当前位置:文档之家› 相似形与相似三角形专题复习(精编题目)

相似形与相似三角形专题复习(精编题目)

相似形与相似三角形专题复习(精编题目)
相似形与相似三角形专题复习(精编题目)

第一节

:相似形与相似三角形

基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。

2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理)

(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c,

A D a

B E b

C F c

$

可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =

====或或或或 等.

(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.

A

D E

B C

由DE ∥BC 可得:

AC AE

AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.

此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.

|

(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.

(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d

c

,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质

①比例的基本性质:如果

d c b a =,那么ad=bc 。如果ad=bc (a ,b ,c ,d 都不等于0),那么d c b a =。 ②合比性质:如果d c b a =,那么d

d

c b b a ±=±。

③等比性质:如果d c b a ==???=n m (b+d+???+n ≠0),那么

b

a

n d b m c a =+???+++???++ ④b 是线段a 、d 的比例中项,则b 2=ad.

C

C

C

?

典例剖析

例1:① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km.

② 若

b a =32 则b b

a +=__________. ③ 若

b a b a -+22=5

9

则a :b=__________.

3.相似三角形的判定

(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。 (2)两边对应成比例并且它们的夹角也相等的两个三角形相似。 (3)三边对应成比例的两个三角形相似。 补充:相似三角形的识别方法

.

(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。

(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

注意:适用此方法的基本图形,(简记为A 型,X 型) (3)三边对应成比例的两个三角形相似。

(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。 (5)两角对应相等的两个三角形相似。

(6)一条直角边和斜边长对应成比例的两个直角三角形相似。 (7)被斜边上的高分成的两个直角三角形与原直角三角形相似。 【基础练习】

(1)如图1,当 时,△ABC ∽ △ADE [

(2)如图2,当 时, △ABC ∽ △AED 。 (3)如图3,当 时, △ABC ∽ △ACD 。

小结:以上三类归为基本图形:母子型或A 型

(3)如图4,如图1,当AB ∥ED 时,则△ ∽△ 。 (4)如图5,当 时,则△ ∽△ 。 A B

C

D

E

A

B

C

D

E

小结:此类图开为基本图开:兄弟型或X 型

(

典例剖析

例1:判断

①所有的等腰三角形都相似. ( ) ②所有的直角三角形都相似. ( ) ③所有的等边三角形都相似. ( ) ④所有的等腰直角三角形都相似. ( ) 例2:如图,△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F 求证: △ABF ∽ △CAF.

>

例3:如图:在Rt △ ABC 中, ∠ABC=90°,BD ⊥AC 于D ,若 AB=6 ;AD=2; 则AC= ;BD= ;BC= ;

例3:如图:在Rt △ ABC 中, ∠ABC=90°,BD ⊥AC 于D ,若E 是BC 中点,ED 的延长线交BA 的延长线于F ,

求证:AB : AC=DF : BF

第二节:相似三角形的判定

(一)相似三角形:定义

D

C

C

B

A

E

C

温馨提示:

①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;

②相似三角形的特征:形状一样,但大小不一定相等;

③对应中线之比、对应高之比、对应角平线之比等于相似比。

④两个钝角三角形是否相似,首先要满足两个钝角相等的条件。

2、相似三角形对应边的比叫做相似比.

温馨提示:

①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.

②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似

比,当且仅当它们全等时,才有k=k′=1.

③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.

3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.

4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.

温馨提示:

①定理的基本图形有三种情况,如图其符号语言:

∵DE∥BC,∴△ABC∽△ADE;

②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;

③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.

(二)相似三角形的判定

1、相似三角形的判定:

判定定理(1):两角对应相等,两三角形相似.

判定定理(2):两边对应成比例且夹角相等,两三角形相似.

判定定理(3):三边对应成比例,两三角形相似.

温馨提示:

①有平行线时,用上节学习的预备定理;

②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;

③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.

