当前位置:文档之家› (数学分析)第十章

(数学分析)第十章

(数学分析)第十章
(数学分析)第十章

第十章 定积分的应用

(14学时)

§1 平面图形的面积

教学目的要求: 能熟练的将各种形式表示的曲线所围成的图形抽象成为不定积分,并计算出它们的面积.

教学重点难点: 重点是计算由各种形式表示的曲线所围成的图形的面积.难点是参数方程和

极坐标方程表示的曲线所围成的图形的面积的计算. 学时安排: 2学时 教学过程: 一、积分()b

a

f x dx

?的几何意义

我们讲过,若[,]f C a b ∈且()0f x ≥,则定积分()b

a f x dx

?表示由连线曲线y=f(x),

以及直线x=a,b 和x 轴所围成的曲边梯形的面积。当()b

a f x dx

?<0时,定积分表示的是负面

积,即

()b a

f x dx

?

表示的是

f 在[a,b]上的正负面积代数和。例如

55222

00

2

sin (sin sin )sin 321

xdx xdx xdx xdx π

π

π

π

π

π

=+

+

=-=?

???。若计算sinx 在[0,5

2

π

]

上的面积,则变为5522

2

02

sin (sin sin )sin 325

x dx xdx xdx xdx ππ

π

π

π

π

=+

-

=+=????。

二、f(x),g(x)在[a,b]上所围的面积

由几何意义得

()()[()()]b b

b a

a

a

S f x dx g x dx f x g x dx

=

-=

-?

??

,该式当f(x)和g(x)可判

断大小的情况下适合,但f(x)和g(x)无法判断大小时,要修改为

|()()|b a

S f x g x dx

=

-?

如果f(x)和g(x)有在积分区域[a,b]内交点,设为12,x x ,且12x x <,则|()()|b

a

S f x g x d x =

-

=?

2

1

|()()|x x

f x

g x d x

-?。所以此时求f(x)和g(x)在[a,b]上的面积,即为f(x)和g(x)所围成的面积,要先求出交点,作为它们的积分区域。

例1、求2

y x =,2

x y =所围的面积S 。 例2、求sin y x =、cos y x =在[0,2]π上

所围图形的面积。

例3、已知2y a x b x =+通过点(1,2)与2

2y x x =-+有个交点10x >,又a<0,求

2y a x b x =+与2

2y x x =-+所围的面积S ,又问a,b 为何值时,S 取最小值?

例4、求抛物线2

2y x =与直线4x y -=所围成的图形的面积。

例5、有一个椭圆柱形的油灌,某长度为l ,底面是长轴为a ,短轴为b 的椭圆,问油灌中油面高为h 时,油量是多少?(已知油的密度为ρ) 三、参数方程形式下的面积公式

若所给的曲线方程为参数形式:()()x x t y y t =??

=? (t αβ≤≤),其中y(x)是连续函数,x(t)是连续可微函数,且()0x t '≥且()x a α=,()x b β=,那么由()

()x x t y y t =??

=?,x 轴及直线x

=a ,x =b 所围图形的面积S 的公式为

||()S y dx t β

α=

?。(αβ

<)

例1、求旋轮线:(sin )(1cos )x a t t y a t =-??

=-?(a>0)一个拱与x 轴所围的图形的面积。

例2、求椭圆cos sin x a t y b t =??

=?(a>0,b>0)的面积S 。

四、极坐标下的面积公式

设曲线的极坐标方程是:()r r θ=,αθβ≤≤,()[,]r C θαβ∈,则由曲线()r r θ=,射线θα=及θβ=所围的扇形面积S 等于

2

1

()2S r d β

α

θθ

=

?。

例1、求双纽线2

2

2cos 2r a θ=所围图形面积S 。 例2、求由

2

sin

3r θ

=,03θπ≤≤,所决定的外层曲线和内层曲线之间的面积S 。

例3、求三叶形成曲线sin 3r a θ=(a>0)所围图形面积。

§2 由平行截面面积求体积

教学目的要求: 能熟练计算平行截面面积为已知的立体的体积和旋转体的体积. 教学重点难点: 重点是用定积分求体积. 难点把具体问题抽象成定积分. 学时安排: 2学时 教学过程:

