当前位置:文档之家› 氧解吸实验

氧解吸实验

氧解吸实验
氧解吸实验

化工原理实验报告

实验名称:氧解吸实验

姓名:吕游学号2011011105

同组人:刘晓林张少林许馨予

完成日期:2014年4月28日

一、实验目的

1、熟悉填料塔的构造与操作。

2、观察填料塔流体力学状况,测定压降与气速的关系曲线。

3、掌握总传质系数x K a 的测定方法并分析影响因素。

4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。

二、实验原理

本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数x K a ,并进行

关联,得到a b x K a AL V 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。

1、填料塔流体力学特性

气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2 的直线(图中aa 线)。当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2 次幂,但大于同一气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图1 中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。

y 1

2

lg u

l g △p

2、传质实验

填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。

本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为:

A x p m G K aV x =?

即 /x A p m K a G V x =? 其中

221122

11

()()

ln e e m e e x x x x x x x x x ---?=

--

21()A G L x x =- p V Z =Ω

相关的填料层高度的基本计算式为:

211x OL OL x x e

L dx

Z H N K a x x =

=Ω-? 即/OL OL H Z N =

其中

2

211

1x OL x e m x x dx N x x x -==-??

OL x L

H K a =

Ω

式中: A G —单位时间内氧的解吸量[kmol/m 3·h];

x K a —总体积传质系数[kmol/m 3·h·Δx];

P V —填料层体积[m 3]; m x ?—液相对数平均浓度差;

2x —液相进塔时的摩尔分率(塔顶)

; 2e x —与出塔气相y1 平衡的液相摩尔分率(塔顶); 1x —液相出塔的摩尔分率(塔底)

; 1e x —与进塔气相y2 平衡的液相摩尔分率(塔底)

; Z —填料层高度[m]; Ω —塔截面积[m 2]; L —解吸液流量[Kmol/h];

OL H —以液相为推动力的传质单元高度 OL N —以液相为推动力的传质单元数

由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即x x K k , 由于属液膜控制过程,所以要提高总传质系数x K a ,应增大液相的湍动程度。

在y —x 图中,解吸过程的操作线在平衡线下方,本实验中还是一条平行于横坐标的水平线(因氧在水中浓度很小)。

三、实验装置流程图及主要测试仪器表

1.基本数据:

解吸塔径Ф=0.1m ,吸收塔径Ф=0.032m ,填料层高度0.83m (金属θ环,参数:(10×10×0.1)mm ,a1540m -1 ,ε=0.97m 3/m 3)

2.流程

氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压在0.03~0.04[Mpa],为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9中,自来水经水转子流量计调节流量,由转子流量计计量后进入吸收塔。在吸收塔内氧气与水并流接触,形成富氧水,富氧水经管道在解吸塔的顶部喷淋。空气由风机13供给,经缓冲罐14,由空气流量调节阀16调节流量经空气转子流量计17计量,通入解吸塔底部,在塔内与塔顶喷淋的富氧水进行接触,解析富氧水,解吸后的尾气从塔顶排出,贫氧水从塔底经平衡罐19排出。自来水经调节阀10,由转子流量计17计量后进入吸收柱。

由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。空气流量计前装有计前表压计23。为了测量填料层压降,解吸塔装有压差计22。

在解吸塔入口设有入口采出阀12,用于采集入口水样,出口水样在塔底排液平衡罐上采出阀20取样。

两水样液相氧浓度由9070型测氧仪测得。

1、氧气钢瓶 9、吸收塔 17、空气转子流量计

2、氧减压阀 10、水流量调节阀 18、解吸塔

3、氧压力表 11、水转子流量计 19、液位平衡罐

4、氧缓冲罐 12、富氧水取样阀 20、贫氧水取样阀

5、氧压力表 13、风机 21、温度计

6、安全阀 14、空气缓冲罐 22、压差计

7、氧气流量调节阀 15、温度计 23、流量计前表压计

8、氧转子流量计 16、空气流量调节阀 24、防水倒灌阀

四、实验操作要点

1、流体力学性能测定

(1)、测定干填料压降

a、事先吹干塔内填料。

b、改变空气流量,测定填料塔压降,测取6组数据。

(2)、测定湿填料压降

a、测定前进行预液泛,使填料表面充分润湿。

b、固定水在某一喷淋量下,改变空气流量测定填料塔压降,测取10组数据。

c、实验接近液泛时,进塔气体的增加量不要过大。小心增加气体流量,使液泛现象平稳变化。调好流量后,等各参数稳定后再取数据。着重注意液泛后填料层压降在几乎不变的气速下明显上升的这一特点。注意气量不要过大,以免冲破和冲泡填料。

