当前位置:文档之家› 编程模拟生产者和消费者问题(附代码程序)

编程模拟生产者和消费者问题(附代码程序)

编程模拟生产者和消费者问题(附代码程序)
编程模拟生产者和消费者问题(附代码程序)

实验三编程模拟生产者和消费者问题

一、实验目的和要求

模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。

进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。

我们把若干个进程都能进行访问和修改的那些变量称为公共变量。由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。一般说,同步机构是由若干条原语——同步原语——所组成。本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。

二、实验环境

Windows操作系统和Visual C++6.0专业版或企业版

三、实验步骤

模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。

[提示]:

(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:

P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。

V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。

这两条原语是如下的两个过程:

procedure p (var s: semaphore);

begin s: = s-1;

if s<0 then W (s)

end {p}

procedure v (var s: semaphore);

egin s: = s+1;

if s 0 then R (s)

end {v}

其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。

在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。

(2) 生产者——消费者问题。

假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。消费者每次从缓冲器内取出一件产品去消费。禁止生产者将产品放入已满的缓冲器内,禁止消费者从空缓冲器内以产品。假定缓冲器内可同时存放10件产品。那么,用PV操作来实现生产者和消费者之间的同步,生产者和消费者两个进程的程序如下:

B: array [0..9] of products;

s1, s2; semaphore;

s1: =10, s2: =0;

IN, out: integer;

IN: =0; out: =0;

cobegin

procedure producer;

c: products;

begin

L1:

Produce (c);

P (s1);

B[IN]: =C;

IN: =(IN+1)mod 10;

V (s2);

goto L1

end;

procedure consumer;

x: products;

begin

L2: p (s2);

x: =B[out];

out: =(out+1) mod10;

v (s1);

consume (x);

goto L2

end;

coend.

其中的semaphore和products是预先定义的两个类型,在模拟实现中semaphore用integer代替,products可用integer或char等代替。

(3) 进程控制块PCB。

为了记录进程执行时的情况,以及进程让出处理器后的状态,断点等信息,每个进程都有一个进程控制块PCB。在模拟实习中,假设进程控制块的结构如图3-1。其中进程的状态有:运行态、就绪态、等待态和完成态。当进程处于等待态时,在进程控制块PCB中要说明进程等待原因(在模拟实习中进程等待原因是为等待信号量s1或s2);当进程处于等待态或就绪态时,PCB中保留了断点信息,一旦进程再度占有处理器则就从断点位置继续运行;当进程处于完成状态,表示进程执行结束。

图3-1 进程控制块结构

(4) 处理器的模拟。

计算机硬件提供了一组机器指令,处理器的主要职责是解释执行机器指令。为了模拟生产者和消费者进程的并发执行,我们必须模拟一组指令和处理职能。

模拟的一组指令见图3-2,其中每条指令的功能由一个过程来实现。用变量PC来模拟“指令计数器”,假设模拟的指令长度为1,每执行一条模拟指令后,PC加1,提出下一条指令地址。使用模拟的指令,可把生产者和消费者进程的程序表示为图3-3的形式。

定义两个一维数组PA[0..4]和SA[0..4],每一个PA[i]存放生产者程序中的一条模拟指令执行的入口地址;每个SA[i]存放消费者程序中的一条模拟指令执行的入口地址。于是模拟处理器执行一条指令的过程为:取出PC之值,按PA[PC]或SA[PC]得模拟指令执行的入口地址,将PC之值加1,转向由入口地址确定的相应的过程执行。

图3-2 模拟的处理器指令

图3-3 生产者和消费者程序

(5) 程序设计

本实习中的程序由三部分组成:初始化程序、处理器调度程序、模拟处理器指令执行程序。各部分程序的功能及相互间的关系由图3-4至图3-7指出。

图3-4 初始化流程

图3-5 模拟处理器调度

·初始化程序:模拟实习的程序从初始化程序入口启动,初始化工作包括对信号量s1、s2赋初值,对生产者、消费者进程的PCB初始化。初始化后转向处理调度程序,其流程如图3-4。

·处理器调度程序:在计算机系统中,进程并发执行时,任一进程占用处理器执行完一条指令后就有可能被打断而让出处理器由其它进程运行。故在模拟系统中也类似处理,每当执行一条模拟的指令后,保护当前进程的现场,让它成为非运行态,由处理器调度程序按随机数再选择一个就绪进程占用处理器运行。处

理器调度程序流程见图3-5。

图3-6 模拟处理器指令执行

(a) 模拟P (s) (b) 模拟V (s)

图3-7 模拟PV操作的执行

·模拟处理器指令执行程序:按“指令计数器”PC之值执行指定的指令,且PC加1指向下一条指令。模拟处理器指令执行程序的流程图见图3-6和图3-7。

另外,为了使得模拟程序有一个结束条件,在图3-6中附加了“生产者运行结束”的条件判断,模拟时可以采用人工选择的方法实现。图3-7给出了P(s)和V(s)模拟指令执行过程的流程。其它模拟指令的执行过程已在图3-2中指出。

附录:代码

#include

#include

#include

#include

#define NULL 0

struct spcb

{

char name;

char state;

char why;

int dd ;

};

typedef struct spcb pcb;

pcb producter,consumer,*process,*process1; int s1,s2,i,j,in,out,pc,m;

char array[10];

char c,x;

int pa[6],sa[6];

int p(int s) /* p操作原语*/

{

s=s-1;

if(s<0)

{

process->state='B'; /* B表示阻塞*/

process->why='s';

}

else

{

process->state='W'; /* W表示就绪*/ }

return(s);

}

int v(int s) /*v操作原语*/

{

s=s+1;

if(s<=0)

{

process1->state='W';

}

process->state='W';

return(s);

}

char RanChar()

{

char arr[10]={'a','b','c','d','e','f','g','h','i','j'};

return arr[abs(rand()%10)];

