当前位置:文档之家› 大电流接地系统与小电流接地系统分析

大电流接地系统与小电流接地系统分析

大电流接地系统与小电流接地系统分析
大电流接地系统与小电流接地系统分析

大电流接地系统与小电流接地系统分析大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。

中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统. 一般110kv及以上的系统采用大电流接地系统。中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护中性点不接地系统的接地保护、接地选线装置

(1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统)

绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。

将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。

当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。

该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。

装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。

该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。

(3) 零序功率保护:

零序功率方向保护是利用非故障线路与故障线路的零序电流相差180?来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。

零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。

(4) 小电流接地选线综合装置:

随着电力科技的发展,近年来小电流接地电力系统逐步应用了独立的小接地电流选线装置。将小电流系统所有出线引入装置进行接地判断及选线,如华星公司的MLX系列。MLX系列选线装置的原理是用电流(消弧线圈接地采用五次谐波)方向判断线路,选电流最大的三条线路在进行方向比较,从而解决了零序电流较小、各种装置LH误差、测量误差、电力电缆潜流、消弧线圈、电容充放电过程等影响,能正确判别或切除故障线路。

2 接地保护安装调试注意事项

(1) 在无选择性零序电压保护装置及零序功率方向保护装置中,电压互感器一次、二次中性点必须可靠接地,一次绕组中性点接地不仅是安全接地而且是工作接地。若中性点接地不可靠,二次系统则不能正确反映一次系统发生接地故障时不平衡电压零序功率方向,因此开口三角形电压极性必须正确。

(2) 在利用零序电流互感器(多为电缆出线)构成的接地保护装置中,当电网发生接地故障时,故障电流不仅可能经大地流动,而且也经电缆导电外皮和铠装流

动。因此,零序电流互感器上方电缆头保安接地线必须沿电缆方向穿过LH在线路侧接地(见图1)。

图1 电缆头保安接地线图

零序互感器下方电缆皮接地则不需穿过零序互感器,避免形成短路环,电缆固定夹头与电缆外壳、接地线绝缘、零序电流互感器变比、极性误差应调整一致、正确,以减少互感误差。

(3) 在经消弧线圈接地的电网单相接地保护通常利用反映谐波的电缆电容的五次谐波分量保护和暂态电流速动保护,其实现选择性较困难。可在发现接地故障时投入有效电阻,以增加故障电流有功分量方法,利用零序电流保护、方向保护有选择地切除故障。

(4) 在电容器自投切系统中,补偿电容器应接成中性点不接地Y或D接法。发生接地后,三相负载仍保持对称运行,从而不影响零序电流,保证接地保护的灵敏性、正确性。

(5) 在同一系统电缆线路和经电缆线路出线的架空线路中,它们单相接地电容电流大小存在差别,零序电流保护定值应充分考虑。

(6) 利用三个电流互感器构成的零序电流滤过器,必须克服其不平衡电流的影响。当前位置:首页 >> 期刊杂志 >> 文章

已阅读 100 次我要打印 IE收藏

我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。为帮助运行人员正确判断和分析大

电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。

说明,此案例分析以FHS变电站为主。

本案例分析的知识点:

(1)大电流接地系统与小电流接地系统的概念。

(2)单相瞬时性接地故障的判断与分析。

(3)单相瞬时性接地故障的处理方法。

(4)保护动作信号分析。

(5)单相重合闸分析。

(6)单相重合闸动作时限选择分析。

(7)录波图信息分析。

(8)微机打印报告信息分析。

一、大电流接地系统、小电流接地系统的概念

在我国,电力系统中性点接地方式有三种:

(1)中性点直接接地方式。

(2)中性点经消弧线圈接地方式。

(3)中性点不接地方式。

110kV及以上电网的中性点均采用中性点直接接地方式。

中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X与正序电抗X的 01

比值X/X。我国规定:凡是X/X?4,5的系统属于大接地电流系统,X/X,4,5的系统则 010101

属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

图2-1 FT线路及保护配置

三、事故基本情况

2001年5月24日16时42分,FHS变电站FT一回线C相瞬时性故障,C相重合闸重合成功,负荷在正常范围内,系统无其他异常,FT一回线(FT为双回线)线路全长66.76km

四、微机监控系统主要信号

FT一回SF-500收发信机动作

FT一回SF-600收发信机动作

FT一回WXH-11X保护动作

FT一回LEP-902A保护动作

FT一回C相断路器跳闸

FT一回WXH-11X重合闸动作

FT一回LEP-902A重合闸动作

FT一回WXH-11X保护呼唤值班员

FT一回LEP-902A保护呼唤值班员

3号录波器动作

5号录波器动作

1号主变压器中性点过流保护掉牌

2号主变压器中性点过流保护掉牌

220kV母线电压低

本站220kV其他相关线路高频收发信机动作

五、继电保护屏保护信号

WXH-11X型微机保护:跳C、重合闸、高频收发信、呼唤灯亮。

LFP-902A型微机保护:TC、CH、高频收发信灯亮,液晶屏显示:0++、Z++。

六、微机打印报告信号

(1) WXH-11X保护:WXH-11X保护动作1次,保护动作报告如表2-1所示。表2-1 WXH-11保护动作报告

CPU号保护元件时间含义

GBIOTX 11ms 高频零序方向停信 CPU1 GBIOCK 19ms 高频零序方向出口CPU2 1ZKJCK 27ms 距离?段出口

T1QDCH 55ms 单跳起动重合闸

CPU4 CHCK 512ms 重合闸出口

CJ=33.5km 测距

(2)LFP-902A保护:LFP-902A保护动作1次,保护动作报告如表2-2所示。表2-2 LFP-902A保护动作报告

CPU号保护元件时间含义

Z++ 27ms 高频距离

CPU1 0++ 27ms 高频零序方向元件

C 27ms C相跳闸

CPU2 CH 890 ms 重合闸时间

CJ=33.6km 测距

最大电流(Imax):2.63×1200(A)

