当前位置:文档之家› 运动控制系统双闭环直流调速系统

运动控制系统双闭环直流调速系统

运动控制系统双闭环直流调速系统
运动控制系统双闭环直流调速系统

运动控制课程设计任务书

题目:双闭环直流调速系统设计

使用班级:电气081、082

设计内容

已知电机参数为:PN=500kW,UN=750V,IN=760A,nN=375r/min,Ce=1.82V.min/r,电枢回路总电阻R=0.14Ω,允许过载倍数λ=1.5,触发整流环节Ks=75,Tl=0.031s,Tm=0.112s,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。

主要设计内容包括:1、ACR、ASR调节器类型选择与参数计算。2、系统建模与仿真。3、调节器电路设计。4、主电路设计。5、反馈电路设计。6、触发电路设计。7、故障处理电路设计。

设计步骤

一、总体方案设计

二、参数初步计算。

三、控制系统的建模和MALAB仿真

四、根据仿真结果调整参数

五、主电路及控制电路设计

六、编写课程设计说明书,绘制完整的系统电路图(A3 幅面)。

课程设计说明书要求

1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。

2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。

3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。

4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识

摘要

双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。换向器是直流电机的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。

关键词:

双闭环,晶闸管,转速调节器,电流调节器,MALAB仿真

Abstract

Double-loop (speed loop, current loop) DC drive system is a widely used currently, the economy, for the power transmission system. It has a fast dynamic response, the advantages of anti-interference ability. DC double closed loop speed control system set up two regulators, the speed regulator (ASR) and the current regulator (ACR), adjust the speed and current, respectively. Level can be achieved quickly without frequent starting, braking and reverse; production process automation systems to meet a variety of special operating requirements, automatic control system has always been the main actuator, in rolling and auxiliary machinery, mine hoist, excavation machine, offshore rigs, large cranes, metal cutting machine tools, paper machines, textile machinery and other fields has been widely used. DC motor commutator is a major weak link, which allows the DC motor unit capacity, overload, the maximum voltage, maximum speed limit and other important indicators, but also to the manufacture and maintenance of DC motor add a lot of trouble. However, in view of the DC drive control systems theory and practice are more mature, DC motors are still widely used. Thus, a long, dragging in the application and improvement of the DC control system at the same time, people have been constantly in the development of performance and price catch AC DC system drag control system in recent years, computer-controlled electronic frequency converter and power after the highly developed this desire finally fulfilled. In many need speed or fast forward and reverse field of electric drive system has been widely used. Switching power electronic devices and with the continuous improvement of performance, the DC

pulse-width modulation (PWM) technology has been rapid development. Keywords:

DOUBLE-LOOP, THYRISTORS, THE SPEED REGULATOR, THE

CURRENT REGULATOR,MALTB

目录

运动控制课程设计任务书............................

摘要.............................................................................................................................................................................. I I A BSTRACT.................................................................................................................................................................. III

第一章总体方案原理与设计 (1)

1.1双闭环直流调速系统原理: (1)

1.2双闭环直流调速系统的总体方案设计 (2)

第二章初步参数的计算 (4)

2.1转速调节器(ASR)的设计 (5)

2.2电流调节器(ACR)的设计 (7)

第三章控制系统的MALAB仿真与结论 (13)

3.1双闭环调速系统仿真 (13)

3.2电流环与转速环仿真模型图 (14)

第四章主电路及控制电路设计 (16)

4.1主电路模块: (16)

4.2 控制电路设计 (18)

第五章总结 (22)

5-1设计结论 (22)

5-2体会与致谢 (22)

参考文献 (23)

附录.............................. 错误!未定义书签。

第一章总体方案原理与设计

1.1双闭环直流调速系统原理:

双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。

在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖长。

在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形如图2-1b所示,这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。

1.2双闭环直流调速系统的总体方案设计

在电动机最大允许电流和转矩受限制的条件下,应该充分利用电动机的过载能力,最好是在过渡过程中始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载平衡,从而转入稳态运行。

转速、电流双闭环直流调速系统组成为了实现转速和电流两种负反馈的双闭环控制,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈[9]。转速和电流两个调节器一般都采用调节器,以便获得良好的静、动态性能。该方案的原理框图如图1-2