一般体积公式:

设一几何体夹在x =a 和x =b (a

此几何体,设载面与X 轴交点为(x ,0),可得的截面面积为S (x ),如果S(x)是[a,b]上的(R )可积函数,则该几何体的体积V 等于:()b

a V S x dx

=?。

例1、求底面积为S ,高为h 的斜柱体的体积V 。例2、求底面积为S ,高为h 的圆锥体的体积V 。

例3、求由椭球面2222

2

2

1

x

y z a

b

c

+

+

=所围的几何体体积。(a,b,c>0)

§3平面曲线的弧长与曲率

教学目的要求: 能熟练计算平面曲线的弧长.

教学重点难点: 重点是用定积分平面曲线的弧长. 难点弧长公式的证明. 学时安排: 2学时

教学过程:

一、平面曲线的弧长

1、先建立曲线的长度(弧长)的概念

一条线段的长度可直接度量,但一条曲线段的“长度”一般却不能直接度量,因此需用不同的方法来求。

设平面曲线C 由参数方程()()x x t y y t =??

=? (t αβ≤≤)给出,设01{,,,}n P t t t = 是[,αβ]

的一个划分[0,n t t αβ==],即01n t t t αβ=<<<= ,它们在曲线C 上所对应的点为

000((),())M x t y t =,111((),())M x t y t =,…,((),())n n n M x t y t =。从端点0M 开始用线

段一次连接这些分点0M ,1M ,…,n M 得到曲线的一条内接折线,用1i i M M -来表示

1i i M M -的长度,则内接折线总长度为

1

11

n

n

n i i i i S M

M -===

=

∑∑

曲线C 的弧长S 定义为内接折线的总长在max 0i p t =→ 时的极限:

1

1

1

lim

lim

n

n

i i p p i i S M

M -→→====∑∑

如果S 存在且为有限,则称C 为可求长曲线。 2、弧长公式

设曲线C :()

()x x t y y t =??

=? (t αβ≤≤),且()x t ,()y t 在[,αβ]上可微且导数()x t ',

()y t '在[,αβ]上可积,曲线C 在[,αβ]无自交点,则曲线C 的弧长S 为:

S β

β

α

α

=

=

??

注:其它形式的弧长公式

(1)设()y y x =在[a,b]上可微且导数()y x '可积,则曲线()y y x =(a ≤x ≤b )的弧长S 为:

b a

S =

?

(2)若曲线极坐标方程()r r θ=,αθβ≤≤,则当()r θ在[,αβ]上可微,且()r θ'可积时,

S β

α

θ

=

?

(3)空间曲线()()()

x x t y y t z z t =??

=??=? (t αβ≤≤),弧长S 为

S β

α

=

?

其中x(t),y(t),z(t)在[,αβ]上可微,导数()x t ',()y t ',()z t '在[,αβ]上可积且曲线C 在 [,αβ]上无自交点。

例1、求圆周cos x R t =,sin y R t =,02t π≤≤的弧长S 。 例2、求抛物线2

12y x

=

,01x ≤≤的弧长S 。例3、求椭圆2

22

2

1

x

y a

b

+

=(b>a>0)的

弧长S 。 3、弧长的微分

设C :()()x x t y y t =??=? (t αβ≤≤)是光滑曲线(()x t ',()y t '在[,αβ]连续且2()x t '+

2

()0y t '≠);且无自交点。若把公式中的积分上限β改为t ,就得到曲线C ,由端点0M 到

动点((),())M x t y t 的一段弧长。

t

S α

=

?

由上限函数的可微性知()

S t '存在,()

dS t dS dt =

?=

二、曲率

1、平面曲线的曲率

曲线的弯曲程度不仅与其切线方形的变化角度??的大小有关,而且还与所考察的曲线

的弧长S ?有关,并且曲率与? 成正比,与S 成反比。即一般曲线的弯曲程度可用

k S ?