(3)、注意空气流量的调节阀要缓慢开启和关闭,以免撞破玻璃管。

2、传质实验

a、将氧气阀打开,氧气减压后进入缓冲罐,罐内压力保持0.04~0.05MPa,

不要过高,并注意减压阀使用方法。为防止水倒灌进入氧气转子流量计中,开水前要关闭防倒灌,或先通入氧气后通水。

b、传质实验操作条件选取:水喷淋密度取10~15m3/(m2?h),空塔气速

0.5~0.8m/s氧气入塔流量为0.01~0.02 m3/h,适当调节氧气流量,使吸收后的富氧水浓度控制在不大于19.9mg/l。

c、塔顶和塔底液相氧浓度测定:分别从塔顶与塔底取出富氧水和贫氧水,注意在每次更换流量的第一次所取样品要倒掉,第二次以后所取的样品方能进行氧含量的测定,并且富氧水与贫氧水同时进行取样。

d、用测氧仪分析其氧的含量。测量时,对于富氧水,取分析仪数据由增大到减小时的转折点为数据值;对于贫氧水,取分析仪数据由变小到增大时的转折点为数据值。同时记录对应的水温。

e、实验完毕,关闭氧气减压阀,再关闭氧气流量调节阀,关闭其他阀门。检查无误以后离开。

五、实验数据处理

○1计算并确定干填料及一定喷淋量下的湿填料在不同空塔气速u下,与其相应的单位填料高度压降Δp/Z的关系曲线,并在双对数坐标系中作图,找出泛点与载点。

干塔数据: d=10cm

以干塔第一组数据计算为例, h m V T

P T

P V /06.1015

.2931015905

6.62910130010

31

2

211

2=??==

u=V2/A=10.06/3600/3.14/0.05^2=0.3559

2计算实验条件下(一定喷淋量、一定空塔气速)的液相体积总传质系数x K a 及液相总传质单元数OL H 。 原始数据表格:

经数据处理得到下表:

本组使用的填料为金属θ环。以第一组数据为例,计算过程如下: 对于解析塔: 平均温度为27℃时,

kPa 4580309102.56)+270.07714+2710(-8.5694=E 62-5=???? 系统总压差

101390Pa 101800.5001013P -3=??+=

相平衡常数

45175101390

1000

*4580309P E m ===

富氧水中含氧的摩尔分数

5-3

3

101.274018

1000

321022.65321022.651?=+

??=--x 贫氧水中含氧的摩尔分数

63

3

104.79218

1000

32108.5232108.522---?=+

??=x 液相平衡摩尔分数 6121104.64945175

21

.0-?===

≈m y xe xe 对数平均浓度差 66

1

122

11221079.1649.4-792.4649

.4-74.12ln 10)792.474.12(ln )()(--?=?-=-----=?e e e e m x x x x x x x x x

水流量 h mol L /556k .518

01== 单位时间氧解析量

h

kmol x x L G A /1016.4110)792.4-74.12(556.5)(6612--?=??=-=填料层体积 3

220.00588875.01.0785.04

1m Z d V p =??==π

液相体积总传质系数

)/(38027

9.11089.516

.4133

h m kmol x V G a K m p A x ?=??=??=

- 塔的截面积 33221085.71.0785.0d 4

1

m -?=?==Ωπ

液相总传质单元高度

m a K L H x OL 0.18611085.738025.556

3

=??=Ω=

-

六、实验结果:

1.流体力学性能测定

画出填料层压降-空塔气速关系的示意图,如下图所示。另附对数坐标系下的绘图结果。

D

C

载点与泛点的位置:

水流量为100L/h 时,载点为图1中的点C(0.7803, 0.5467),泛点为图中的点D(1.1678, 1.6);干塔的直线方程为:y = 1.9821x - 0.3099

2.传质实验:

液相体积总传质系数x K a 和液相总传质单元高度OL H 。本组使用的填料为金属θ环。

不同填料液相体积总传质系数x K a 和液相总传质单元高度OL H 以及比较:

1.金属波纹网填料

序号

空气流量m3/h

水流量L/h

Kxa H OL 1 18 137 3219 0.22 2 18 111 2608 0.15 3

23

109 2560

0.16

2.星型填料

序号

空气流量m3/h

水流量L/h

Kxa H OL 1 20 105 3025 0.245 2 10 105 2787 0.266 3

10

145

3249

0.315

3. 金属θ环

序号

空气流量m3/h

水流量L/h

Kxa H OL 1 15 100 3802 0.186 2 20 150 5202 0.204 3

20

100

3786

0.187

4.拉西环

序号

空气流量m3/h

水流量L/h

Kxa H OL 1 18.6 75 2468 0.217 2 25.19 75 2311 0.229 3

25.5

92

2486

0.261

可得结论:

1由于各组装置所选择的气体液体流速及氧气流量相差甚远,故不进行纵向比较其液相总传质单元高度。对于金属波纹丝网填料塔及星型填料,液相总传质单元高度值对水量变化更加敏感,拉西环最不敏感。

2纵向比较各组液相体积总传质系数可得,金属Θ环塔最大,星型填料塔和金属波纹丝网填料塔居中,瓷拉西环填料塔最小。

3实验中各塔数据均有不同程度的波动,表明各塔在一定程度上工作状态不够稳定。

七、思考题

1. 阐述干填料压降线和湿填料压降线的特征 答:气体通过干填料时,流体流动引起的压降和湍流流动引起的压降规律相一致,因此在对数坐标纸上作~p u ?关系曲线,表现为一直线,斜率为1.8~2次幂。当有喷淋量时,也即奇特通过湿填料塔时,在低流速下(c 点以前)压降也正在于气速的1.8~2次幂,但大于同一气速下干填料的压降。随气速增加,出现载点,出现载点(c 点),持液量增大,~p u ?线向上弯曲,斜率变陡,到达泡点(d 点)后,在几乎不变的气速下,压降持续增大,出现液泛。

2. 比较液泛时单位高度填料层压降和Eckert 关联 图数值是否相符。一般乱堆填料液泛时单位填料层高度的压降为多少?.

实验中发现,乱堆填料液泛时单位填料层高度的气体压降基本为一恒值,亦即ECKERT 图中乱堆填料的泛点线为一等压降线。由此推测,当操作气速低于泛速时,其他等压降曲线会有与泛点关联图线相像的曲线形状。实验结果证实了这一推测。乱堆填料液泛时单位填料高度压降一般不低于2KPa/m 。

3.试计算实验条件下填料塔实际气液比V/L 是最小气液比的倍数。

(V/L )min=(X2-X1)/(Y2e-Y1)=(12.7-4.792)

610-?/(12.7*610-??45175-0.21)=2.174 510-?

实际气液比:V/L=15/22.4/5.56=0.1205 (V/L)/(V/L)min=5543

4. 工业上,吸收在低温、加压,在进行而解吸在高温、常压下进行,为什么? 根据气体溶解度条件而定,一般情况下,气体在液体中的溶解度随温度的升高而降低,随压强的升高而升高。(亨利系数m 随压强升高减小,随温度升高上升,m 小意味着溶解度增大)。所以吸收时要在低温、加压的情况下进行比较好,而解吸在高温、低压下进行。

5. 为什么易溶气体的吸收和解吸属于气膜控制过程,难溶气体的吸收和解吸属于液膜控制过程? 答:根据双膜模型导出的结果可知总传质阻力为气膜传质阻力与液膜传质阻力之和,即

11y y x

m K k k =+

○1对于气膜阻力控制,即

1y x m

k k >>时,

11

y y

K k ≈,

y y

K k ≈,此时的传质阻力主

要集中于气膜,称这种情况为“气膜阻力控制”。

○2对于液膜阻力控制,即

11

y x

mk k << 时,11x x K k =

,x x K k ≈,此时的传质阻力只

要集中于液膜,称这种情况为“液膜阻力控制”

易溶气体溶解度大,平衡线斜率m 小,因此往往使得才使得吸收过程往往是气膜阻力控制,难溶气体溶解度小,平衡线斜率m 大,其吸收过程多为液膜控制。

6. 填料塔结构有什么特点?

答:填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

7. 若要实现计算机在线测控,应如何选用测试传感器和仪表?

答:这次实验装置需要在每个仪表位置加装电子传感器,然后按照现有实验装置设计相应的数据采集程序。

化工原理氧解吸实验报告

化工原理氧解吸实验报告 This model paper was revised by the Standardization Office on December 10, 2020

北京化工大学 化原实验报告学院:化学工程学院 姓名:娄铮 学号: 45 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15 实验名称:氧解吸实验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压降与空塔气速的关系,利用双对数坐标画出关 系。其次做传质实验求取传质单元高度,利用

K x a =G A /(V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----= ?X G A =L (x 2-x 1)求出 HOL= Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数Kx a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a=AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书 天津大学化工基础实验中心 2013.06