例1.如图三角形ABC中,点E为BC的中点,过点E作一条直线交AB于D 点,与AC的延长线将

>

2、直角三角形相似的判定:

斜边和一条直角边对应成比例,两直角三角形相似.

温馨提示:

①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;

②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.

③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.

直角三角形的身射影定理:AC2=AD*AB CD2=AD*BD BC2=BD*AB

;

总结:寻找相似三角形对应元素的方法与技巧

正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:

(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;

(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.

2、常见的相似三角形的基本图形:

学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:

(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;

(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;

成把第一个图中的△ADE绕点A旋转某一角度而形成的.

.第三节相似三角形中的辅助线

一、作平行线

例1. 如图,?A B C的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线相交于F,

求证:BF

CF

BD

CE

=

B

D

A C

F

E

例2. 如图,△ABC中,AB

,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·DF=AC·EF。

二、作垂线

例 3. 如图从ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:

2

AC

AF

AD

AE

AB=

?

+

?。

A

B

C

F

D

E

三、作延长线

>

例4. 如图,在梯形ABCD中,AD∥BC

面积为21,求△HBC的面积。

例5. 如图,Rt?ABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FG⊥AB于G,求证:FG2=CF?BF

四、作中线

例6 如图,ABC

?中,AB⊥AC,AE⊥BC于E,D在AC边上,若BD=DC=EC=1,求AC。

五、过渡法(或叫代换法)

有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.

1、等量过渡法(等线段代换法)

遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,

件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.

<

2、等比过渡法(等比代换法)

当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延

长线于点F.求证:AB DF AC AF

~

3、等积过渡法(等积代换法)

思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若

三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定

形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。

例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B作BE ⊥AG,垂足为E,交CD于点F.

求证:CD2=DF·DG.

!

六、证比例式和等积式的方法:

对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明.

例1 如图5在△ABC 中,AD 、BE 分别是BC 、AC 边上的高,DF ⊥AB 于F ,交AC 的延长线于H ,交BE 于G ,求证:(1)FG / FA =FB / FH (2)FD 是FG 与FH 的比例中项.

) 例2 如图在△ABC 中,AD 是BC 边上的中线,M 是AD 的中点,CM 的延长线交AB 于N .求:AN :AB 的值;

例3 如图过△ABC 的顶点C 任作一直线与边AB 及中线AD 分别交于点F 和E .过点D 作DM ∥FC 交AB 于点M .(1)若S △AEF :S 四边形MDEF =2:3,求AE :ED ; (2)求证:AE ×FB =2AF ×ED

%

第四节 相似三角形难题集

-

一、分类讨论:

例1 如图在正方形ABCD 的边长为1,P 是CD 边的中点,Q 在线段BC 上,当BQ 为何值时,△ADP 与△QCP 相似

图5 A 《

F B D

G C H

B

E

A C

D

M

N

}

E

D

A

F

M B

A D

例2 如图在梯形ABCD 中,AD ∥BC ,∠A =900,AB =7,AD =2,BC =3.试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.

`

二:相似三角形中的动点问题:

1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.

(1)当t 为何值时,AD=AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值.

2.如图,在△ABC 中,ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒. (1)①当t=时,求△CPQ 的面积;

②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;

(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.

{

3.如图1,在Rt △ABC 中,

ACB =90°,AC =6,BC =8,点D 在边AB

上运动,DE 平分CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为

N .

图12 A D B C

P 1

P 2

P 3

(2)探究:AD为何值时,△BME与△CNE相似?

4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,

沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每

秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运

动的时间为x.

(1)当x为何值时,PQ∥BC?

(2)△APQ与△CQB能否相似若能,求出AP的长;若不能说明理由.

~

5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B 以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

(1)当t为何值时,△QAP为等腰直角三角形?

(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似

,

三、构造相似辅助线——双垂直模型

6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.

@

7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,

8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.

9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B 的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()

A. B.

C. D.

10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

求C、D两点的坐标。

|

四、构造相似辅助线——A、X字型

11.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。

求证:

.