零序电流(I):2.28×1200(A) 0

七、两侧保护动作情况分析

1(两侧保护的配置情况

FT线两侧的保护配置如图2-1所示。

(1) 第一套保护。WXH-11X型微机线路保护包括由4个CPU构成,其中CPU1为高频保护包

括高闭距离、高闭零序;CPU2距离保护,包括三段式相间距离和三段式接地距离;CPU3零序

保护,包括不灵敏的?段,灵敏的?、?、?、?段及缩短了?t的零序?、?、?、?段及不灵敏的?段;CPU4为重合闸。 (2)第二套保护。LFP-902A型线路成套快速保护由2个CPU组成。其中CPU1为主保护,由以超范围整定的复合式距离继电器和零序方向元件通过

配合构成全线路快速跳闸保护,由?段工频变化量距离继电器构成快速独立跳闸段,由二个延时零序方向过流段构成接地后备段保护;CPU2为三段式相间和接地距离保护,以及重合闸逻辑;CPU3为管理CPU;配SF-600集成电路收发信机,LFP-923C型失灵启动及辅助保护装置,CZX-12A型操作继电器装置。

2(重合闸投入方式

WXH-11X型微机线路保护重合闸(CPU4)和LFP-902A型线路成套快速保护装置重合闸(CPU2)均为独立启动,独立出口。 WXH-11X型微机线路保护重合闸把手在单重位置,出口连接片在停用位置。

LFP-902A重合闸把手在单重位置,出口连接片在加用位置(双微机保护重合闸一般只投一套)。

3(单相重合闸的动作时间选择原则

(1)要大于故障点灭弧时间及周围去游离的时间。在断路器跳闸后,要使故障点的电弧熄灭并使周围介质恢复绝缘强度,是需要一定时间的,必须在这个时间以后进行合闸才有可能成功。

(2)要大于断路器及其机构复归状态准备好再次动作时间。在断路器跳闸以后,其触头周围绝缘强度以及灭弧室灭弧介质的恢复是需要一定的时间。同时其操作机构恢复原状准备好再次动作也需要一定的时间。

(3)无论是单侧电源还是双侧电源,均应考虑两侧选相元件与继电保护以不同时限切除故障的可能性。

(4)考虑线路潜供电流所产生的影响。

4(保护通道

220kV线路采用闭锁式通道,如图2-2所示,闭锁式保护在区内故障时,两侧方向元件判断为正方向,因此保护均收不到对侧的闭锁信号。

5(对DZ的分析

由于故障点在线路中间,不在DZ(突变量距离元件)范围内,并且两侧的保护动作相同,所以表2-1、2-2所示的保护动作属正确。

八、事故分析(F侧)

1(大电流接地系统单相接地短路特点

(1)单相接地短路故障点故障相电流的正序、负序和零序分量大小相等方向相同,因此

故障相电流与大小相等,方向相同。

(2)非故障相短路电流为零。

(3)单相接地短路故障相电压为零。

(4)短路点两非故障相电压幅值相等,相位角为,它的大小取决于之比。

2(保护动作情况分析

故障测距反映的故障点位置如图2-2所示,为线路中间,距F站66.7km。

图2-2 FT线路故障点

第一套保护WXH-11X动作逻辑,线路发生故障后,线路两侧保护启动元件动作,启动高频发信机发信,同时两侧高频零序方向元件均判断为正方向(区内)故障而停信,高频零序保护出口保护速动出口跳闸;接地距离保护因故障计算程序较零序慢在故障发生后19 ms动作出口。单相故障在保护出口继电器动作出口的同时启动重合闸,在515 ms时重合闸出口。

本套保护在故障时动作时序和动作逻辑正确。

第二套保护LFP-902A动作逻辑,线路发生后,启动元件动作启动发信和方向元件动作停信的保护信息在保护信号中无反映属保护信号设计的没有考虑,但可以从下面的该装置的录

波图中看到,CPU1所属快速跳闸保护几乎在27ms同时动作出口,同时给出保护出口“,相跳

闸”信号; 890ms重合闸启动,从下述的录波图分析中还得到C相断路器在

85ms完全跳开,跳闸后,保护再次收、发信,闭锁两侧保护,1010ms重合成功。

3(单相瞬时性故障与永久性故障的判别

大电流接地系统发生单相接地故障时,若线路故障为瞬时性故障,正常情况,保护或位置不对应启动重合闸重后,重合闸会合闸成功。若为永久性故障,重合闸重合将重合于故障而发生第二次跳闸,且不会再次重合。

4(故障录波图分析

故障录波图如图2-3所示。

设备名称:AA5

文件名称:B50 G4213.000

故障时间:2001-05-24 16:42:21.410

时标单位:毫秒

启动前2个周波后3个周波有效值

通道类型通道名称 1 2 3 4 5 C1 电流 FQ二回 AI 0.1308 0.1298 0.1339 0.1395 0.1425 C2 电流 FQ二回 BI 0.1339 0.1333 0.1144 0.1101 0.1110 C3 电流 FQ二回 CI 0.1321 0.1256 0.0482 0.0808 0.0758 C4 电流 FQ二回 NI 0.0088 0.0109 0.0797 0.1023 0.1021 C5 电流 FH一回 AI 0.0736 0.0754

0.0859 0.0995 0.0971 C6 电流 FH一回 BI 0.0738 0.0803 0.1830 0.2145

0.2185 C7 电流 FH一回 CI 0.0781 0.0987 0.3911 0.4820 0.4808 C8 电流 FH 一回 NI 0.0087 0.0101 0.1273 0.1624 0.1621 C9 电流 FT一回 AI 0.1598