图1-2 直流调速系统方案设计原理框图

设计要求

已知电机参数为:PN=500kW,UN=750V,IN=760A,nN=375r/min,Ce=1.82V.min/r,电枢回路总电阻R=0.14Ω,允许过载倍数λ=1.5,触

图1-1双闭环调速系统电路原理

++

-

+

-

M

T

+

-

+

-

R

n

U R

R

U

U

i

T

L

I

R C

U

+

-

R

R

R C

AS

AC

LM

GT V

R

U U

LM

M

U

发整流环节Ks=75,Tl=0.031s,Tm=0.112s,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。

第二章初步参数的计算

图中W ASR(s)和W ACR(s)分别表示转速调节器和电流

调节器的传递函数。如果采用PI调节器,则有

双闭环直流调速系统突加给定电压U*n由静止状态

起动时,转速和电流的动态过程示于右图。在起动过程

中转速调节器ASR经历了不饱和、饱和、退饱和三种情

况,整个动态过程就分成图中标明的I、II、III三个阶

段。第I阶段电流上升的阶段(0 ~ t1)第II 阶段恒流升速阶段(t1 ~ t2)第Ⅲ阶段转速调节阶段(t2 以后)。

电流调节器结构的选择

根据设计要求并保证稳态电流无差,可按典型I型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI型电流调节器,其传递函数为W ACR(S)

=K i(τi s +1)/τi s

K i-------电流调节器的比例系数;

τi------电流调节器的超前时间常数。

检查对电源电压的抗干扰性能:

T l /T∑I =0.0167s/0.0057s=2.93,参照教材中表2-3的典型型系统动态抗扰性能,各项指标都是可以接受的。

图2-7 电流环等效近似处理后校正成为典型I 系统框图

2.1 转速调节器(ASR )的设计

确定时间常数

1)电流环等效时间常数

1

=2T i=2*0.0037=0.0074K

∑ 2)转速滤波时间常数Ton=0.01s 3)转速环小时间常数近似处理

20.0174on i on T T T s

∑∑=+=

(2)选择转速调节器结构 1.3.5 转速调节器结构的选择

转速环开环传递函数应共有两个积分环节,所以应该设计成典型II 系统,系统同时也能满足动态抗扰性能好的要求。

图2-8转速环等效近似处理后校正成为典型II 系统框图

(3)计算转速调节器参数

按跟随和抗扰性能都较好的原则,取h=5,则ASR 的超前时间常数为

50.01740.087n n hT s τ∑==?= 转速开环增益

2

222(1)6

396.422250.0174

N n h K s h T -∑+=

==??

于是,ASR 的比例系数

(1)60.05 1.8200.1125

29.112250.00690.140.0214

e m n n h C T K h RT βα∑+???=

==????

(4)检验近似条件 转速环截止频率为

11

/34.5N

cn n n K K s ωτω-=

==

电流环传递函数简化条件

163.8s -=

= 满足近似要求

2)转速小时间常数近似处理条件

138.8s -=

= 满足近似要求

(5)计算调节器电阻和电容

转速调节器原理图如图2-1,R0=40k Ω,则

Rn=KnR0=29.6*40=1186K Ω

Cn=0.0525/Rn=0.0887/186000=74.2nF Con=4Ton/R0=4*0.01/40000=10nF

(6)校核转速超调量 当h=5时,

max

37.8%kb

C C ?= 不能满足设计要求,实际上,由于表3是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。 则超调量=8.31%<10% ,能满足.

电流调节器(ACR )的设计

(1)确定时间常数

1)整流装置之后时间常数Ts 。按《电力拖动自动控制系统—运动控制系统》表2—2,三相桥式电路的平均失控时间Ts=0.0017s.

2)电流滤波时间常数Toi 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有(1—2)Toi=3.33ms ,因此取Toi=2ms=0.002s 。 3)电流环小时间常数之和T Σi=Ts+Toi=0.0037s 。

(2)选择电流调节器结构

根据设计要求σi%≤5%,并保证稳态电流无静差,可按照典型I 系统设计电流调节器。电流环控制对象是双惯性的,所以采用PI 调节器。其传递函数为:

1

()i ACR i

i s W s K s ττ+=

检查对电源电压的抗扰性能: Tl/TΣi=0.031/0.0037=8.31<10

(3)计算电流调节器的参数

电流调节器超前时间常数:

i τ=l T =0.031s

电流环开环增益:要求σi%≤5%时,按表3—1应取KI T Σi=0.5,因此

10.5

135.1I i

K s T -∑=

= 于是,ACR 的比例系数为

0.0310.14

135.10.156750.05

i i I

s R K K K τβ?==?=?