12.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。

求证:

13.在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,

且EF交BC于点F,某同学在研究这一问题时,发现如下事实:

(1)当时,EF=;(2)当时,EF=;

(3)当时,EF=.当时,参照上述研究结论,请你猜想用

a、b和k表示EF的一般结论,并给出证明.

14.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。

求BN:NQ:QM.

|

15.证明:(1)重心定理:三角形顶点到重心的距离等于该顶点对边上中线长的.(注:重心是三角形三条中线的交点)(2)角平分线定理:三角形一

|

五、相似类定值问题

16.如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点E、F.

求证:.

|

17.已知:如图,梯形ABCD中,AB图,在△ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在△ABC上。

求证:.

六:相似之共线线段的比例问题

20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证:

(2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

21.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF 于F.求证:BP2=PE·PF .

@

22.如图,已知ΔABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。求证:DE2=EG?EH

23.已知如图,P为平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H.

求证:

^

七、相似之等积式类型综合

24.已知如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。

求证:

25如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.

求证:(1)△AED∽△CBM;(2)

~

26.|

27.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中

点,ED的延长线与CB的延长线交于点F.

(1)求证:.

(2)若G是BC的中点,连接GD,GD与EF垂直吗并说明理由.

27.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:.

28.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H。求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH

八、相似基本模型应用

29.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;

(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.

30.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.

(1)请写出图中各对相似三角形(相似比为1除外);

(2)求BP:PQ:QR.

31.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F。求证:

相似三角形的判定与性质综合运用经典题型(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD. 例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ; (2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4, 3 3=AD ,AE=3 ,求AF 的长。 考点二:射影定理: 例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。 例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=1 4 AD ,EG ⊥CF 于点G , (1)求证:△AEF ∽△BCE ; (2)试说明:EG 2 =CG ·FG. 例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2 ,求△ABF 的周长; (3)在线段AC 上是否存在一点P ,使得2AE 2 =AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由. 考点三:相似之共线线段的比例问题: 例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE = 例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2 =PE ?PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长. 例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD ?CF=CD ?DF . 例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的 点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2 =DC ?DF . 例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)找出与△ABH 相似的三角形,并证明;(2)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长. 例12、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN ?DN=CN ?MN . 例13、如图,在Rt △ABC 中,CD 是斜边AB 上的高,点M 在CD 上,DH ⊥ BM 且与AC 的延长线交于点E .求证:(1)△AED ∽△CBM ; (2)AE ?CM=AC ?CD . 例14、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)求证:FD 2 =FB ?FC ; (2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由. 例15、如图,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数. 考点四:相似三角形的实际应用: 例16、如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长PQ 是宽PN 的2倍,则边长是多少? 例17、已知左,右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的 根 A B C D F

相似三角形全讲义(教师版)

相似三角形全讲义(教师版)

————————————————————————————————作者:————————————————————————————————日期:

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

相似三角形的性质 (第2课时)

相似三角形的性质(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合使用相似三角形的判定定理和性质定理2、3来解决问题.3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 三、重点及难点 1.教学重点:是性质定理的应用. 2.教学难点:是相似三角形的判定与性质等相关知识的综合使用. 四、课时安排 1课时 五、教具学具准备 投影仪、胶片、常用画图工具. 六、教学步骤 [复习提问] 叙述相似三角形的性质定理1. [讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2. 性质定理2:相似三角形周长的比等于相似比. ∽, 同样,让学生类比“全等三角形的面积相等”,得出命题. “相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象. 性质定理3:相似三角形面积的比,等于相似比的平方. ∽, 注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这个点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题. 例1 已知如图,∽,它们的周长分别是60cm和72cm,且AB=1 5cm,,求BC、AB、、. 此题学生一般不会感到有困难.