}

void put()

{

// printf("\n please product anychar!");

// scanf("\n%c",&c);

Sleep(1000);

array[in]=RanChar();

in=(in+1)%10;

printf(" product a char is %c!\n ",array[in-1]);

int k = 0;

for(m=0;m<10;m++)

{

if (array[m]!=' ') {

printf("%c",array[m]);

k = k+1;

}

}

printf("缓冲池中有%d个产品\n",k);

}

void get()

{

Sleep(1000);

x=array[out];

printf("\n%c get a char fron buffer",x);

printf("\n");

array[out]=' ';

out=(out+1)%10;

int k = 0;

for(m=0;m<10;m++)

{

if (array[m]!=' ') {

printf("%c",array[m]);

k = k+1;

}

}

printf("缓冲池中有%d个产品\n",k);

}

void gotol()

{

pc=0;

}

void nop()

{;}

void disp() /*建立进程显示函数,用于显示当前进程*/ {

printf("\n name \t state \t why \t dd \n");

printf("|%c\t",process->name);

printf("|%c\t",process->state);

printf("|%c\t",process->why);

printf("|%d\t",process->dd);

printf("\n");

}

void init()/*初始化程序*/

{

s1=10;/*s1表示空缓冲区的数量*/

s2=0; /*s2表示满缓冲区的数量*/

https://www.doczj.com/doc/bb6087896.html,='p';/*对生产者进程初始化*/

producter.state='W';

producter.why=' ';

producter.dd=0;

https://www.doczj.com/doc/bb6087896.html,='c';/*对消费者进程初始化*/

consumer.state='W';

consumer.why=' ';

consumer.dd=0;

for(int k=0;k<10;k++)

{

array[k] = ' ';

}

}

void bornpa() /*将生产者程序装入pa[]中*/

{

for(i=0;i<=3;i++)

{

pa[i]=i;

}

}

void bornsa()/*将消费者程序装入sa[]中*/

{

for(i=0;i<=3;i++)

{

sa[i]=i;

}

}

void diaodu()/*处理器调度程序*/

{

while((producter.state=='W')||(consumer.state=='W'))

{

x=rand();/*x随机获得一个数*/

x=x%2;/*对X取于*/

if(x==0)/*若X等于零,则执行生产者进程,反之执行消费者进程*/

{

process=&producter;/*process表示现行进程,将现行进程置为生产者进程*/

process1=&consumer;

}

else

{

process=&consumer;

process1=&producter;

}

pc=process->dd;

i=pc;/*此时把PC的值付给I*/

if((process->name=='p')&&(process->state=='W'))

{

j=pa[i];

pc=i+1;

switch(j)

{

case 0: s1=p(s1);process->dd=pc;break;

case 1: put();process->state='W';process->dd=pc;break;

case 2: s2=v(s2);process->dd=pc;break;

case 3: gotol();process->state='W';process->dd=pc;

}

}

else if((process->name=='c')&&(process->state=='W'))/*执行消费者进程且该进程处于就绪状态*/

{

process->state='W';

j=sa[i];

pc=i+1;

switch(j)

{

case 0: s2=p(s2);process->dd=pc;break;/*申请资源,若没有申请到则跳转*/

case 1: get();process->dd=pc;break;

case 2: s1=v(s1);process->dd=pc;break;

case 3: gotol();process->state='W';process->dd=pc;

}

} /*end else*/

}/*end while*/

printf("\nThe program is over!\n");

}

void main()

{

init();

bornpa();

bornsa();

diaodu();

}

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

生产者消费者问题设计与实现

操作系统课程设计任务书

目录

1.选题背景 生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品。解决生产者/消费者问题的方法可分为两类:(1)采用某种机制保护生产者和消费者之间的同步;(2)在生产者和消费者之间建立一个管道。第一种方式有较高的效率,并且易于实现,代码的可控制性较好,属于常用的模式。第二种管道缓冲区不易控制,被传输数据对象不易于封装等,实用性不强。因此本文只介绍同步机制实现的生产者/消费者问题。 同步问题核心在于:如何保证同一资源被多个线程并发访问时的完整性。常用的同步方法是采用信号或加锁机制,保证资源在任意时刻至多被一个线程访问。Java语言在多线程编程上实现了完全对象化,提供了对同步机制的良好支持。在Java中一共有四种方法支持同步,其中前三个是同步方法,一个是管道方法。 2.设计思路 .生产者—消费者问题是一种同步问题的抽象描述。 计算机系统中的每个进程都可以消费或生产某类资源。当系统中某一进程使用某一资源时,可以看作是消耗,且该进程称为消费者。 而当某个进程释放资源时,则它就相当一个生产者 3.过程论述 首先,生产者和消费者可能同时进入缓冲区,甚至可能同时读/写一个存储单元,将导致执行结果不确定。这显然是不允许的。所以,必须使生产者和消费者互斥进入缓冲区。即某时刻只允许一个实体(生产者或消费者)访问缓冲区,生产者互斥消费者和其他任何生产者。 其次,生产者不能向满的缓冲区写数据,消费者也不能在空缓冲区中取数据,即生产者与消费者必须同步。当生产者产生出数据,需要将其存入缓冲区之前,首先检查缓冲区中是否有“空”存储单元,若缓冲区存储单元全部用完,则生产者必须阻塞等待,直到消费者取走一个存储单元的数据,唤醒它。若缓冲区内有“空”存储单元,生产者需要判断此时是否有别的生产者或消费者正在使用缓冲区,若是有,则阻塞等待,否则,获得缓冲区的使用权,将数据存入缓冲区,释放缓冲区的使用权。消费者取数据之前,首先检查缓冲区中是否存在装有数据的存储单元,若缓冲区为“空”,则阻塞等待,否则,判断缓冲区是否正在被使用,

生产者消费者问题模拟实现(z)