(4)校验近似条件 电流环截止频率:

1135.1ci I K s ω-==

校验晶闸管整流装置传递函数的近似条件

111196.1330.0017

s s T -==?> ci ω 满足近似条件

2)校验忽略反电动势变化对电流环动态影响的条件

150.91ci s ω-≥==

1180.78s -== 满足近似条件

4)计算调节器电阻和电容

电流调节器原理如图2-2所示 ,按所用运算放大器取R0=40K Ω,各电阻和电容值计算如下:

0600.15640 6.24/(0.031/6240)10 4.974/0.2n n n on n on on R K R K K C R uF C T R uF

τ==?===?===

图2-7 含给定滤波与反馈滤波的PI 型电流调节器

按照课本参数,电流环可以达到的动态跟随性能指标为

σi%≤4.3%~5% (参考《电力拖动自动控制系统—运动控制系统》表3— 1.3.5 转速调节器结构的选择

转速环开环传递函数应共有两个积分环节,所以应该设计成典型II 系统,系统同时也能满足动态抗扰性能好的要求。

图2-8转速环等效近似处理后校正成为典型II 系统框图

ASR 也应该采用PI 调节器,其传递函数为:

W ASR (s )= K n (τn s +1)/τn s K n -------转速调节器的比例系数; τn ------转速调节器的超前时间常数。

选择转速调节器

选用PI 调节器,其传递函数为 (1)

()n n ASR n K s W s s

ττ+=

转速环等效时间常数 1

220.00370.0074i I

T s s K ∑==?= 2.6、确定转速环时间常数

(1)转速环小时间常数n T ∑。按小时间常数近似处理,取 1

0.00740.020.0274n on I

T T s s s K ∑=

+=+= 2.7、计算转速调节器的参数

取h=5,则ASR 超前时间常数为

50.02740.137n n hT s s τ∑==?=

转速开环增益为 22

2222

16159.82250.0274N n

h K s s h T --∑+=

=≈?? 转速反馈系数为

*0.03min/im N

U V r n α==?

所以开环增益为

(1)8.72e m

N n

h C T K h RT βα∑+==

2.8、检验近似条件

转速环截止频率为

11

21.9N

cn N n K K s ωτω-=

==

电流环传递函数简化条件

1163.73cn s ω-=> 满足化简条件

转速环小时间常数近似条件处理条件

1

27.4cn s ω-=> 2.9、计算转速调节器电阻和电容,转速调节器如图2-3所示。

取040R k =Ω,则

08.740348n n R K R k k ==?Ω≈Ω 取350 k Ω

60.1370.3910350n

n n

s

C F R k τ-=

=

≈?Ω

取0.4 F μ

6

30440.022*******

on on T C F F R μ-?===?=? 取2 F μ

第三章控制系统的MALAB仿真与结论3.1双闭环调速系统仿真

在仿真过程中,Matlab设置很多不同的算法,而不同的算法,对仿真出来波形影响很大。

仿真结果如图3-1

图3-2 转速开环调速系统仿真结果

图3-2上部为转速曲线,下部为电流曲线。因为开环系统中没有反馈信号,而电机在带载的一瞬间要有一个做功的过程,也就是建立系统带载状态下的稳定状态的过程,这部分功需要增大电机的电流来补偿,同时也会牺牲一部分动能,也就是电机的转速,所以产生了静态速降。

3.2电流环与转速环仿真模型图(如图3-3,3-4)