例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比. 教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法. 解:设原地块为,地块在甲图上为,在乙图上为. ∽∽且,. . 学生在使用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:,而 [小结] 1.本节学习了相似三角形的性质定理2和定理3. 2.重点学习了两个性质定理的应用及注意的问题. 七、布置作业 教材P247中A组4、5、7. 八、板书设计

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

相似三角形的综合应用-学生版

知识精要 1、比例线段及性质 (1)比例线段的概念 (2)比例性质:基本性质、更比性质、合比性质、等比性质、比例中项 2、三角形一边的平行线性质定理及其推论 3、相似三角形的判定及性质 (1) 相似三角形的判定方法:预备定理、AA 、SSS 、ASA 、HL 、传递性 (2)相似三角形的性质 相似三角形对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比,面积比等于相似比的平方。 4、三角形相似的基本模型: (1)平行型:如图,“A”型即公共角对的边平行,“X”型即对顶角对的边平行,都可推出两个三角形相似; 常见条件: ①//DE BC ,②::AD AB AE AC =,③AD AC AE AB ?=?,④ADE B ∠=∠ (2)相交线型:如图,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况 只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似. 常见条件:①AD AB AE AC ?=?②::AD AC AE AB =③ ADE C ∠=∠ (3)旋转型: 常见条件:已知△BAC ∽△DAE , 求证:△BAD ∽△CAE. (4)嵌入型: 已知△ABC 是等腰直角三角形,∠BAC=90°,∠DAE=45°.找出相似的三角形. E A B C D D C B A

已知△ABC 是等边三角形,∠DAE=120°.找出相似的三角形. 常见条件: ① 已知∠B=∠C=∠EDF ,找出相似的三角形. ② 已知∠B=∠C=∠EDF ,D 为BC 的中点,找出相似的三角形. (5)一线三等角: 常见条件:B C EDF ∠=∠=∠ (6)子母三角形:(相交线型推广) 常见条件:① ,2AC AD AB =?③2 BC BD BA =?④2CD AD BD =?

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

相似三角形与圆的结合

E D C B A B E D C B A B B B 相似三角形与圆的结合 1、 如图,圆中的弦AB 、CD 相交于E 点, 已知CE=4,BE=5,DB=6;求:弦AC 的长 2、 如图,AB 是⊙O 的直径,CD ⊥AB 于E ,观察图形, 你能得到哪些结论,请将你所得的结论写下来,和同学交流, 看谁写的多写的对。 3、 已知:如图,ABCD 是圆内节四边形,AC 、BD 相交于点E , 求证:AD ?BE=BC ?AE 4、 已知:如图,△AOB 中,∠AOB=90°,OC ⊥AB 于C , OA=3cm ,OB=4cm ,以O 为圆心,以2.4cm 为半径作⊙O 。 求证:⊙O 与AB 相切 5、 已知:如图,AB 是⊙O 的直径,C 是⊙O 外一点, CB 交⊙O 于D ,AD 2=CD ?BD 求证:AC 是⊙O 的切线 6、 已知:如图,AB 是⊙O 的直径,CD 切⊙O 于B , AC 交⊙O 于E ,AD 交⊙O 于F , 求证:AE ?AC=AF ?AD 7、 已知:如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A , CE ∥AB 交⊙O 于D 、E. 求证;BE 2 =CD ?AB 8、 如图,AD 是△ABC 的高,AE 是△ABC 的外接圆的直径; 求证:AB ?AC=AD ?AE

19、如图,4531===∠=∠∠=∠BC DE AB D B ,,, (1)ABC ?∽ADE ?吗?说明理由。 (2)求AD 的长。 20、如图4,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 21、已知:如图,ΔABC 中,AD=DB,∠1=∠2. 求证:A E A C D E A B = 22、如图,在正方形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (),AE AB >试证明: EF 平分∠AFC. 23、已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD

相似三角形的性质定理

相似三角形的性质定理(2、3) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用. 2.教学难点:是相似三角形的判定与性质等有关知识的综合运用. 四、课时安排 1课时 五、教具学具准备 投影仪、胶片、常用画图工具. 六、教学步骤 [复习提问] 叙述相似三角形的性质定理1. [讲解新课] 让学生类比“全等三角形的周长相等”,得出性质定理2. 性质定理2:相似三角形周长的比等于相似比. ∽,

同样,让学生类比“全等三角形的面积相等”,得出命题. “相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象. 性质定理3:相似三角形面积的比,等于相似比的平方. ∽, 注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习. (2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周 长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题. 例1 已知如图,∽,它们的周长分别是60cm和72cm, 且AB=15cm,,求BC、AB、、. 此题学生一般不会感到有困难. 例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比. 教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.解:设原地块为,地块在甲图上为,在乙图上为.∽∽且,.