0.1627 0.1682 0.1734 0.1819 C10 电流 FT一回 BI 0.1619 0.1633 0.2734

0.3175 0.3267 C11 电流 FT一回 CI 0.1684 0.3162 2.5205 3.1869 3.171 C12 电流 FT一回 NI 0.00644 0.1593 2.1797 2.7902 2.7679

图2-3 FT线C相接地故障录波图

(1)从故障电流可看出,故障相为C相。

(2)故障时与相位相反。

(3)切除故障时间约为64ms(保护动作时间+断路器固有动作时间+跳闸回路继电器固有动作时间)。 (4)1010ms C相重合闸重合成功(重合闸整定时间0.8s)。

(5)TA 变比1200/1

(6)故障电流折算值(有效值):; (7)故障录波器测量值与微机保护打印报告存

在误差。

5(LFP-902A微机保护报告分析

LFP-902A微机保护报告如图2-4所示。

图2-4 LFP-902A微机保护报告

(1)故障初,保护有发信、收信波形(小于17ms),停信后,25ms C相接到跳闸命令,85msC相完全跳开。C相断路器跳闸后,保护再次收、发信,闭锁两侧保护,约890ms重合闸启动,1010ms重合成功。

(2)故障时故障相电流与大小相等,方向相同,故障电流波形持续时间

85ms。

(3)在故障时故障相C相电压低于非故障相电压。

(4)由于是非对称故障,报告中有3。

(5)报告记录故障前60ms的电流、电压波形。

特别说明:

对电流方向的规定众所周知,即以母线为参考,流入母线为正方向,流出母线为反方向。单相接地故障时故障相电流是流出母线的为正方向,零序电流是由故障点经大地和电源侧中

性点(一般为中性点接地的变压器中性点)流入母线的为反方向。

故障录波器TA回路的接线一般没有将TA的IN线反接,故测量到的波形其相

位反映的是故障电流的实际相位。对于保护装置由于要正确判断故障方向,必须将TA回路的IN线反接,所以其记录的波形故障相电流和零序电流是同相位。

6(故障处理

大电流接地系统单相接地故障的处理在事故处理中比较简单,其处理步骤如下:

(1)检查并记录监控系统(综合自动化站)或主控制室(常规站)光字牌信号。

(2)检查并记录保护屏信号。

(3)检查并记录本站自动装置的动作情况。

(4)检查微机监控系统(综合自动化站)或主控制室(常规站)断路器跳闸相别与

保护动作相别及是否一致。 (5)打印故障录波器报告并进行初步分析。

(6)打印微机保护报告并进行初步分析。

(7)将故障情况及时向调度汇报,汇报内容包括:时间、站名、故障基本情况、

断路器跳闸情况、重合闸动作情况、保护动作情况、跳闸前、后负荷情况等。

(8)整理跳闸报告,跳闸报告的主要内容有:

事故现象:包括发生事故的时间、中央信号、当时的负荷情况等。断路器跳闸

情况。

保护及自动装置的动作情况。

事件打印情况。

现场检查情况。

事故的初步分析。

存在的问题。

事故的处理过程:包括操作、安全措施等。

打印故障录波图、事件打印、微机保护报告等。

将上述资料打印成书面资料(包括封页、目录、内容),上报到有关调度及主管部门。

作者简介: 张全元:女,湖北新洲人,湖北省超高压输变电局高级工程师。

以下没有用的

小电流接地系统原因与分析

小电流接地系统接地的原因分析及对策 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo 反映的是零序电压,其计算公式为: Uo=(ùa+ùb+ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

小电阻小电流接地糸统

小电阻小电流接地糸统的区别 1、应用不同场合: 电力接地系统按接地处理方式可分为大电流接地系统和小电流接地系统,大电流接地系统包括直接接地、电抗接地、和低阻接地,小电流接地系统包括不接地、经高阻接地、经消弧线圈接地、和经配电变压器接地。 在以架空线为主体的配电网中,外力或雷电造成的瞬时单相接地故障占很大比例,因此,在这类配电网中采用中性点经消弧线圈接地方式的优越性是明显的;在城市中心区,配电网以电缆线路为主,为解决经消弧线圈接地方式出现的诸多问题,配电系统中性点采用小电阻接地方式。 一般对于郊区变电站10kV侧带出线的变电站采用的是消弧线圈接地方式,对于核心城区变电站采用的是小电阻的接地方式,小电阻接地方式在某些方面弥补了消弧线圈运行方式带来的不足。 我国3~66kV中低压配电网大多数采用中性点非有效接地运行方式,接地系统的单相接地故障是常见的故障形式,占全网故障的80%以上。 2、运行的各自优缺点 随着我国城市电网的发展,城市居民的增多,10kV出线中电缆所占的比重越来越大,中性点经消弧线圈接地运行方式的缺点日渐暴露,主要原因为: (1)消弧线圈各分接头的标称电流和实际电流误差较大,有些甚

至可达15%,运行中就发生过由于实际电流值与铭牌数据差别而导致谐振的现象。 (2)计算电容电流和实际电容电流误差较大,对于电缆和架空线混合的出线,单位长度的电容电流也不尽相同,消弧线圈补偿的正确性难以保证。 (3)出线电缆的单相接地故障多为永久性故障。由于中性点经消弧线圈接地的系统为小电流接地系统,发生单相接地永久性故障后,在接地故障点的检出过程中,这对城市中人口密集的现状而言,事故的后果会非常严重。 (4)中性点经消弧线圈接地系统仅能降低弧光接地过电压发生的概率,并不能降低弧光接地过电压的幅值,将使系统设备长时间承受过电压作用,对设备绝缘造成威胁。 然而在中性点接入消弧线圈接地后,发生单相接地时,非故障线路电容电流的大小和方向与中性点不接地系统是一样的。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压的大小和相位不变(依然对称),不影响对用户的连续供电,所以不需要立即切除故障,系统可运行1~2小时,这也是小电流接地系统的最大优点。若发生单相接地故障时电网长期运行,因非故障的两相对地电压升高,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。还可能使电压互感器铁心严重饱和,导致电压互感器严重过负荷而烧毁。同时弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

