (3)、进、回井之间风格路较长,风阻较大,漏风较多。 (4)、工业场地有噪声影响。 什么是中央分列式通风又称中央边界式通风 进风进位于井田走向的中央,出风井位于井田沿边界走向中部的通风方式。 什么是对角式通风 进风井位于井田中央,出风井位于两翼,或出风井位于井田中央,进风井位于两翼的通风方式。 两翼对角式通风的适用条件是什么?有哪些优缺点 适用条件:两翼对角式通风适用于煤层走向长、井田面积大、产量较高的矿井。 优缺点: (1)、初期投资大,建井期较长。 (2)、增加两个回风井场地,压煤多。 (3)、矿井通风阻力小,风路短,漏风小。 (4)、工业场地没有噪声影响。 (5)、比中央式通风的安全可靠性强。特别是对于有瓦斯喷出或有煤与瓦斯(二氧化碳)突出的矿井应采用对角式通风。 分区对角式通风的适用条件是什么?有哪些优缺点

通风系统矿图绘制要求规范

第五章通风系统矿图绘制 第二十八条一通三防图纸绘制总体要求 1.整体布局合理、美观,图面整洁,线条均匀光滑。 2.标注内容完整、准确,充分反映井下实际情况,严格按照图纸填图说明和标注格式进行标注。 3.图名一律标在图廓内,位置在图的上图廓线下方留白位置居中,图名(字高33毫米仿宋,字与字之间一个字间距,不带边框)与上部内图廓线间距30毫米。 4.在每张图的左上角绘制一通三防图纸说明。图纸说明中,除图纸名称项目外,其它内容和格式与采掘工程平面图图纸说明一致。 5.在每张图的右下角绘制图签。 6.在每张图的左下角绘制一通三防图纸图例。 7.多煤层同时开采必须绘制分层通风系统图,上报通风管理部的通风系统图可绘制在同一张图纸上。 8.矿井通风系统图及立体示意图均要绘制指北针,位置同采掘工程平面图。 9.通风系统图风流方向均用箭头线标注,风流分支处必须标明风流方向。 10.通风系统图中,测风站数量能够反映矿井风流分配情况。 第二十九条矿井通风系统三种图的绘制要求及标注内容 (一)矿井通风系统平面图(××煤矿×煤层通风系统图) 1.在1:2000或1:5000采掘工程平面图上绘制。 2.图上标注内容:主扇、风流方向、局部通风机、风筒、密

闭、风门、正反向风门、防火门、调节、风桥、测风站、防爆门、节点编号、采空区、火区、巷道名称及采掘工作面编号等。 3.主扇应标注的内容:主扇型号、电机型号、排风量、井下总回风量、主扇转速、叶片角度(或前导器角度)、电机额定功率、电机实际功率、主扇负压(即装置静压)、等级孔等。 4.局部通风机应标注的内容:局部通风机安装地点、型号、风筒直径、全负压风量、局部通风机实际吸风量、风筒供风距离。 5.测风(站)点标注的内容:地点、断面积、风速、风量、气温、瓦斯浓度、二氧化碳浓度。 (二)矿井通风立体示意图(××煤矿通风立体示意图) 1.图幅不小于零号图纸。 2.所有井巷用双线(或一粗一细)绘制。 3.坐标系选择:沿煤层走向的巷道与X轴平行,与走向垂直的巷道与Y轴平行,立井与Z轴平行,X轴垂直Z轴,X轴与Y 轴成45~60度。为了充分体现层次关系,Z坐标轴要选择适当比例。对于井田范围较大、形状不规范的矿井,可根据本矿实际,将坐标系适当旋转。 4.绘图时可不严格按比例,但要反映矿井通风系统的空间立体情况,突出层次。 5.为了更好地反映主要井巷的相对空间位置,进、回风井、暗斜井、溜煤眼、石门、大巷、采区主要巷道用0.6毫米实线绘制。 6.图上标注内容:和通风系统平面图一致。 7.图名、图签、图例、标注内容的标注方法和矿井通风系统

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

相关主题
文本预览
相关文档 最新文档