九上学生相似三角形讲义全

第1讲相似图形与成比例线段 【学习目标】 1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。 2、了解成比例线段的概念,会确定线段的比。 【学习重点】相似图形的概念与成比例线段的概念。 【学习难点】成比例线段概念。 【学习过程】 知识点一:比例线段 定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两 条线段的比,如果a c b d ,那么就说这四条线段a、b、c、d叫做成比例线 段,简称比例线段。 例:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例? 解: 练习一: 1、如图所示:(1)求线段比AB BC、 CD DE、 AC BE、 AC CD (2)试指出图中成比例线段 2、线段a、b、c、d的长度分别是30mm、2cm、0.8cm、12mm判断这四条线段是否成比例? 3、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例? 4、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的

比是___________ 5、已知线段a= 12、 b =2+c=2若a c b x =,则x =_________若()0b y y y c =>, 则y =__________ 6、下列四组线段中,不成比例的是 ( ) A a=3 b=6 c=2 d=4 C a=4 b=6 c=5 d=10 知识点二:比例线段的性质 比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果 a c b d =,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形 b d a c =、a b c d =、c d a b = (2) 合比性质:如果 a c b d =,那么a b c d b d ±±= (3) 等比性质:如果 a c e m b d f n ====()0b d f n ++++≠,那么 a c e m a b d f n b ++++=+++ + 例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -= 练习二: 1、已知35a b =,求a b a b +- 2、若 234a b c ==,则23a b c a ++=_________ 3、已知mx ny =,则下列各式中不正确的是( ) A m x n y = B m n y x = C y m x n = D x y n m = 4、已知570x y -=,则 x y =_______

圆与相似三角形综合训练题

圆与相似三角形专题训练 例1.如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC 证明: 训练1. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF. 求证:AD·ED = BE·DF 证明:连结CB 2. 如图,CD切⊙O于P,PE⊥AB于E,AC⊥CD,BD⊥CD. 求证:① PE:AC = PB:PA;② PE 2 = AC·BD

例2.如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF 交BC于G. 求证:AB 2 = BG·BC 证明:连结AD 训练1. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE 切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC 证明:连结AE 2. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D. 求证:①∠DAC = 2∠B;② CA 2 = CD·CO

例3.如图,⊙O 1和⊙O 2 相交于点A和点B,且O 1 在⊙O 2 上;过点A的直线 CD分别与⊙O 1、⊙O 2 交于点C、D,过点B的直线EF分别与⊙O 1 、⊙O 2 交于 点E、F,⊙O 2的弦O 1 D 交AB于P. 求证:① CE∥DF;② O 1 A 2 = O 1 P·O 1 D 证明: 训练1. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E. 求证:①AE∥BD;②AD 2 = DF·AE 证明: 2. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点. 求证:ET = ED 证明:

相似三角形性质及其应用练习题

相似三角形性质及其应用 1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------, 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°, CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------, AD=---------- ,BD=-----------。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( ) 2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2,则这个地区的实际周长-------- m ,面积是----------m 2 3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个 三角形的周长为----------,面积是------------- 4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm , 则较大的三角形的周长是----------,若它们的面积之和为260cm 2,则较小的三角形的面积为 ---------- cm 2 5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练 1.两个三角形周长之比为95,则面积比为( ) (A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定 2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( ) (A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2 =AD ?AB (D )AB 2 =AC 2 +BC 2 4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA 的比值 是( ) (A )2 (B )3 (C )4 (D )5 5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