小电流接地系统

什么是小电流接地系统?什么又是大电流接地系统? 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。所以瓦斯和差动一起构成变压器的主保护。 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,

大电流接地系统与小电流接地系统故障判断分析

大电流接地系统与小电流接地系统故障判断分析大电流接地系统与小电流接地系统故障判断、分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV 线路单相瞬时接地故障,并对相关的知识点进行分析。说明,此案例分析以FHS 变电站为主。本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。(2)单相瞬时性接地故障的判断与分析。(3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。(5)单相重合闸分析。(6)单相重合闸动作时限选择分析。(7)录波图信息分析。(8)微机打印报告信息分析。一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。(2)中性点经消弧线圈接地方式。(3)中性点不接地方式。 110kV 及以上电网的中性点均采用中性点直接接地方式。中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回 路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X 0与正序电抗X 1的比值X 0/X 1。我国规定:凡是X 0/X 1≤4~5的系统属于大接地电流系统,X 0/X 1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图1所示,两变电站之间为双回线,线路长度为66.76km 。 FT 线路及保护配置三、事故基本情况 2001年5月24日16时42分,FHS 变电站FT 一回线C 相瞬时性故障,C 相重合闸重合成功,负荷在正常范围内,系统无其他异常,FT 一回线(FT为双回线) 线路全长66.76km 四、微机监控系统主要信号 FT 一回SF-500收发信机动作 FT 一回SF-600收发信机动作 FT 一回WXH-11X 保护动作 FT 一回LEP-902A 保护动作 FT 一回C 相断路器跳闸 FT 一回WXH-11X 重合闸动作 FT 一回LEP-902A 重合闸动作 FT 一回WXH-11X 保护呼唤值班员 FT 一回LEP-902A 保护呼唤值班员3号录波器动作 5号录波器动作 1号主变压器中性点过流保护掉牌 2号主变压器中性点过流保护掉牌 220kV 母线电压低本站220kV 其他相关线路高频收发信机动作五、继电保护屏保护信号 WXH-11X 型微机保护:跳C 、重合闸、高频收发信、呼唤灯亮。 LFP-902A 型微机保护:TC 、

小电流接地系统单相接地故障检测技术(新编版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 小电流接地系统单相接地故障 检测技术(新编版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

小电流接地系统单相接地故障检测技术 (新编版) 1引言 电力系统的接地处理方式主要有直接接地,电抗接地,低阻接地,高阻接地,谐振接地(又称消弧线圈接地)和不接地。前三种称为大电流接地系统,后三种称为小电流接地系统。我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统,该系统最大的优点是发生单相接地故障时,并不破坏系统电压的对称性,且故障电流值较小,不影响对用户的连续供电,系统可运行1~2h。但长期运行,由于非故障的两相对地电压升高1.732倍,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。同时,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。因此,当发

生单相接地故障时,必须及时找到故障线路予以切除。 2目前的检测方法及存在的问题 (1)绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。接成开口三角形的二次线圈供给绝缘监察继电器。系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。 这是以前常规变电所使用最多、应用最广泛的绝缘监察装置,其优点是投资小,接线简单、操作及维护方便。其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电,不能满足日益发展的城乡经济对供电可靠性的要求。基于上述原因,我国从50年代末就开始研制小电流接地自动选线装置,提出了多种选线方法,并开发出了相应

小电流接地系统

小电流接地系统的概述 在中性点非直接接地电网中通常有以下三种方式,即中性点不接地方式;经消弧线圈接地方式;经电阻接地方式,此类系统在发生单相接地时,由于故障点的电流很小,而且三相之间的线电压基本保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这是采用中性点非直接接地运行的主要优点,但是,在单相接地后,其他两相的对地电压要升高3倍,对设备的绝缘造成了威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起全系统过电压。为了防止故障的进一步扩大,应及时发出信号,以便运行人员采取措施予以消除。 因此,在单相接地时,一般只要求选择性地发出信号,而不必跳闸。但当单相接地对人身和设备的安全有危险时,则应动作于跳闸。 另外一种情况是,当中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为20A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流来补偿接地故障时的容性电流,就可以减少流经故障点的电流,以致自动熄弧,保证继续供电。 该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找故障点比较难。消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压,给继电保护的功能实现增加了困难。 所以当电缆线路较长、系统电容电流较大时,也可以采用经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 三种接地方法的特点 1 中性点不接地系统的特点: ①在发生单相接地时,全系统都将出现零序电压。 ②在非故障相的元件上有零序电流,其数值等于本身的对地电容电流,电容性无功功率的方向为由母线流向出线,即零序电流超前零序电压90°。 ③在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容性无功功率的实际方向为由线路流向母线,即零序电压超前零序电流90°。 2 中性点经消弧线圈接地系统的特点: ①当采用完全补偿方式时,流经故障线路和非故障线路的零序电流都是本身的电容电