生产者-消费者实验 1.1实验目的和要求 1.1.1实验目的 操作系统的基本控制和管理控制都围绕着进程展开,其中的复杂性是由于支持并发和并发机制而引起的。自从操作系统中引入并发程序设计后,程序的执行不再是顺序的,一个程序未执行完而另一个程序便已开始执行,程序外部的顺序特性消失,程序与计算不再一一对应。并发进程可能是无关的,也可能是交互的。然而,交互的进程共享某些变量,一个进程的执行可能会影响其他进程的执行结果,交互的并发进程之间具有制约关系、同步关系。其中典型模型便是生产者-消费者模型。 本实验通过编写和调试生产者-消费者模拟程序,进一步认识进程并发执行的实质,加深对进程竞争关系,协作关系的理解,掌握使用信号量机制与P、V操作来实现进程的同步与互斥。 1.1.2实验要求 1.用高级语言编写一个程序,模拟多个生产者进程和多个消费者进程并发执行,并采用信号量机制与P、V操作实现进程间同步与互斥。 2.撰写实验报告,报告应包含以下内容: (1)实验目的; (2)实验内容; (3)设计思路; (4)程序流程图; (5)程序中主要数据结构和函数说明; (6)带注释的源程序代码; (7)程序运行结果及分析; (8)实验收获与体会。 1.2预备知识 1.2.1生产者—消费者问题 生产者—消费者问题表述如下:如图3.1所示,有n个生产者和m个消费者,连接在具

有k个单位缓冲区的有界环状缓冲上,故又称有界缓冲问题。生产者不断生成产品,只要缓冲区未满,生产者进程pi所生产的产品就可投入缓冲区;类似的,只要缓冲区非空,消费者进程cj就可以从缓冲区取走并消耗产品。 图 3.1 生产者—消费者问题示意图 著名的生产者—消费者问题(producer-consumer problem)是计算机操作系统中并发进程内在关系的一种抽象,是典型的进程同步问题。在操作系统中,生产者进程可以是计算进程、发送进程,而消费者进程可以是打印进程、接收进程等,解决好生产者—消费者问题就解决了一类并发进程的同步问题。 操作系统实现进程同步的机制称为同步机制,它通常由同步原语组成。不同的同步机制采用不同的同步方法,迄今已设计出多种同步机制,本实验采用最常用的同步机制:信号量及PV操作。 1.2.2信号量与PV操作 1965年,荷兰计算机科学家E.W.Dijkstra提出新的同步工具——信号量和PV操作,他将交通管制中多种颜色的信号灯管理方法引入操作系统,让多个进程通过特殊变量展开交互。一个进程在某一关键点上被迫停止直至接收到对应的特殊变量值,通过这一措施任何复杂的进程交互要求均可得到满足,这种特殊变量就是信号量(semaphore)。为了通过信号量传送信号,进程可利用P和V两个特殊操作来发送和接收信号,如果协作进程的相应信号仍未到达,则进程被挂起直至信号到达为止。 在操作系统中用信号量表示物理资源的实体,它是一个与队列有关的整型变量。具体实现时,信号量是一种变量类型,用一个记录型数据结构表示,有两个分量:一个是信号量的值,另一个是信号量队列的指针。信号量在操作系统中主要用于封锁临界区、进程同步及维护资源计数。除了赋初值之外,信号量仅能由同步原语PV对其操作,不存在其他方法可以检查或操作信号量,PV操作的不可分割性确保执行的原子性及信号量值的完整性。利用信号量和PV操作即可解决并发进程竞争问题,又可解决并发进程协作问题。 信号量按其用途可分为两种:公用信号量,联系一组并发进程,相关进程均可在此信号量上执行PV操作,用于实现进程互斥;私有信号量,联系一组并发进程,仅允许此信号量所拥有的进程执行P操作,而其他相关进程可在其上执行V操作,初值往往为0或正整数,多用于并发进程同步。

操作系统实验报告生产者消费者问题

操作系统课程设计 一.实验目标 完成N个生产者和M个消费者线程之间的并发控制,N、M不低于30,数据发送和接收缓冲区尺寸不小于20个(每个产品占据一个)。 其中生产者线程1、3、5、7、9生产的产品供所有奇数编号的消费者线程消费,只有所有奇数编号的消费者线程都消费后,该产品才能从缓冲区中撤销。 其中生产者线程2、4、6、8、10生产的产品所有偶数编号的消费者线程都可消费,任一偶数编号消费者线程消费该消息后,该产品都可从缓冲区中撤销。 其中11-20号生产者线程生产的产品仅供对应编号的消费者线程消费。 其他编号生产者线程生产的产品可由任意的消费者线程消费。 每个生产线程生产30个消息后结束运行。如果一个消费者线程没有对应的生产者线程在运行后,也结束运行。所有生产者都停止生产后,如果消费者线程已经