?=

?,其中k :曲线段 AB 的平均变化率;??:曲线段 AB 上切线方向的角度;S ?:

曲线段

AB 的弧长。 例 半径为R 的圆:

1

k S S R R ?

α

α

α???=

==

=????。 对于一般的曲线,如何刻画它在一点处的弯曲程度呢? 0

lim

s k S ?

→?=? ,称为曲线在A 点的曲率,即

lim

s d k dS

S ??→?=

=?

2、曲率的计算

记()y y x =二阶可微,则在点x 处的曲率为:

因为tg y ?'=,arctgy ?'=,所以2

2

11d y y d dx

dx

y y

?

?''''=

?=

'

'

++,又因为

dS =所以 ()

3/2

2

1d y k dS

y ?''

=

=

'

+

例1、求

2

12

y x

=在任一点的曲率。

3、曲率圆和曲率半径

过点(x ,y(x))且与y =y (x )在该点有相同的一阶及二阶导数的圆

222

()()x a y b R -+-=称为曲率圆。曲率圆的中心和半径分别称为曲率中心和曲率半径。

如何求曲线上一点(x ,y(x))处的曲率圆呢?

因为

1R k =

()

3/2

2

1y k y ''

=

'+,则(a,b )在过(x ,y(x))的法线上:

1()()

()

Y y x X x y x -=-

-'。

例 求2

12y x

=

在点(0,0)的曲率圆方程?

§4旋转曲面的面积

教学目的要求: 能熟练掌握微元法,会用微元法计算曲面的面积.

教学重点难点: 重点是微元法、用微元法将实际问题抽象成定积分. 难点微元法的应用. 学时安排: 2学时

教学过程:

设y =y(x)于[a,b]上非负,且连续可微,该曲线绕x 轴旋转后所得的旋转面的侧面积:

2b

a S π=?

例、求半径为r 的球面面积S 。

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

华中科技大学2011数学分析考研真题

2011年华中科技大学 硕士研究生招生考试 考试科目:数学分析 适用范围:基础数学,应用数学,计算数学,概率论与数理统计 一. )112(lim 2 3 --+-+∞ →x x x x x 二.设f(x)一阶连续可微,f(0)=0,且D:tx y x 222≤+求极限 4 2 2)(0 lim t dxdy y x yf D t ?? ++→ 三.设曲面S 是椭球面)1(222y x z --=的上半部分,设ρ是原点到椭球面上任一点的切平面的距离,求dS z S ?? ρ . 四.计算积分 ?+ ++= L xdz zdy ydx I , 其中+L 为圆周,0,0,1222=++>=++z y x a z y x 从Z 轴+∞看为逆时针方向. 五.已知1 1+∑ +∞ =n a n n 收敛,试证明等式

∑ ?∑ +∞ =+∞=+=1 1 1 1 n n n n n n a dx x a , 并利用之求........ 5 14 13 1211+- + -. 六.求无穷积分dx x ax ax e e ? ∞ +- - - 2 2 . 七.设0>n a (n=1,2,3,4.....)级数 ∑ +∞=0 n n a 收敛,∑ ∞ == n k k n a r ,证 明:∑ ∞ =1 n n n r a 发散. 八.设函数f(x)在区间[0,2π]上可积, 证明 ? ∑ ∞ == -π ππ 20 1 ))((21n n n b dx x x f , 其中 ? = π π 20 sin )(1 nxdx x f b n (n=1,2,3,4......) 九.设f(x)在[0,1]上二阶连续可微,证明: dx x f dx x f f )()(9)0(1 ' '1 ' ? ?+ ≤