小电流接地系统中发生单相接地

小电流接地系统中发生单相接地,虽然对供电不受影响,但因非故障相对地电压升高到线电压,可能引起对地绝缘击穿而造成相间短路。故发生单相接地后,不答应长期带接地运行,为此必须装设专用仪表来监视对地绝缘状况。我国目前在中性点不接地系统中,广泛采用检测接地故障的方法之一是利用母线绝缘监察装置发现接地故障。当系统发生单相接地故障时,接在母线上的电压互感器开口三角接线两端的监察继电器动作,控制室内发出接地信号。运行人员利用重合闸装置将线路依次断开,当断开故障线路时,接地故障信号瞬间消失。而假如电压互感器接线错误,如开口三角两端的端子接反、开口三角绕组中有一相或两相绕组的极性接反,就会造成三相电压表指示错误,无法判定故障相别,或者在电网没有接地的情况下误发接地信号,这无疑会给运行人员分析、判定和处理接地故障带来麻烦。本文就电压互感器的两种常见接线错误进行分析。 1交流绝缘监视装置接线正确的情况 母线电压互感器由三台具有两组二次绕组的单相电压互感器组成,或是一台具有两组二次绕组的三相五柱式电压互感器。电压互感器原边中性点接地,以10kV电压等级的电网为例,正常时每相绕组加相对地电压,故副边星形每相绕组电压是100V,开口三角形每相绕组电压是100/31/2V。绝缘监视电压表指示正常的相对地电压,绝缘监视继电器处于不动作状态。当一次系统中A相发生接地时,原边A相绕组电压降到零,其他两相绕组的电压升高到线电压。副边星形绕组的A相绕组电压降到零,其他两相绕组电压升高到100V。三个电压表中,A相电压指示零,另两相指示线电压,由此得知一次系统A相接地。副边开口三角形的A相绕组电压降到零,其他两相绕组电压升高到100/31/2V,开口三角形两端电压升高到100V。加在电压继电器上的电压升高到100V,继电器动作发出信号。 2电压互感器开口三角两端的端子接反 三相五柱式电压互感器,二次绕组星形接线的中性点有单独的引出端子,设为N端,该端子接地。二次绕组开口三角接线的两个端子中有一个接地,设接地端为N端,不接地端为L端。通常将二次绕组星形接线的中性点与二次绕组开口三角接线的N端一起引出并接地,然后通过二次电缆将L、N、a、b、c5条线送至中心控制室。假如在绝缘监视装置接线时,误将L、N端接反,工作情况会怎样呢? 在正常运行时,因一次系统三相电压对称,无零序电压,忽略不平衡电压,开口三角形两端电压为零,继电器不动作,三个电压表指示正常,因此这种错误并不能被发现。

小电流接地系统单相故障matlab仿真..

Xx学院课程设计说明书设计题目:小电流接地系统单相故障matlab仿真 系(部):机电工程系 专业:自动化 班级: 姓名: x x x 学号: 20 12 年 12 月 12 日

目录 第一章matlab简介 (3) 第二章小电流接地系统单相故障matlab仿真 (4) 2.1小电流接地系统单相故障特点简介 (4) 2.2 小电流接地系统的仿真模型构建 (5) 2.3 仿真结果及分析 (11) 第三章心得与体会 (16) 参考文献 (16)

一Matlab简介 Matlab是由英文单词matri和laboratory的前3个字母组成。目前matlab已成为国际认可的最优秀的科技应用软件之一。在大学里,他是用于初等和高等数学、自然科学和工程学的标准数学工具;在工业界,他是一个高效的研究、开发和分析的工具。随着科技的发展,许多优秀的工程师不断的对matlab进行了完善,使其从一个简单的矩阵分析软件逐渐发展成为一个具有极高通用性,并带有众多实用工具的运算操作平台。 Simulink是matlab提供的实现动态系统建模和仿真的一个软件包,是基于框图的仿真平台。Simulink挂接在matlab环境上,以matlab的强大计算功能为基础,利用直观的模块框图进行仿真和计算。Simulink提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大的方便。在simulink平台上拖拽和连接典型模块就可以绘制仿真对象的模块框图,并对模型进行仿真。在simulink平台上,仿真模型的可读性很强,这就避免了在matlab窗口使用matlab命令和函数仿真时,需要熟悉大量的M函数的麻烦,对广大工程技术人员来说,这无疑就是一个福音。随着matlab的不断升级,simulink的版本也在不断的升级,从1993年的matlab4.0/simulink1.0版到2001年的matlab6.1/simulink4.1版、2002年的matlab6.5/simulink5.0版,现在的最常用的版本就是matlab7.0/simulink6.0 Simulink最初是为仿真控制系统而建立的工具箱,在使用中容易编程、容易扩展,并且可以解决在使用matlab过程中遇到的非线性、变系数等问题。它能够进行系统和离散系统的仿真,也能够进行线性和非线性系统仿真,并且支持多种采样频率系统的仿真,使不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。因此,不同的科学领域根据自己的仿真要求,以matlab为基础,开发了大量的专用仿真程序,并把这些程序以模块的形式放入simulink中,形成模块库。Simulink的模块库实际上就是用matlab基本语言编写的子程序集。现在simulink模块库有3级树状的子目录,在一级目录下包含了simulink 最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱、通信工系统工具箱等也并行列入模块库的一级子目录,逐级打开模块库浏览器的目录,就可以看到这些模块。 Simulink是基于matlab的图形化仿真设计环境。确切的说,它是matlab提供的对动态系统进行建模、仿真和分析的一个软件包。它支持线性和非线性系统、连续时间系统、离散时间系统、连续和离散混合系统,而且系统可以是多进程的。它使用图形化的系统模块对动态系统进行描述,并非在此基础上采用matlab计算引擎对动态系统在时域内进行求解。Matlab计算引擎主要对系统微分方程和差分方程求解。Simulin和matlab是高度集成在一起的,因此,它们之间可以进行灵活的交互操作。 Simulink提供了友好的图形用户界面,模型由模块组成的框图来表示,用户通过简单的鼠标操作就能够完成建模。Simulink的模块库为用户提供了包括基本功能模块和扩展模块在