图3-3 电流环仿真模型图

图3-4转速环仿真模型图

双闭环直流调速系统突加给定电压由静止状态启动时,转速和电流的动态过程如仿真图3-3和3-4 。由于在启动过程中转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。从启动时间上看,第二阶段恒流升速是主要的阶段,因此双闭环系统基本上实现了电流受限制下的快速启动,利用了饱和非线性控制方法,达到“准时间最优控制”。带PI调节器的双闭环调速系统还有一个特点,就是转速必超调。在双闭环调速系统中,ASR的作用是对转速的抗扰调节并使之在稳态是无静差,其输出限幅决定允许的最大电流。ACR的作用是电流跟随,过流自动保护和及时抑制电压的波动。通过仿真可知:启动时,让转速外环饱和不起作用,电流内环起主要作用,

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

比值控制系统

第三节比值控制系统 一、比值控制原理 在炼油、化工、制药等许多生产过程中,经常需要两种物料或两种以上的物料保持一定的比例关系。最常见的就是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产与环保的要求:造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆;许多化学反应的诸个进料要保持一定的比例。 通常,在两个需要保持一定比例关系的物料中,一个就是主动量或关键量,另一个就是从动量或辅 助量。由于物料通常就是液体,因此称主动量为主流量F M ,从动量为副流量F S 。F M 与F S 之间的关系为 Fs=KF M (8-l) 式中,K为比值系数。 因此,只要主副流量的给定值保持比值关系,或者副流量给定值随主流量按一定比例关系而变化即可实现比值控制。 二、比值控制系统的类型 l.单闭环比值控制系统图8-12表示一个燃烧过程单闭环比值控制系统,主流量就是燃料,副流量就 是空气。F M T测量出主流量并变换为标准信号,乘以比值系数K后,作为副流量控制系统中被控变量Fs的给定值。如此,可以保持主流量与副流量之间的比例关系。从系统结构外观上瞧,似乎单闭环比值控制系统与串级控制系统很相似。但它们的方块图就是不同的,功能也就是不同的。单闭环比值控制系统的方块图如图8-13所示。 图8-13 单闭环比值控制系统方块图 从图8-13中可以瞧到,没有主对象与主调节器,这就是单闭环比值控制系统在结构上与串级不同的地方,串级中的副变量就是调节变量到被控变量之间总对象的一个中间变量,而比值中,副流量不会影响主流量,这就是两者之间本质上的区别。 副流量控制系统就是一个随动控制系统,它的给定值由系统外部的KF M 提供,它的任务就就是使副流 量Fs尽可能地保持与KF M 相等,随F M 的变化而变化,始终保持F M 与Fs的比值关系。当系统处于稳态时,

(完整word版)双闭环控制系统

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析 (1) 1.1系统介绍 (1) 1.2系统原理 (1) 1.3双闭环的优点 (1) 第2章系统参数设计 (2) 2.1电流调节器的设计 (2) 2.1.1时间参数选择 (2) 2.1.2计算电流调节参数 (2) 2.1.3校验近似条件 (3) 2.2转速调节器的设计 (3) 2.2.1电流环等效时间常数: (3) 2.2.2转速环截止频率为 (5) 2.2.3计算控制器的电阻电容值 (5) 第3章仿真模块 (6) 3.1电流环模块 (6) 3.2转速环模块 (6) 第4章仿真结果 (7) 4.1电流环仿真结果 (7) 4.2转速环仿真结果 (7) 4.4稳定性指标的分析 (8) 4.4.1电流环的稳定性 (8) 4.4.2转速环的稳定性 (8) 结论 (9) 参考文献 (10)

第1章双闭环系统分析 1.1系统介绍 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控,半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波控制整流电路。 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。 1.2系统原理 ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。 ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。 1.3双闭环的优点 双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。 在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

双闭环管道流量比值控制系统设计报告

双闭环管道流量比值控制系统设计报告 PLC控制技术实训评分表 课程名称: PLC控制技术实训 设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号:姓名: 指导老师: 年月日

双闭环管道流量比值控制系统设计报告常熟理工学院 电气及自动化工程学院 《PLC控制技术实训》报告 题目:单容液位变频器PID单回路控制 比值控制系统设计 姓名:李良、何龙太 莫勇、高虎 学号: 160112109、160112106 160112113、160112104 班级:自动化121 指导教师:刘叔军 起止日期: 2015.6.29~7.12

摘要 本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID 对水箱液位的控制。 针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P画面并对PID参数调节,实现对比值系统的控制。 关键词:PLC PID控制液位控制比值控制组态王流量