没有可供消费的产品,则也退出运行。 二.实验原理 2.1原理 生产者与消费者线程采用posix互斥锁机制进行互斥进入各自的代码段,只有采用互斥锁临界区代码段才可以不被打扰的执行;同步机制采用的是posix条件变量pthread_cond_wait和pthraed_cond_signal进行同步的。 线程间的通信采用的是共享内存机制。(注:所有的共享内存块是在进程里建立的,线程只需链接上各自的共享内存块即可,每一块共享内存的大小是100). 在这里共享内存设置成一个100的数组。 具体实施:(1)为1.3.5.7.9建立一个共享内存1号,1.3.5.7.9生产者线程生产的产品都放入这块共享内存缓冲区,所有奇数的消费者线程要消费的话,只需在消费者线程中链接上这块共享内存,就可以直接消费1.3.5.7.9生产者线程生产的产品。 (2)为2.4.6.8.10建立一块共享内存2号。2.4.6.8.10生产的产品都放入2号共享内存缓冲区,所有的偶数的消费者线程只要链接上2号缓冲区,就可以消费2.4.6.8.10生产的产品。当偶数消费者线程消费产品后,产品即可从缓冲区撤销,方法是在消费线程里将消费的产品在共享内存数组里置0。 (3)为11--20的每一对生产者消费者线程建立一块共享内存,编号11--20. 11--20号的消费者线程能链接各自的共享内存缓冲区或奇数或偶数共享内存缓冲区,即11--20号的生产者生产的产品只能被对应的消费者消费而11-20的奇数消费者可以消费缓冲区1的产品,偶数消费者可消费缓冲区2的产品。 (4)为21--30号的生产者消费者线程只建立一块共享内存21号,21--30号生产者生产的产品都放入21号缓冲区,所有的消费者线程只要链接上21号共享内存,就可以消费21--30号生产者生产的产品。 用于控制线程是否结束的方法是:设置一个全局变量t,在生产者线程里进行t++,在生产者线程里当t达到10时(注:为了很好的测试程序,本应该在生产者生产30个产品时菜结束线程,这里设置成了10),就break跳出while()循环,这样线程自然就终止。同样在消费者线程里,当t达到10时,这里不用t++,就跳出while()循环,消费者线程自然就终止。这样设计满足了,当生产者生产30个产品时就终止生产者线程,生产者线程终止消费者线程也得终止的要求。 生产者从文件so.txt读取数据进行生产,这个文件里的数据是一连串的字符从a--z的组合,没有空格或其他字符。文件内容的格式没有特殊要求。

操作系统进程管理系统设计实验报告

实验报告说明书设计名称:操作系统课程设计 实验:进程调度设计 学生姓名: 专业:网络工程 班级: 08级一班 学号: 指导教师:雷晓平王东黄营杨跃武 日期: 2011年 6月 19日

课程设计任务书 网络工程专业 08 年级 1 班 一、具体要求 本课程设计共2周,采取集中方式。 ㈠主要设计内容 1、进程调度 2、存储管理 3、文件管理 ㈡操作系统分项设计 1、设计一:进程管理系统设计 目的与要求:本设计的目的是加深对进程概念及进程管理各部分内容的理解;熟悉进程管理中主要数据结构的设计及进程调度算法、进程控制机构、同步机构及通讯机构的实施。 要求设计一个允许n个进程并发运行的进程管理模拟系统。该系统包括有简单的进程控制、同步与通讯机构,其进程调度算法可任意选择。每个进程用一个PCB表示,其内容根据具体情况设置。各进程之间有一定的同步关系(可选)。系统在运行过程中应能显示或打印各进程的状态及有关参数的变化情况,以便观察诸进程的运行过程及系统的管理过程。 具体详见:设计任务书1--进程调度算法.doc 2、设计二:存贮器管理系统设计 目的与要求:本设计的目的是使学生熟悉存贮器管理系统的设计方法;加深对所学各种存贮器管理方案的了解;要求采用一些常用的存贮器分配算法,设计一个存贮器管理模拟系统并调试运行。模拟环境应尽量接近真实。 具体详见:设计任务书2--内存分区管理模拟.doc 3、设计三:虚拟存储器管理系统设计 本设计的目的是通过设计一个简单的虚拟存储器管理系统来模拟实际的页面调度算法与过程,以掌握这种有用的技术。要求将其输入/输出处理程序编成一个独立的进程模块并与其它请求输入/输出的进程并发运行。并要求加入设备管理子模块。 具体分析为:页面调度算法主要有FIFO、最近最少使用调度算法(LRU)、最近最不常用调度算法(LFU)、最佳算法(OPT)等。题目要求: ①实现三种算法:1、先进先出;2、OPT;3、LRU ②页面序列从指定的文本文件(TXT文件)中取出 ③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数 4、设计四:文件管理系统设计 目的与要求:本设计的目的是通过设计和调试一个简单的外部文件系统,主要是模拟文件操作,,使学生对主要文件操作命令的实质和执行过程有比较深入的了解,掌握它们的基本实施方法。 基本要求如下: 实现三种算法:先来先服务、最短寻道优先、电梯算法 磁道服务顺序从指定的文本文件(TXT文件)中取出 输出:第一行:磁道的服务顺序;第二行:显示移动总道数

架构设计:生产者消费者模式

架构设计:生产者/消费者模式 为了方便阅读,把本系列帖子的目录整理如下: 0、概述 1、如何确定数据单元 2、队列缓冲区 3、环形缓冲区 4、双缓冲区

[0]:概述 今天打算来介绍一下“生产者/消费者模式”,这玩意儿在很多开发领域都能派上用场。由于该模式很重要,打算分几个帖子来介绍。今天这个帖子先来扫盲一把。如果你对这个模式已经比较了解,请跳过本扫盲帖,直接看下一个帖子(关于该模式的具体应用)。 看到这里,可能有同学心中犯嘀咕了:在四人帮(GOF)的23种模式里面似乎没听说过这种嘛!其实GOF那经典的23种模式主要是基于OO的(从书名《Design Patterns: Elements of Reusable Object-Oriented Software》就可以看出来)。而Pattern实际上即可以是OO的Pattern,也可以是非OO的Pattern的。 ★简介 言归正传!在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。产生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。 单单抽象出生产者和消费者,还够不上是生产者/消费者模式。该模式还需要有一个缓冲区处于生产者和消费者之间,作为一个中介。生产者把数据放入缓冲区,而消费者从缓冲区取出数据。大概的结构如下图。