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

华中科技大学2018年数学分析试题解答

1. 解 由1n n n a x x -=-(1n ≥),得 2. 证明 将(1)f 、(0)f 在x 点(01x <<)用Taylor 公式展开并相减,则得 2211 (1)(0)'()''()(1)''()(0)22 f f f x f x f x ξη-=+ ---(0,1ξη<<) ,由于(0)(1)f f =,因此得 此不等式可以改进为:'()1f x <(01x <<),因为01x <<时,上式22(1)1x x -+<. 3. 证明 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt -++? 4. 证明 (反证法),假设00(,)f x y 不是(,)f x y 在,0x y ≥上的最大值。由于 22 lim (,)0x y f x y +→∞ =,存在0r >,当22 ,0,0x y r x y +≥≥≥时,00(,)(,)f x y f x y <。 考察闭区域22{(,):0,0,}D x y x y x y r =≥≥+≤,显然00(,)x y D ∈,由已知(,)f x y 在D 上连续,从而(,)f x y 在D 上取得最大值,设为11(,)f x y 。显然在D ?上,总有 00(,)(,)f x y f x y <,因而必有:1111'(,)'(,)0x y f x y f x y ==。当22,0,0x y r x y +≥≥≥时,0011(,)(,)(,)f x y f x y f x y <≤,因此 11(,)f x y 是(,)f x y 在,0x y ≥上的最大值。由假设,1100(,)(,)x y x y ≠。 这与已知矛盾,可知假设不真。 5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点. 证明 设00(,)x y 为曲线()y f x =上任一点,在该点处曲线的切线方程为 对曲线()y f x =上任意点,按Taylor 公式展开,得 由''()0f x >知,当0x x ≠时,000()'()()f x f x x x +-()f x <,而00(,)x y 为唯一公共点.得证.

数学建模 SPSS 典型相关分析

典型相关分析 在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。 典型相关分析计算步骤 (一)根据分析目的建立原始矩阵 原始数据矩阵 ? ?????? ?????? ?nq n n np n n q p q p y y y x x x y y y x x x y y y x x x 2 1 2 1222 21 22211121111211 (二)对原始数据进行标准化变化并计算相关系数矩阵 R = ?? ? ? ??2221 1211 R R R R 其中11R ,22R 分别为第一组变量和第二组变量的相关系数阵,12R = 21 R '为第一组变量和第二组变量的相关系数 (三)求典型相关系数和典型变量 计算矩阵=A 111-R 12R 122-R 21R 以及矩阵=B 122-R 21R 1 11-R 12R 的特征值和特征向量,分 别得典型相关系数和典型变量。 (四)检验各典型相关系数的显著性 第五节 利用SPSS 进行典型相关分析 第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。 研究人口出生与教育程度、生活水平等的相关。

1、点击“Files→New→Syntax”打开如下对话框。 2、输入调用命令程序及定义典型相关分析变量组的命令。如图

输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。 第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键,即可得到所有典型相关分析结果。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

华中科技大学2004年《数学分析》试题及解答

华中科技大学2004年《数学分析》试题及解答 以下每题15分 1.设00x =,1 n n k k x a == ∑(1n ≥),n x b →(n →∞).求级数 11 ()n n n n a x x ∞ -=+∑之和. 解 由1n n n a x x -=-(1n ≥),得 2 211 1 1 ()()n n n n n n n a x x x x ∞ ∞ --==+=-∑∑22 11 lim ()n k k n k x x -→∞ ==-∑22lim n n x b →∞ ==. 2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 证明 将(1)f 、(0)f 在x 点(01x <<)用Taylor 公式展开并相减,则得 2211 (1)(0)'()''()(1)''()(0)22 f f f x f x f x ξη-=+ ---(0,1ξη<<),由于(0)(1)f f =,因此得 222211 '()(1)''()''()(1)122 f x x f x f x x ξη≤-+≤-+≤. 此不等式可以改进为:'()1f x <(01x <<),因为01x <<时,上式22(1)1x x -+<. 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt =-++?. 证明 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt -++? 21 20(,)(1)d f tx ty t dt dt =-?1 100 (,)(,)(1)df tx ty df tx ty t dt dt dt =-+? 1 00 (,)(,)t df tx ty f tx ty dt ==- + ''12((0,0)(0,0))(,)(0,0)(,)xf yf f x y f f x y =-++-= 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >, 0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥) , 22lim (,)0x y f x y +→∞ =,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值. 证明 (反证法),假设00(,)f x y 不是(,)f x y 在,0x y ≥上的最大值。由于22 lim (,)0x y f x y +→∞ =,