目录 1、引言................................ 错误!未定义书签。 1.1主要内容 ............................ 错误!未定义书签。 1.2任务要求 ............................ 错误!未定义书签。 2、设计方案............................ 错误!未定义书签。 2.1设计原理 ............................ 错误!未定义书签。 2.2设计方案论证......................... 错误!未定义书签。 2.3系统原理图........................... 错误!未定义书签。 2.4系统结构图........................... 错误!未定义书签。 2.5系统工艺流程图 (4) 3、硬件设计 (4) 3.1流量计(涡轮流量计、电磁流量计) (3) 3.2 电动调节阀 (5) 3.3 变频器面板 (6) 3.4百特自整定PID调节器 (6) 3.5 EM235拓展模块 (7) 3.6 硬件接线图 (8) 3.7 I/O口分配表 (10) 4、软件设计............................ 错误!未定义书签。 4.1 程序流程图.......................... 错误!未定义书签。 4.2程序分析 ............................ 错误!未定义书签。 5、系统建模及MATALAB仿真调试 .......... 错误!未定义书签。

自动控制系统双闭环直流调速系统稳态结构解读

目录 引言 (2) 1设计目的 (3) 2直流调速系统的理论设计 (3) 2.1 系统组成及要求 (3) 2.2 电流调节器设计 (4) 2.3 转速调节器设计 (7) 3系统仿真 (10) 4结论 (12) 5心得体会 (13) 6参考文献 (13)

引言 本设计从直流电动机的工作原理入手,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。 转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。

1设计目的 1进一步对自动控制系统这门学科进行理解。 2掌握双闭环直流调速系统的设计过程。 3体会参数设计的过程。 2 直流调速系统的理论设计 2.1系统组成及要求 本控制系统采用转速、电流双闭环结构,其原理图图1,双闭环直流调速系统稳态结构图图2和动态结构框图图3如下所示。 图1双环调直流速系统原理图 图2双闭环直流调速系统稳态结构图

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

比值控制系统

比值控制系统 问题的提出:在工业生产过程中,要求两种或多种物料流量成一定比例关系 要求严格控制比例。 最常见的是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产和环保的要求。 造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆,许多化学反应的诸个进料要保持一定的比例。 例如1、氨合成生产过程3H2+1N2=2NH3,要求H2和N2完全按照3:1进料。 2、造纸过程中,对纸浆浓度有要求,进料浓纸浆和水的进料就要满足一定比例。 如果有三个进料,对三个进料之间需要满足一定比例关系。 而我们之前学习的控制系统的控制达不到这样的控制要求。因此就要用到一个新的控制————比值控制系统基本概念: 1.比值控制系统(流量比值控制系统):实现两个或两个以上参数符合一定比例关系的控制系统。 2.主物料或主动量:在保持比例关系的两种物料中处于主导地位的物料,称为主物料;表征主物料的参数称为主动量(主流量),用F1表示。 3.从物料或从动量:按照主物料进行配比,在控制过程中跟随主物料变化而变化的物料称为从物料;表征从物料特性的参数称为从动量(副流量),用F2表示。 4.有些场合,用不可控物料为主物料,用改变可控物料即从物料来实现比值关系。 5. 比值控制系统就是要实现从动量与主动量成一定的比值关系: K= F2/ F1 F2—为从动量A F1—为主动量B (从动量/主动量=K 常数)在比值控制系统中 从动量是跟随主动量变化的物料流量,因此,比值控制系统实际上是一种随动控制系统。 比值控制系统的类型: 开环比值控制系统 单闭环比值控制系统 双闭环比值控制系统 变比值比值控制系统 (串级比值控制系统) 开环比值控制系统 开环比值控制系统是最简单的比值控制系统,同时也是一个开环控制系统。 随着F1的变化,F2跟着变化,满足F2=KF1的要求。(阀门开度与F1之间成一定的比例关系)。 图P162 图5.1 开环比值控制缺点: 1.当F2因管线两端压力波动而发生变化时,系统不起控制作用,即F2本身无抗干扰能力。 2.适用于副流量较平稳且比值精度要求不高的场合。 特点:由于系统是开环的,对从动量F2有干扰无法克服,无法保持比值关系。 适用场合:适用于从动量较平稳且比值关系要求不高的场合,实际生产上很少用。 单闭环比值控制 图P162 图5.2 单闭环比值控制系统是为了克服开环比值系统存在的不足,在开环比值控制系统的基础上增加一个从动量的闭环控制系统。 单闭环比值控制原理: (1)、当F1不变而F2受到扰动,通过闭环实现定值控制,将F2调回到F1的给定值上。