为了不至于太抽象,我们举一个寄信的例子(虽说这年头寄信已经不时兴,但这个例子还是比较贴切的)。假设你要寄一封平信,大致过程如下: 1、你把信写好——相当于生产者制造数据 2、你把信放入邮筒——相当于生产者把数据放入缓冲区 3、邮递员把信从邮筒取出——相当于消费者把数据取出缓冲区 4、邮递员把信拿去邮局做相应的处理——相当于消费者处理数据 ★优点 可能有同学会问了:这个缓冲区有什么用捏?为什么不让生产者直接调用消费者的某个函数,直接把数据传递过去?搞出这么一个缓冲区作甚? 其实这里面是大有讲究的,大概有如下一些好处。 ◇解耦 假设生产者和消费者分别是两个类。如果让生产者直接调用消费者的某个方法,那么生产者对于消费者就会产生依赖(也就是耦合)。将来如果消费者的代码发生变化,可能会影响到生产者。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也就相应降低了。

生产者与消费者问题(附源码)

操作系统实验报告 专业网络工程班级08102 学号姓名 课程名称操作系统学年2010-2011 学期下 课程类别专业必修■限选□任选□实践□实验时间2010年11月3日 实验名称 实验一:生产者与消费者问题 实验目的和要求 全面理解生产者与消费者问题模型,掌握解决该问题的算法思想,正确使用同步机制。 实验软硬件要求 Pentium ||| 450以上CPU 64MB以上内存 WINDOWS XP Visual C++6.0 实验内容、方法和步骤(可附页) 问题描述:一组生产者向一组消费者提供商品,共享一个有界缓冲池,生产者向其中放入商品,消费者从中取得商品。假定这些生产者和消费者互相等效,只要缓冲池未满,生产者可将商品送入缓冲池;只要缓冲池未空,消费者可从缓冲池取走一商品。 功能要求:根据进程同步机制,编写一个解决上述问题的程序,可显示缓冲池状态、放商品、取商品等过程。 具体参数:3个生产者进程,2个消费者进程; 缓冲区单元个数N=4; 在本程序中是缓冲区中的数从0变为1表示模拟生产一个产品,消费时则将对应缓冲区内的1变为0,为模拟消费一个产品。 实验结果(可附页) 见截图 小结 这次多线程的操作系统实验,使我对线程的概念以及多线程程序中线程间的运行有了更深的认识,同时也让我的编程能力得到了一定的提高。 这次做的用多线程实现生产者与消费者模型的实验,由于我的编程能力基础比较差,对线程也是一无所知,所以一开始觉得无从下手,但幸好老师给了充足的时间,我通过看网上找的视频资料以及请教同学才渐渐地有了一点概念,然后我试着从网上下了一些多线程的程序分析里面的语句,基本弄懂了多线程的原理。 评定成绩:批阅教师:年月日

进程管理器的模拟实现

衡阳师范学院《操作系统》课程设计 题目:进程管理器的模拟实现系别:计算机科学系 专业:物联网工程 班级:1206班 学生姓名:郑晓娟 学号:12450218 指导老师:王玉奇 完成日期:2014年12月28日

目录 一、需求分析 (3) 二、概要设计 (3) 三、详细设计 (4) 1.进程PCB结构体的定义 (4) 2.创建模块 (4) 3.查看模块 (5) 4.换出模块 (6) 5.杀死模块 (8) 四、程序调试 (10) 五、总结分析 (14)

一、需求分析 有时候我们需要去了解我们电脑的运行情况,掌握和管理它的进程,并对其异常情况给予操作和控制。进程管理器就像我们了解和控制自己电脑运作的一个窗口,通过这个窗口我们可以查看到所有进程的运行情况,并对运行的进程加以管理和控制。在本课程设计中,进入模拟进程系统后,可以根据请求选择“创建进程”创建新的进程。还可以选择“查看进程“来查看当前正在运行的进程,以及该进程的相关的信息,其中包括进程的pid,进程优先级,进程大小和进程的内容,我们可以通过这些来了解计算机中每个进程的使用状况。选择“换出进程”,可以挂起某个正在运行的进程。选择“撤销进程”,可以停止某个正在运行的程序,并且释放其占用的资源。选择“退出进程”,可以退出进程模拟系统。 二、概要设计 程序流程:

三、详细设计 (1)进程PCB结构体的定义 struct jincheng_type{ //定义表示进程信息的结构体int pid; //进程ID int youxian; //优先级 int daxiao; //大小 int zhuangtai; //进程的状态,这里用0表示没有建立或被杀死,1表示执行,2表示换出 int neirong; //内容 }; (2)创建模块 void create() //函数--创建一个新进程 { if(shumu>=20) printf("\n内存已满,请先换出或杀死进程\n") //判断内存空间是否已满 else{ for(int i=0;i<20;i++) if(neicun[i].zhuangtai==0) break; //选出空着的内存单元给新进程使用 printf("\n请输入新进程pid\n"); //输入新进程ID存至选出的内存单元 scanf("%d",&(neicun[i].pid));