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解:11 (,)f x y y x = +=,因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

华中科技大学数值分析2016年试卷

华中科技大学研究生课程考试试卷 课程名称: 课程类别 考核形式 学生类别______________考试日期______________学号__________________姓名__________________任课教师___________________ 一、填空 (每题3分,共24分) 1.设0.0013a =, 3.1400b =, 1.001c =都是经过四舍五入得到的近似值,则它们分别有 , , 位有效数字。 2.设(0,1,2,3,4)i x i = 为互异节点,()i l x 为对应的4次Lagrange 插值基函数,则 4 40 (21)()i i i i x x l x =++=∑___________________,4 40 (21)(1)i i i i x x l =++=∑________。 3. 已知3()421f x x x =++, 则[]0,1,2,3f = ,[]0,1,2,3,5f = 。 4.当常数a = , ()1 2 3 1 x ax dx -+?达到极小。 5. 三次Chebyshev 多项式3()T x 在[-1, 1]上3个不同实零点为1x = , 2x = ,3x = ;()()()12311 max x x x x x x x -≤≤---= 。 6.已知一组数据()()() 01,12,25, y y y ===利用最小二乘法得到其拟合直线y ax b =+,则a =_____ ,b =_____。 7. 当0A = ,1A = 时,求积公式 ()()()1011 1 ()1013 f x dx f A f A f -≈ -++? 的代数精度能达到最高,此时求积公式的代数精度为 。 8.已知矩阵1 222A ?? = ?-?? ,则A ∞= ,2A ,()2cond A = 。 二、(10分) 设函数()y f x =, 已知()()()0'01,14f f f ===, (1) 试求过这两点的二次Hermite 插值多项式()2H x ; 研究生 2016-6-1 数值分析

数学建模结果分析

结果分析 综上所述,由模型求解可知,在满足模型条件的假设(4)的条件下,当所给阳性的先验概率0.3066p ≥时,在不分组的条件下每个人一次一次的检验可以使总次数最少;当所给0.29290.3066p ≤<时,进行一次检验比分两次组和不分组均可使总次数最少;当00.2929p <<时,分两次组总次数比分一次组总次数要少。 当p 固定时,为了是人群中总的检验次数最小,就需要确定每组中的人数k 。根据固定值p 的大小分类讨论: 当0.3066p ≥时,此时不需要分组,即1k =时可使检验次数最小; 当0.3066p <时,此时需要分组,要使人群总的检验次数最小,只需要使每个人的检验次数的期望值E ξ最小,通过引入与11k E q k ξ=-+ 变化趋势相同的连续性函数 )2(,11)(≥+-=x x q x f x ,对于一个给定的p ,可以求出函数(x)f 的极值,又由分析知'(x)f 是增函数,所以求出(x)f 的极值就是(x)f 的最小值的取值m x ,故取与m x 最相近的两个值(上取整和下取整),代入ξE ,然后比较两个函数值,找出较小的一个,以此类推,可以确定,每一个给定的p 要使人群中总的检验次数最小所对应的人数k 。 在0.3066p <中,当0.29290.3066p ≤<时,进行一次分组检验比进行两次分组检验和不分组检验可使检验次数最少;当00.2929p <<时,分两组比分一组总的检验次数少。 模型检验

当然这都是在假设(4)的前提下做出的,现举一例具体说明上述假设的合理性:设0.002p =时,经过上述计算可得,当23k =时可使在一次分组的情况下平均每人检验次数最小,为满足假设(4),可以取24k =(此时平均每人检验次数仅比23k =时多510-次,故在检验100000人时总次数才多一次,故可忽略),然后取112k =或更小(如16k =),此时一定可以做到分两次组比分一次组平均每人检验次数小。当然此时还可以继续求满足条件的第二次分组平均每人检验次数的最小值。 由于题给条件是人群数量很大,基本是健康人,先验概率p 很小,所以4