小电流接地系统接地方式的比较分析

小电流接地系统接地方式的比较分析 发表时间:2017-04-06T15:49:03.667Z 来源:《电力设备》2017年第2期作者:蒋珊珊 [导读] 摘要:文章简要分析了目前小电流接地系统几种接地方式的优缺点,在综合考虑供电可靠性和人身安全等因素后,得出采用消弧线圈并联小电阻的接地方式可以较快速准确找出接地故障相,以减少调度运行人员的操作压力、提高电网的供电可靠性。 (广东电网揭阳揭东供电局广东揭东 515500) 摘要:文章简要分析了目前小电流接地系统几种接地方式的优缺点,在综合考虑供电可靠性和人身安全等因素后,得出采用消弧线圈并联小电阻的接地方式可以较快速准确找出接地故障相,以减少调度运行人员的操作压力、提高电网的供电可靠性。 关键词:小电流接地系统,不接地,经消弧线圈接地,经小电阻接地,消弧线圈并联小电阻接地 引言 在电力系统中,根据发生单相接地故障(约占65%)时的接地故障电流的大小,将中性点接地方式分为两类:小电流接地系统,包括中性点不接地和经消弧线圈接地;大电流接地系统,包括直接接地和经电阻接地。我公司目前的10kV系统中性点接地方式,主要包括:中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地以及经消弧线圈并联小电阻接地方式。 1、中性点不接地方式 中性点不接地方式结构简单、投资少,发生单相接地故障时,故障相电压降为零,非故障相电压升高为原来的√3倍,而线电压保持不变,可继续运行1~2小时, 优点:发生单相接地故障时,由于线电压的幅值相位均为发生改变,故可以允许在单相接地情况下暂时继续运行1~2小时;当接地故障电流小于10A时,电弧自行熄灭,适用于纯架空线路且电容电流小于10A的配网系统。 缺点:系统单相接地后,非故障相电压升高为线电压,由于过电压持续时间比较长,对设备的绝缘水平要求较高,设备的耐压水平必须按照线电压选择。 2、中性点经消弧线圈接地 中性点经消弧线圈接地发生单相接地故障时,消弧线圈补偿电网中容性电流,在设计安装时采用过补偿方式,补偿后电网中仅有很少的感性电流,使电弧不能继续维持而自动熄灭,可以起到抑制电弧重燃的作用。 优点:中性点经消弧线圈接地发生单相接地故障时,消弧线圈产生的感性电流补偿了电网产生的容性电流,可以使故障点的电流接近于零,允许带故障运行2小时,提高了供电可靠性。运行人员可以及时告知重要用户做好停电准备,调度运行人员有相对充裕的时间查找故障。 缺点:由于消弧线圈安装时是按照过补偿原理设计的,但当运行方式发生改变时可能会因为补偿不当而引起谐振过电压,同时也不能消除弧光接地过电压,单相接地过渡阶段的高频振荡电流电弧效应往往会引起相间短路;对系统设备及线路的绝缘水平要求较高;单相接地故障点附近如有人员接触或经过,易发生人身伤亡的风险;经过消弧线圈补偿单相接地故障电流后,由于电流过小,小电流接地选线装置的选线准确率会更低。 3、中性点经小电阻接地 中性点经小电阻接地方式中的电阻值一般在20Ω以下,单相接地故障电流限制在400A~1000A。当发生单相接地故障时,依靠线路的零序电流保护将单相接地故障迅速切除,同时非故障相电压也不会升高的原来的√3倍。 优点:可以限制过电压水平。单相接地故障时,非故障相电压升高时间短,可以降低过电压值,对设备绝缘等级要求较低。 可以快速检出并切除故障线路,减小接地时间,防止事故扩大。使一些瞬间故障不至于扩大到绝缘损坏事故,特别是可以降低同沟敷设的紧凑布置的电缆发生故障时对临近电缆的影响。 发生人身高压触电时,可以迅速切掉电源,保护触电者人身安全。 缺点:目前配电网多以架空线供电为主,如果是瞬时单相接地故障也会被瞬间切除,影响供电可靠性,但是若线路投入重合闸,可以降低此种影响。 接地点的故障电流大,若零序保护动作不及时或发生拒动,将使接地点及附近的绝缘受到更大的危害,发展成相间故障。 因为零序保护有一定的整定值,当发生高阻接地时,若达不到零序保护的动作值,保护将不动作,接地故障就会发展成相间故障,对人身安全无法保障。 4、中性点经消弧线圈并联小电阻接地 中性点经消弧线圈并联小电阻接地方式是中性点经消弧线圈接地方式的升级,目前南网已有部分10kV系统采用该种接地方式,我局在2016年也有两座变电站(110kV郭城站、110kV牛岭站)陆续改造造成此种接地方式。该接地方式兼具小电阻接地和消弧线圈接地的优点,比单纯的小电阻接地降低了跳闸率,比单纯的消弧线圈接地提高了选线正确率并可以实现跳闸。 对于中性点经消弧线圈并联小电阻接地方式,当有接地故障发生后,先经过消弧线圈短时补偿,若在“小电阻投入延时”时间内接地消失,则系统恢复正常,若在“小电阻投入延时”时间内接地故障没有消失,则经过该延时,立即投入小电阻,由线路的零序保护切除故障该故障线路。 优点:提高了供电可靠性。既保证了对永久性接地故障的迅速准确隔离,避免系统工频过电压长时间存在导致事故扩大,又能对瞬时性接地故障进行精确地补偿使其自行消失,无需跳闸。 提高了故障的自愈率。对于永久性故障,投入小电阻后产生强电流,使保护装置可以准确采集信号,做出正确的逻辑判断,在故障发生时就能够快速切除故障。 提高选线正确率。传统的消弧线圈接地模式选线准确率低是已经被事实证明了的,消弧线圈并联小电阻,对于永久性故障,投入小电阻后产生强电流,可以使保护装置准确动作跳闸,提高选线正确率。 5、结语 经研究对比各接地方式的优缺点,综合考虑供电可靠性和人身安全等因素后,可以得出采用消弧线圈并联小电阻的接地方式可以较快速准确找出接地故障相,以减少调度运行人员的操作压力、提高电网的供电可靠性。虽然消弧线圈并小电阻接地方式在南网还未普遍采