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

双闭环比值控制系统仿真

学号:2013133301 课程设计报告 题目双闭环比值系统仿真 学院计算机科学与信息工程学院 专业自动化 班级2013级自动化3 学生姓名刘博 指导教师吴诗贤 2016 年11 月26 日

摘要 3 一、课程设计任务 5 5 (1) PID控制原理及PID参数整定概述 5 (2) 基于稳定边界法的PID控制器参数整定算法7 (3) 利用Simulink建立仿真模型9 (4) 参数整定过程14 (5) 调试分析过程及仿真结果描述20 三、总结20

参考文献21

双闭环比值控制系统仿真 摘要: 双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。主、从控制回路均选择PI控制方式。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

VM双闭环直流调速系统课程设计报告

V M双闭环直流调速系统 课程设计报告 This model paper was revised by LINDA on December 15, 2012.

实训报告课程名称:专业实训 专业:班级: 学号:姓名: 指导教师:成绩: 完成日期: 2015 年 1月15 日

任务书

1 单闭环直流调速系统 主电路设计 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。 图 单闭环直流调速系统原理框图 直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。 整流变压器额定参数的计算 为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压 U 2 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。 (1)二次侧相电流和一次侧相电流 在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。 表 几种整流线路变压器电压计算系统

电路模式 单相全波 单相桥式 三相半波 三相桥式 A C 所以变压器二次侧相电压为:2 1.35200.930U V =?÷= 变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。 表 几种整流线路变压器电流Id/I2 电路模式 电阻性负载 电感性负载 单相全控桥 1 三相全控桥 查表得, 1A =。 变压器的二次侧电流:2 7d I I A == 变压器的一次侧电流I 1的计算公式: 一次侧电流:2112/7302200.95I I U U A =*=?÷= (2)变压器容量

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

VM双闭环不可逆直流调速系统设计

VM双闭环不可逆直流调速系统设计

运动控制系统 课程设计 题目:某V-M双闭环不可逆直流调速系统设计 专业班级: 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

目录 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的与意义 (1) 2 课程设计概述与要求 (2) 2.1 课程设计概述 (2) 2.2课程设计要求............................................... 错误!未定义书签。 3 转速、电流双闭环直流调速系统的组成 (3) 4 调速系统主电路元部件的确定及其参数计算4 4.1变压器参数选取 (4) 4.1.1变压器二次侧电压U2的计算 (4) 4.1.2一次、二次侧相电流I1、I2的计算 (4) 4.1.3 变压器容量S的计算5 4.2 平波电抗器参数计算5 4.2.1电流连续的临界电感量L1的计算5 4.2.2限制输出电流脉动的临界电感量L2的计算5 4.2.3电动机电感量L D的计算6 4.2.4实际串入平波电抗器的电感量L的计算6 4.3可控晶闸管参数计算6 4.3.1晶闸管的额定电压计算6 4.3.2晶闸管的额定电流计算7 4.3.3三相桥式全控整流电路原理7

4.3.4 整流电路及晶闸管保护电路设计8 4.4 过电压保护和du/dt限制9 4.5 过电流保护和di/dt限制10 5 控制系统设计10 5.1 双闭环调速系统的动态结构10 5.2 电流调节器的设计11 5.2.1 电流环结构框图的化简11 5.2.2 电流环结构框图小惯性环节近似处理12 5.2.3 电流调节器结构的选择12 5.2.4 电流调节器的实现13 5.2.5 电流调节器的参数计算13 5.3转速调节器的设计15 5.3.1 转速环结构框图的化简15 5.3.2转速调节器结构的选择1 6 5.3.3转速调节器的实现17 5.3.4 转速调节器的参数计算17 6 触发电路的选择与原理图19 7 双闭环直流调速系统MATLAB仿真22 8 设计总结23 9参考文献24附录V-M双闭环不可逆直流调速系统电气原理图25

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

相关主题
文本预览
相关文档 最新文档