进程管理模拟实验指导书09

进程管理模拟系统实验指导书2 一、实验目的 学习进程管理的设计与实现,学习和运用操作系统原理,设计一个操作系统子系统的模拟系统。通过该系统的设计调试可增加对操作系统实现的感知性。同时可发挥团队协作精神和个人创造能力。使同学们对操作系统学习有一个实现的尝试和创新的思维。 二、实验规则 1.每组设计一个模拟系统(共100分) 2.每人设计系统中的一部分(满分60分) 3.集体调试创意(满分40分) 三、实验要求 1.进程管理功能以进程调度为主要功能。以进程控制为辅助功能。 2.体现操作系统原理中进程调度算法和进程控制算法。按照操作系统原理设计。 3.结构化设计。设计时构建出模块结构图并存于文件中。模块化实现,对每一功能,每一操作使用模块、函数、子程序设计方法实现。 4.进程以PCB为代表。队列、指针用图示。每一步功能在桌面上能显示出来。 5.系统应具有排错功能,对可能出现的错误应具有排查功能和纠错能力。 6.界面自行设计,语言自行选择。(可用VC/C++/C/C#语言,也可用你会的其他语言,甚至还可用PPT) 7.每人的设计功能都能表现或说明出来。 8.进程以队列法组织,对不同进程调度算法: FIFO队列或PRI队列或rotate(轮转队列)用同一个进程序列组织,对阻塞队列可设置一个,也可设多个。 9.因为是模拟系统,所以要显示每个功能和操作结果。显示应力求清晰、易读和一目了然(一屏),最好能用汉字,否则可用英语或汉语拼音。 10.操作方便,使用便捷。可视化程度高。 11.设计出系统后,还需要写出(介绍系统采用的语言、支撑平台、小组成员及分工。如何安装、如何启动、如何操作) 12.每组需写一份课程设计报告,内容包括:课程设计内容,课程设计设计思路,课程设计结构图,及分工内容、介绍。 13. 实验结果演示验收后,将可在任何环境下运行的可执行文件和系统说明书一起存盘并交盘。(可合组一张盘),上标:班级、组号、姓名。 14. 实验结束后从中选出优秀作品,介绍给大家。 四、系统功能 1.创建进程:主要创建PCB,并在创建后显示PCB及所在RL队列。内容包括①标识数(按产生顺序产生),②进程名(字母序列),③优先数(随机产生),④进程状态,⑤队列指针(可用数字或图表示),⑥其它(可自定义:如运行时间、家族等)。创建进程的个数可人工设定,或可自动设定,也可两者兼有。 2.撤销进程:撤销进程主要显示PCB的消失和队列的变化。 3.进程队列的组织:进程队列可对创建的所有进程变化队形:可组织成FIFO队列,也可组织成PRI队列;或rotate队列,对队列有插入、移出的功能,也有在队列中某位置插入删除功能。 4.显示功能:模拟系统在整个演示过程中都需要可视化,因此显示功能非常重要,要求对队列、PCB每次操作前后予以显示,以表示操作功能的实施效果。

操作系统课程设计生产者-消费者问题附代码

枣庄学院 信息科学与工程学院 课程设计任务书题目:生产者-消费者问题的实现 姓名: 学号: 专业:计算机科学与技术 课程:操作系统 指导教师:刘彩霞职称:讲师完成时间:2012年5月----2012 年6月 枣庄学院信息科学与工程学院制 课程设计任务书及成绩评定

目录 第1章引言 (1) 1.1 设计背景 (1) 1.2 问题分类 (1) 1.3 解决方案 (1) 第2章设计思路及原理 (2) 第3章程序详细设计 (3) 3.1程序模块设计 (3) 3.2程序代码结构 (5) 第4章实验结果 (7) 第5章实验总结 (8) 附录:实验代码 (9)

第1章引言 1.1 设计背景 生产者-消费者问题是一个经典的进程同步问题,该问题最早由Dijkstra 提出,用以演示他提出的信号量机制。在同一个进程地址空间内执行的两个线程。生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。消费者线程从缓冲区中获得物品,然后释放缓冲区。当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。 1.2 问题分类 根据缓冲区的个数、大小以及生产者消费者的个数可以分为以下几类: 1.单缓冲区(适合单或多生产消费者); 2.环行多缓冲区(或无穷缓冲区)单生产消费者; 3.环行多缓冲区多生产消费者; 1.3 解决方案 1.用进程通信(信箱通信)的方法解决; 2.进程消息缓冲通信; 3.进程信箱通信;

第2章设计思路及原理 设计了两个主要函数:生产者函数、消费者函数; 设计了三个信号量:full信号量,判断缓冲区是否有值,初值为0; empty信号量,判断缓冲区是否有空缓冲区,初值为缓 冲区数; mutex信号量作为互斥信号量,用于互斥的访问缓冲区。 生产者函数通过执行P操作信号量empty减1,判断缓冲区是否有空。有空则互斥的访问缓冲区并放入数据,然后释放缓冲区,执行V操作,信号量full 加1。 消费者函数执行P操作,信号量full减1,判断是否有数据,有则互斥的访问缓冲区并取走数据,然后释放缓冲区,执行V操作,empty信号量加1。

进程管理系统设计

目录 一、设计系统目的 (1) (1) 三、系统分析 (1) 四、系统设计 (1) 五、程序设计流程图 (5) 六、源程序清单 (5) 七、调试过程中的问题及系统测试情况 (12) 1 (12) 2、系统测试结果 (12) 八、系统设计总结 (14)

一、设计系统目的 本设计的目的是加深对进程概念及进程管理各部分内容的理解,熟悉进程管理中主要数据结构的设计及进程调度算法、进程控制机构、同步机构及通讯机构实施。 设计一个允许n个进程并发运行的进程管理模拟系统。该系统包括有简单的进程控制、同步与通讯机构,其进程调度算法可任意选择。每个进程用一个PCB表示,其内容根据具体情况设置。各进程之间有一定的同步关系可选。系统在运行过程中应能显示或打印各进程的状态及有关参数的变化情况,以便观察诸进程的运行过程及系统的管理过程。 三、系统分析 1、进程控制和同步等 可以控制进程的就绪执行和阻塞三种状态等基本功能。 2、进程调度 调度算法采用的是先来先服务算法。 3 输出的内容包括—就绪的进程队列,当前cup正在执行的进程,被阻塞的进程队 列。 四、系统设计 本系统所包括的数据结构是对列类 本系统由于需要输出就绪队列,执行队列,阻塞对列,故需要利用对列来实现。 最好利用队列类来实现,这样可以充分利用类的继承来简化程序。 class queue { public:

queue():rear(NULL),front(NULL){}; ~queue(); void enqueue( char &item); char dequeue(); void del(char item); void display(); int find(char item); int isempty(){return front==NULL;} private: queuenode *front,*rear; }; queue::~queue() { queuenode * p; while(front!=NULL) { p=front;front=front->link;delete p; } 队列类的成员函数的定义如下: void queue::enqueue(char &item) { if(front==NULL) front=rear=new queuenode(item,NULL); else rear=rear->link=new queuenode(item,NULL); } char queue::dequeue() {