小电流接地系统接地电流计算与保护整定

小电流接地系统接地电流计算与保护整定 1 中性点不接地系统接地电流计算 发生单相金属性接地时,接地相对地电压降为零,非接地两相对地电压升高3倍,三相之间电压保持不变,仍然为线电压。流过故障点的电流是线路对地电容引起的电容电流,与相电压、频率及相对地间的电容有关,一般数值不大。单相接地电容电流的估算方法如下: 1.1 空线路单相接地电容电流Ic Ic=1.1(2.7~3.3) UeL10ˉ 式中:Ue 线路额定线电压(kV);L 线路长度(km); 1.1 采用水泥杆或铁塔而导致电容电流的增值系数。 无避雷线线路,系数取2.7;有避雷线线路,系数取3.3 对于6kV线路,约为0.0179A/km;对于10kV线路,约为0.0313A/km;对于35kV线路,约为0.1A/km。需要指出: (1)双回线路的电容电流为单回线路的1.4倍(6~10kV线路)。 (2)实测表明,夏季电容电流比冬季增值约10 %。 (3)由变电所中电力设备所引起的电容电流值可按表1-27进行估算。 1.2 电缆线路单相接地电容电流Ic 油浸纸电缆线路在同样的电压下,每千米的电容电流约为架空线路的25倍(三芯电缆)和50倍(单芯电缆)。 也可按以下公式估算:

6 kV电缆线路Ic=〔(95+3.1S)(2200+6S)〕Ue A/km 10 kV电缆线路Ic=〔(95+1.2S)(2200+0.23S)〕Ue A/km 式中:Ic 电容电流(A/km);S 电缆芯线的标称截面面积(mm); Ue 线路额定线电压(kV)。 对于交联聚乙烯电缆,每千米对地的电容电流约为油浸纸电缆的1.2倍。油浸纸电缆和交联聚乙烯电缆的电容电流,见表1-28至表1-30 1.3 架空线和电缆混合线路单相接地电容电流Ic 混合线单相接地电容电流可采用以下经验公式估算: Ic=Ue(Lk+35lc)350 式中:Ic:电容器电流(A) Uc:线路额定线电压(kV) Lk:同一电压Ue的具有电的联系的架空线路总长度(km) Lc:同一电压Ue的具有电的联系的电缆线路总长度(km) 表1-28 6-35KV油浸纸电缆接地电容电流计算值 2 小接地电流系统单相接地保护及计算 2.1 小电流接地系统的电容电流计算。 6~35kV供电网络为电源中性点不接地系统,属于小接地电流系统。这种系统在正常运行时,三相对地电压是平衡的,三相对地电容电流也是平衡的。当系统发生单相接地时,故障相对地电压为零,而其他两相对地电压升高到相电压的3倍。这时,这两相的对地电容电流也相应增加

小电流接地系统单相接地故障地仿真

设计题目:小电流接地系统单相故障matlab仿真 中文摘要:使用matlab和 simulink模拟小电流接地系统单相接地故障。 关键字:matlab, simulink,小电流系统,单相接地故障。小电流接地系统单相故障 电网中性点接地系统的分类方法有很多种,其中最常用的是按照接地短路时接地电流的大小分为大电流接地系统和小电流接地系统。电网中性点采用哪种接地方式主要取决于供电可靠性(是否允许带一相接地时继续运行)和限制过电压两个因素。我国规定110kv以上电压等级的系统采用中性点直接接地方式,35kv及以下的配电系统采用小电流接地方式(中性点不接地或经消弧线圈接地)。 在小电流接地系统中发生单相接地时,由于故障点的电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,因此,在一般情况下都允许系统在继续运行1~2小时,而不必立即跳闸,这也是采用小电流接地系统运行的主要优点。但是在单相接地以后,其他两相的对地电压要升高根号三倍,为了防止故障进一步扩大成两点或多点接地短路,就应及时发出信号,以便运行人员采取措施予以消除。 小电流接地系统单相故障特点简介 对于如图1-1所示的中性点不接地系统,单相接地故障发生后,由于中性点N不接地,所 以没有形成短路电流通路,故障相都将流过正常负 荷电流,线电压任然保持对称,因此可以短时不予 以切除。这段时间可以用于查明故障原因并排除故 障,或者进行倒负荷操作,因此该方式对于用户的 供电可靠性高,但是接地相电压将降低,非接地相 电压将升高至线电压,对电气设备绝缘造成威胁。单相接地故障发生后系统不能长期运行。事实上,对于中性点不接地系统,由于线路分布电容(电容数值不大,而容抗很大)的存在,接地故障点和导线对地电容还是能够形成电流通路的,从而有数值不大的电容性电流在导线和大地之间流通。一般情况下,这个容性电流在接地故障点将以电弧形式存在,电弧产生的高温会损毁设备,甚至引起附近建筑物燃烧起火,不稳定的电弧燃烧还会引起弧光过电压,造成非接地相绝缘击穿进而发展成为相间故障,导致断路器动作跳闸,中断对用户的供电。 中性点不接地系统发生单相接地时的故障特点如下 1)在发生单相接地时,全系统都将出现零序电压。 2)在非故障的元件上有零序电流,其数值等于本身的对地电容电流,电容电流的实际方向为由母线流向线路。 3)在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容电流的实际方向为由线路流向母线。