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

2012华中科技大学考研数学分析

2012年华中科技大学数学分析考研真题 一,(1) 求极限 lim x →+∞1(1?1)。 (2) 设x 1=√2,x n +1=√n 。证明{x n }收敛且求极限。 二,求下列曲线围成的在第一象限的面积, y =x 2,2y =x 2,xy =1,xy =2。三,求下列圆环的质量,x 2+y 2+z 2=1 x +y +z =0?,其中 ρ(x ,y ,z )=(x ?1)2+(y ?1)2+(z ?1)2。 四,展开f (x )=∣cos x ∣ 为[?π,π]上的傅立叶级数。五,求幂级数 ∑n =0∞(n +1)x n n !的收敛域与和函数。 六,已知∑1∞a n 为发散的正项级数, S n 为其部分和,用Cauchy 收敛原理证明∑1∞a n s n 发散。七,已知 f (x )在[0,+∞]上连续,lim x →+∞f (x )存在且有限,证明f (x )在[0,+∞]上有界。 八,已知反常积分∫1+∞f (x )dx 收敛,证明含参变量反常积分 I (y )=∫1+∞x y f (x )dx 在[0,1]上一致收敛。 九,已知Ω为三维空间中的有界区域,Ω的边界为分片光滑的曲面,n →为外法向量,u (x ,y ,z )在Ω上二阶连续可偏导。求证: ?Ω(?2u ?x 2+?2u ?y 2+?2u ?z 2)dx =??Ω?u ?n ds 十,f (x )在[0,1]上二阶连续可导,证明: max x ∈[0,1] ∣f '(x )∣?∣f (1)?f (0)∣+∫01∣f ''(x )∣dx

2012华中科技大学高等代数 一,已知D=∣11?11?1??1∣,求D的所有代数余子式之和。 二,已知A为实矩阵,证明rank A'A=rank A=rank AA'. 三,已知P=(A I I I),证明P可逆的充要条件是I?A可逆。并在已知(I?A)?1已知的情况下求P(?1). 四,已知A,B,C,D为V上的线性变换,且两两可交换,并有AC+BD=E证明:kerAB=kerA+kerB,且和为直和。 五,已知A为全1阵, (1)求A的特征多项式与最小多项式。 (2)证明A可对角化,并求P,使得P?1AP为对角阵。 六,求正交变换化xy+yz+zx=1为标准方程,并指出曲面类型。 七,已知A,B对实对称矩阵 (1)若A,B正定,AB=BA,证明AB也正定。 (2)若A,B半正定,证明A+B也半正定,若还有A正定,证明A+B也正定。 八,V为实数域上的2n+1维空间,f,g为V上的线性变换,且fg=gf,证明存在λ,μ∈R,v∈V使得 f(v)=λv,g(v)=μv。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生. 入学考试自命题试题数学分析 一、 求极限1 111lim(1...)23n n I n →∞=++++ 解: 一方面显然1I ≥ 另一方面111 1...23n n ++++≤,且1lim 1n n n →∞= 由迫敛性可知1I =。 注:1 lim 1n n n →∞ =可用如下两种方式证明 1) 1n h =+,则22 (1)2(1)1(2)2n n n n n n n h h h n n -=+≥+ ?≤≥ 即lim 0n n h →∞ =,从而1lim 1n n n →∞ = 2) =有lim 11n n n n →∞==-。 二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。 证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则 2316P x xy y ?=+?,2316Q x xy x ?=+?? P Q y x ??=?? Pdx Qdy ∴+是某个函数的全微分 设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+ 2232238(,)4()x x y xy x y x y x y y ?∴Φ=+?Φ=++ 32328()812y y x x y y x x y ye ?'?Φ=++=++ ()12()12(1)y y y ye y y e C ??'?=?=-+ 322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数) 三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:

数学建模各种分析报告方法

现代统计学 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 主成分分析和因子分析的区别 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,

相关主题
文本预览
相关文档 最新文档