操作系统-实验三-进程管理-实验报告

计算机与信息工程学院实验报告 一、实验内容 1.练习在shell环境下编译执行程序 (注意:①在vi编辑器中编写名为sample.c的c语言源程序 ②用linux自带的编译器gcc编译程序,例如:gcc –o test sample.c ③编译后生成名为test.out的可执行文件; ④最后执行分析结果;命令为:./test) 注意:linux自带的编译程序gcc的语法是:gcc –o 目标程序名源程序名,例如:gcc –o sample1 sample1.c,然后利用命令:./sample 来执行。如果仅用“gcc 源程序名”,将会把任何名字的源程序都编译成名为a.out的目标程序,这样新编译的程序会覆盖原来的程序,所以最好给每个源程序都起个新目标程序名。 2.进程的创建 仿照例子自己编写一段程序,使用系统调用fork()创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示“a”,子进程分别显示字符“b”和“c”。观察记录屏幕上的显示结果,并分析原因。 3.分析程序 实验内容要在给出的例子程序基础上,根据要求进行修改,对执行结果进行分析。二、

实验步骤 1. 利用fork()创建一个小程序 (1)编写程序 #include main () { int i=5; pid_t pid; pid=fork(); for(;i>0;i--) { if (pid < 0) printf("error in fork!"); else if (pid == 0) printf("i am the child process, my process id is %d and i=%d\n",getpid(),i); else printf("i am the parent process, my process id is %d and i=%d\n",getpid(),i); } for(i=5;i>0;i--) { if (pid < 0) printf("error in fork!"); else if (pid == 0) printf("the child process, my process id is %d and i=%d\n",getpid(),i); else printf("the parent process, my process id is %d and

操作系统实验报告经典生产者—消费者问题

实验二经典的生产者—消费者问题一、目的 实现对经典的生产者—消费者问题的模拟,以便更好的理解经典进程同步问题。 二、实验内容及要求 编制生产者—消费者算法,模拟一个生产者、一个消费者,共享一个缓冲池的情形。 1、实现对经典的生产者—消费者问题的模拟,以便更好的理解此经典进程同步问题。生产者-消费者问题是典型的PV操作问题,假设系统中有一个比较大的缓冲池,生产者的任务是只要缓冲池未满就可以将生产出的产品放入其中,而消费者的任务是只要缓冲池未空就可以从缓冲池中拿走产品。缓冲池被占用时,任何进程都不能访问。 2、每一个生产者都要把自己生产的产品放入缓冲池,每个消费者从缓冲池中取走产品消费。在这种情况下,生产者消费者进程同步,因为只有通过互通消息才知道是否能存入产品或者取走产品。他们之间也存在互斥,即生产者消费者必须互斥访问缓冲池,即不能有两个以上的进程同时进行。 三、生产者和消费者原理分析 在同一个进程地址空间内执行两个线程。生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。消费者线程从缓冲区中获得物品,然后释放缓冲区。当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放一个空缓冲区。当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻挡,直到新的物品被生产出来。 四、生产者与消费者功能描述: 生产者功能描述:在同一个进程地址空间内执行两个线程。生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。 消费者功能描述:消费者线程从缓冲区获得物品,然后释放缓冲区,当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。 五、实验环境 操作系统环境:Windows系统。 编程语言:C#。

操作系统课程设计(进程管理)

操作系统课程设计报告 题目: 专业: 班级: 姓名: 学号: 指导老师: 年月日

《操作系统》课程设计任务书 一、课程设计题目(任选一个题目) 1.模拟进程管理 2.模拟处理机调度 3.模拟存储器管理 4.模拟文件系统 5.模拟磁盘调度 二、设计目的和要求 1.设计目的 《操作系统原理》课程设计是计算机科学与技术专业实践性环节之一,是学习完《操作系统原理》课程后进行的一次较全面的综合练习。其目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养学生的系统设计能力,并了解操作系统的发展动向和趋势。 2.基本要求: (1)选择课程设计题目中的一个课题,独立完成。 (2)良好的沟通和合作能力 (3)充分运用前序课所学的软件工程、程序设计、数据结构等相关知识 (4)充分运用调试和排错技术 (5)简单测试驱动模块和桩模块的编写 (6)查阅相关资料,自学具体课题中涉及到的新知识。 (7)课题完成后必须按要求提交课程设计报告,格式规范,内容详实。 三、设计内容及步骤 1.根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么。

2.根据实现的功能,划分出合理的模块,明确模块间的关系。 3.编程实现所设计的模块。 4.程序调试与测试。采用自底向上,分模块进行,即先调试低层函数。能够熟练掌握调试工具的各种功能,设计测试数据确定疑点,通过修改程序来证实它或绕过它。调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果; 5.结果分析。程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。 6.编写课程设计报告; 设计报告和实验报告要求:A4纸和实验报告册,详细设计部分主要叙述本人的工作内容 设计报告的格式: (1)封面(题目、指导教师、专业、班级、姓名、学号) (2)设计任务书 (3)目录 (4)需求分析 (5)概要设计 (6)详细设计(含主要代码) (7)调试分析、测试结果 (8)用户使用说明 (9)附录或参考资料 四、进度安排 设计在第四学期的第1-18周(共18课时)进行,时间安排如下:

用多线程同步方法解决生产者-消费者问题(操作系统课设)

用多线程同步方法解决生产者-消费者问题(操作系统课设)

题目 用多线程同步方法解决生产者-消费 者问题(Producer-Consume r Problem) 学院 物理学与电子信息工程学院 专业电子信息工程班级08电信本一班姓名 指导教师 2010 年12 月日

目录 目录 0 课程设计任务书 (1) 正文 (3) 1.设计目的与要求 (3) 1.1设计目的 (3) 1.2设计要求 (3) 2.设计思想及系统平台 (3) 2.1设计思想 (3) 2.2系统平台及使用语言 (3) 3.详细算法描述 (4) 4.源程序清单 (7) 5.运行结果与运行情况 (12) 6.调试过程 (16) 7.总结 (16)