《相似三角形》最全讲义(完整版).docx

相似三角形基本知识 知识点一:放缩与相似形 1?图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位?用、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括?立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小 得 到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形. 3?相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a. b的长度分別是m、n,那么就说这两条线段 a _ m 的比是a: b = m: n (或〃n) 2、比的前项,比的后项:两条线段的比a: b屮。a叫做比的前项,b叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 兰_ £ 3、比例:两个比相等的式子叫做比例,如芦° a _ £ 4、比例外项:在比例“ d(或a: b=c: d)中a、d叫做比例外项。 a _ c 5、比例内项:在比例〃〃(或a: b = c: d)中b、c叫做比例内项。 a _ c 6、第四比例项:在比例〃d(或a: b=c: d)中,d叫a、b、c的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为U(或a:b=b:c时,我们把b 叫做a和d的比例中项。 &比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长

相似三角形综合试相似与圆(难)

相似三角形综合试相似与圆(难)

————————————————————————————————作者:————————————————————————————————日期: 2

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延长线交于点F,连结EF、DF. (1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长. 6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP. (1)求证:P A是⊙O的切线. (2)△ABP和△CAP相似吗?为什么? (3)若PB:BC=2:3,且PC=20,求P A的长. 7.已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3. (1)求证:AB是⊙O的切线; (2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长. 8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,求CD,DE,及EF的长.

相似三角形分类整理(超全)上课讲义

相似三角形分类整理 (超全)

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=b c 。如果ad=bc (a ,b ,c , d 都不等于0),那么 d c b a =。

(完整版)圆与相似三角形的综合常见题型

圆与相似三角形专题训练 27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。【2005成都】 ⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE = 24 5 ,求BD 和BC 的长。 27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。【2006成都】 (1)求证:△ACG ∽△DBG ;(2)求证:2 AC AG AB =? ; (3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长。 E

O D G C A E F B P 27.如图,A 是以BC 为直径的O e 上一点,AD BC ⊥于点D ,过点B 作O e 的切线,与CA 的延长线相交于点 E G ,是AD 的中点,连结CG 并延长与BE 相交于点 F ,延长AF 与CB 的延长线相交于点P .【2007成都】 (1)求证:BF EF =;(2)求证:PA 是O e 的切线; (3)若FG BF =,且O e 的半径长为32,求BD 和FG 的长度. 27. 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧? AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、点E ,连结DE.若AB=23.【2008成都】 (1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,AD DC =x (0

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(吐血推荐)

相似三角形的性质及应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算; 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】 要点一、相似三角形的性质 1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比. 相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 3. 相似三角形周长的比等于相似比 ∽ ,则 由比例性质可得: 4. 相似三角形面积的比等于相似比的平方 ∽ ,则 分别作出 与 的高 和,则 211 22=1122 ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''????=='''''''''??△△ 要点诠释:相似三角形的性质是通过比例线段的性质推证出来的. 要点二、相似三角形的应用 1.测量高度 测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决. 要点诠释:测量旗杆的高度的几种方法: 平面镜测量法 影子测量法 手臂测量法 标杆测量法

2.测量距离 测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。 1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长. 2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长. 要点诠释: 1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离; 2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比; 3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 【典型例题】 类型一、相似三角形的性质 1. △ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由. 【答案】 设另两边长是xcm,ycm,且x<y. (1)当△DEF中长4cm线段与△ABC中长5cm线段是对应边时,有, 从而x=cm,y=cm. (2)当△DEF中长4cm线段与△ABC中长6cm线段是对应边时,有, 从而x=cm,y=cm. (3)当△DEF中长4cm线段与△ABC中长7cm线段是对应边时,有, 从而x=cm,y=cm. 综上所述,△DEF的另外两边的长度应是cm,cm或cm,cm 或cm,cm三种可能. 2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC 上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.

相似三角形完整讲义(教师版)

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相关主题
文本预览
相关文档 最新文档