小电流接地系统的接地选线(一)

小电流接地系统的接地选线(一) 35kV及以下系统通常采用中性点不接地或经消弧线圈接地系统,该系统正常运行时,三相对地电压等于相电压。发生单相接地时,接地相对地电压小于相电压,其它两相对地电压大于相电压。接地点流过较小的电容电流,因此称此系统为小电流接地系统。小电流接地系统最大的优点是发生单相接地故障时,并不破坏系统电压的对称性,且故障电流值较小,不影响对用户的连续供电,系统可运行1~2h。但长期运行,由于非故障的两相对地电压升高倍,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。同时,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。因此,当发生单相接地故障时,必须及时找到故障线路予以切除。小电流接地系统发生单相接地故障时会出现零序电流及零序电压,通过检测不同的量就构成了技术特点不同的小电流接地系统绝缘监察及选线装置。目前,小电流接地信号及选线装置的设计判据主要有以下几种:1反映零序电压的大小;2反映工频电容电流的大小、方向;3反映零序电流有功分量;4反映接地时5次谐波分量;5反映接地故障电流暂态分量首半波;6信号注入法;7群体比幅比相法等,本文对锡林郭勒地区电网的小电流接地系统绝缘监察及选线装置谈些认识。 1小电流接地系统发生单相金属性接地时的特点 ①电网各处故障相对地电压均为零,中性点对地电压值为相电压,未

故障相对地电压升高到相电压的倍,即等于线电压;电网中会出现零序电压,零序电压大小等于电网正常工作时的相电压。②故障线路与非故障线路出现零序电流,故障线路零序电流3I大小等于所有非接地线路零序电流之和,电容性无功功率的方向为线路流向母线;非故障线路零序电流大小等于本线路对地电容电流,其电容性无功功率的方向为母线流向线路。③非故障线路的零序电流超前零序电压90°;故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流方向相反,相位相差180°。④接地故障处的电流大小等于所有线路(包括故障线路和非故障线路)的接地电容电流的总和,并超前零序电压90°。 2利用电压互感器构成的绝缘监察装置 锡林浩特一电厂、二电厂及锡林郭勒地区电网早期投运的35kV变电站、110kV变电站,均采用了这种绝缘监察装置。该装置利用接于公用母线的三相五柱式电压互感器,其一次线圈及主二次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供电给绝缘监察用的电压表、保护及测量仪表;接成开口三角形的二次线圈供电给绝缘监察继电器。正常情况下,系统三相电压对称,三相电压之和为零,二次每相绕组电压100V,开口三角每相绕组电压是100/3V,两端电压接近于零,电压继电器不动作。当发生单相接地故障时,一次故障相电压降为0,非故障相电压升高到线电压。二次故障相电压降为0其他两相绕组升高到100V,三个电压表中故障相电压表指示为0,另两相

小电流接地

引言 目前我国10 kV配电网大多采用中性点不接地方式,部分采用谐振式接地。实践证明,在电网规模及单相接地电容电流均较小的情况下,这种不接地方式的优点是发生单相接地故障后,允许继续运行2 h,不致于引起用户断电,提高了供电可靠性。但随着配电网的扩大,电缆和架空线路的增多,这种方式显示出弊端。 (1) 当配电网发生单相接地故障后,接地电弧不能自行熄灭必然发展成相间短路,造成用户停电和设备损坏事故。 (2) 当发生断续性弧光接地时,会引起较高的弧光过电压,一般为3.5倍相电压甚至更高,波及到整个配电网致使绝缘薄弱的设备放电击穿,引起设备损坏和停电的严重事故。 (3) 当有人误触带电部分时,由于受到大电流的灼伤,加重了触电人员的伤害程度,甚至当场死亡。 (4) 配电网长时间的谐振过电压现象比较普遍,这种铁磁谐振过电压幅值并不高,但持续时间长,以低频摆动引起绝缘闪络或避雷器爆炸;或在互感器中出现过电流,轻者熔断TV保险、重者将TV烧毁。当发生不稳定的间歇性电弧,多次熄灭和重燃产生的过电压与铁磁谐振过电压同时存在时,不但会引起TV 的烧毁,而且会导致全部配电设备的烧毁,称为“火烧连营”。如山东荷泽电业局成武变电站曾发生类似的事故,对系统供电影响较大。 (5) 在架空线与树矛盾突出的地方,刮风、下雨时由于单相故障引起的相间短路而跳闸停电事故频繁。 因此改变配网中性点运行方式、提高供电可靠性已成为供电部门的当务之急。 1中性点经消弧线圈接地的运行现状 1.1中性点经消弧线圈接地方式的规定 《电力设备过电压保护设计技术规程》中规定:3~10 kV的电力网,当单相接地故障电流大于30 A 时应装设消弧线圈。电力行业标准《交流电气装置的过电压保护和绝缘配合》中规定:10 kV架空线路系统单相接地故障电流大于20 A或10 kV电缆线路系统单相接地故障电流大于30 A时应装设消弧线圈。其理由是在此电流下电弧能自行熄灭。恒山电力自动化设备有限公司模拟经小动物接地结果证明,对电缆和架空线的混合电网,单相接地电容电流大于11.75 A时电弧就不能自行熄灭。国内也有不少单位研究证明,单相接地电容电流的上限值应取10 A,以便于提高配电网供电的可靠性。 城市配电网长期以来一直未采用中性点经消弧线圈接地方式,主要原因是: (1) 受技术条件限制,对电容电流的底数不清; (2) 受规程规定约束,有的配电网电容电流未超过30 A没有引起重视; (3) 10 kV配电网无中性点,若考虑补偿措施,需专用的人工中性点变压器,实现上有困难。 1.2常用消弧线圈

相关主题
文本预览
相关文档 最新文档