课程设计任务书 题目: 用多线程同步方法解决生产者-消费者问题 (Producer-Consumer Problem) 初始条件: 1.操作系统:Linux 2.程序设计语言:C语言 3.有界缓冲区内设有20个存储单元,其初 值为0。放入/取出的数据项按增序设定为 1-20这20个整型数。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.技术要求: 1)为每个生产者/消费者产生一个线程,设计正确的同步算法 2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的当前全部 内容、当前指针位置和生产者/消费者

线程的自定义标识符。 3)生产者和消费者各有两个以上。 4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。 2.设计说明书内容要求: 1)设计题目与要求 2)总的设计思想及系统平台、语言、工具 等。 3)数据结构与模块说明(功能与流程图) 4)给出用户名、源程序名、目标程序名和源程序及其运行结果。(要注明存储各个 程序及其运行结果的主机IP地址和目 录。) 5)运行结果与运行情况 (提示: (1)有界缓冲区可用数组实现。 (2)编译命令可用:cc -lpthread -o 目标文件名源文件名 (3)多线程编程方法参见附件。) 3. 调试报告: 1)调试记录 2)自我评析和总结

模拟进程管理

操作系统课程设计报告 院系:计算机科学技术 班级:计092班 姓名:杨志 学号:17 号 指导教师:鲁静轩__________ 2011 年12 月10 日

操作系统课程设计任务书 一、设计题目:模拟进程管理 二、设计目的 《操作系统原理》课程设计是软件工程专业实践性环节之一,是学习完《操作系统原理》课程后进行的一次较全面的综合练习。其目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养学生的系统设计能力,并了解操作系统的发展动向和趋势。 三、设计要求 (1)选择课程设计题目中的一个课题,独立完成。 (2)良好的沟通和合作能力 (3)充分运用前序课所学的软件工程、程序设计等相关知识 (4)充分运用调试和排错技术 (5)简单测试驱动模块和桩模块的编写 (6)查阅相关资料,自学具体课题中涉及到的新知识。 (7)课题完成后必须按要求提交课程设计报告,格式规范,内容详实。 四、设计内容 1.根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么。 2.根据实现的功能,划分出合理的模块,明确模块间的关系。 3.编程实现所设计的模块。 4.程序调试与测试。采用自底向上,分模块进行,即先调试低层函数。能够熟练掌握调试工具的各种功能,设计测试数据确定疑点,通过修改程序来证实它或绕过它。调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果; 5.结果分析。程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。 6.编写课程设计报告; 设计报告要求:A4纸,详细设计部分主要叙述本人的工作内容 设计报告的格式: (1)封面(题目、指导教师、专业、班级、姓名、学号) (2)设计任务书 (3)目录 (4)需求分析 (5)概要设计 (6)详细设计(含主要代码) (7)调试分析、测试结果 (8)用户使用说明 (9)附录或参考资料

实验1_进程管理

实验一进程管理 【实验目的】 1.加深对进程概念及进程管理各部分内容的理解。 2.熟悉进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。 【实验要求】 1.调试并运行一个允许n 个进程并发运行的进程管理模拟系统。了解该系统的进程控制、同 2.步及通讯机构,每个进程如何用一个PCB 表示、其内容的设置;各进程间的同步关系;系统在运行过程中显示各进程的状态和有关参数变化情况的意义。 【实验环境】 具备Windows或MS-DOS操作系统、带有Turbo C 集成环境的PC机。 【实验重点及难点】 重点:理解进程的概念,进程管理中主要数据结构的设计和进程调度算法、进程控制 机构、同步机构、通讯机构的实施。 难点:实验程序的问题描述、实现算法、数据结构。 【实验内容】 一.阅读实验程序 程序代码见【实验例程】。 二.编译实验例程 用Turbo C 编译实验例程。 三.运行程序并对照实验源程序阅读理解实验输出结果的意义。 【问题与讨论】 系统为进程设置了几种状态?说明这些状态的含义。 三种。就绪、执行、阻塞。就绪:处于就绪状态的进程已经得到除 CPU之外的其他资源,只要由调度得到处理机,便可立即投入执行。执行:只有处于内存就绪状态的进程在得到处理机后才能立即投入执行。阻塞:进程因等待某个事件发生而放弃处理机进入等待状态。 采用何种方式来模拟时间片?简要说明实现方法。 系统分时执行各进程,并规定3个进程的执行概率均为33%。通过产生随机数x来模拟时间片。当进程process1访问随机数x时,若x ≥0.33;当进程process2访问x时,若x<0.33或x≥0.66;当进程process3访问x时,若x<0.66,分别认为各进程的执行时间片到限,产生“时间片中断”而转入低就绪态t。 进程调度算法采用剥夺式最高优先数法。各进程的优先数通过键盘输入予以静态设置。调度程序每次总是选择优先数最小(优先权最高)的就绪进程投入执行。先从r状态进程中选择,在从t状态进程中选择。当现行进程唤醒某个等待进程,且被唤醒进程的优先数小于现行进程时,则剥夺现行进程的执行权。 各进程在使用临界资源s1和s2时,通过调用信号量sem1和sem2上的P,V操作来实现同步,阻塞和唤醒操作负责完成从进程的执行态到等待态到就绪态的转换。 系统启动后,在完成必要的系统初始化后便执行进程调度程序。但执行进程因“时间片中断”,或被排斥使用临界资源,或唤醒某个等待资源时,立即进行进程调度。当3个进程都处于完成状态后,系统退出运行 由于输出结果较多,一屏显示不完,如何较好地阅读程序输出? 一是在程序中控制输出的行数,比如20行,输出后用gets停顿一下,继续时回车即可;

相关主题
文本预览
相关文档 最新文档