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

好氧堆肥工艺

静态好氧堆肥处理城市垃圾 好氧堆肥的原理: 好氧堆肥是在有氧条件下,好氧细菌对废物进行吸收、氧化、分解。微生物通过自身的生命活动,把一部分被吸收的有机物氧化成简单的无机物,同时释放出可供微生物生长活动所需的能量,而另一部分有机物则被合成新的细胞质,使微生物不断生长繁忙殖,产生出更多的生物体的过程。在有机物生化降解的同时,伴有热量产生,因堆肥工艺中该热能不会全部散发到环境中,就必然造成堆肥物料的温度升高,这样就会使一些不耐高温的微生物死亡,耐高温的细菌快速繁殖。生态动力学表明,好氧分解中发挥主要作用的是菌体硕大、性能活泼的嗜热细菌群。该菌群在大量氧分子存在下将有机物氧化分解,同时释放出大量的能量。据此好氧堆肥过程应伴随着两次升温,将其分成三个阶段:起始阶段、高温阶段和熟化阶段。堆肥过程的影响因素包括:生物挥发性固体、通风供氧、水分、温度、碳氮比等。通常要经过物料预处理、一次发酵、二次发酵和后处理过程。 1堆肥的过程参数 堆肥化过程是复杂的。物料经混匀后,受营养平衡、水分含量和物理结构等的影响。工艺过程中要控制的各种参数,就是那些对堆肥过程有影响的物理、化学和生物因素。它们决定微生物活动的程度,从而影响堆肥的速度与质量。 1.1 水分含量 在堆肥过程中,水分是一个重要的物理因素。水分含量是指整个堆体的含水量。水分的主要作用在于:(1)溶解有机物,参与微生物的新陈代谢;(2)水分蒸发时带走热量,起调节堆肥温度的作用。水分的多少,直接影响好氧堆肥反应速度的快慢,影响堆肥的质量,甚至关系到好氧堆肥工艺的成败,因此,水分的控制十分重要。在堆肥期间,如果水分含量低于10%~15%,细菌的代谢作用会普遍停止;含水量太高,会使堆体内自由空间少,通气性差,形成微生物发酵的厌氧状态,产生臭味,减慢降解速度,延长堆腐时间。 大量的研究结果表明,堆肥的起始含水率一般为50%~60%。在堆肥的后熟期阶段,堆体的湿度也应保持在一定的水平,以利于细菌和放线菌的生长而加快后熟,同时减少灰尘污染。 1.2 通气量 供气是好氧堆肥成功的重要因素之一。供气的作用主要有三个方面。(1) 为堆体内的微生物提供氧气。如果堆体内的氧气含量不足,微生物处于厌氧状态,使降解速度减缓,产生h2s等臭气,同时使堆体温度下降。(2)调节温度。堆肥需要微生物反应而产生的高温,但是,对于快速堆肥来讲,必须避免长时间的高温,温度控制的问题就要靠强制通风来解决。(3) 散除水分。污泥堆肥的一个目的是降低其水分含量。在堆肥的前期,通气主要是提供微生物02以降解有机物,在堆肥的后期,则应加大通气量,以冷却堆肥及带走水分,达到堆肥体积、重量减少的目的。 通气可以采取鼓风或抽气方式,两种方式各有利弊:抽气的优势在于可将堆体中的废气在排入大气

氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告 一、实验目的 1、了解传质系数的测定方法; 2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响; 3、掌握气液吸收过程液膜传质系数的实验测定方法; 4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。 二、实验原理 1) 吸收速率 吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。在连续吸收操作中,这三种传质速率表达式计算结果相同。对于低浓度气体混合物单组分物理吸收过程,计算公式如下。 气相内传质的吸收速率: )(i y A y y F k N -= 液相内传质的吸收速率: )(x x F k N i x A -= 气、液相相际传质的吸收速率: )()(**x x F K y y F K N x y A -=-= 式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数; x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数; k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。 对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。 对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。 本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。解吸是吸收的逆过程,传质方向与吸收相反,其 原理和计算方法与吸收类似。但是传质速率方程中的气相推动力要从吸收时的(y -y * )改为 解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x * )。 2) 吸收系数和传质单元高度 吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。其数值大小主要受物系的性质、操作条件和传质设备结构形式及参数三方面的影响。由于影响因素复杂,至今尚无通用的计算方法,一般都是通过实验测定。 本实验计算填料解吸塔的体积传质系数K x a (kmol/(m 3 ·h))的公式如下:

化工原理氧解吸实验报告

北京化工大学 化原实验报告 学院:化学工程学院 姓名:娄铮 学号: 2013011345 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15

实验名称: 氧 解 吸 实 验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压 降与空塔气速的关系,利用双对数坐标画出关系。其次做传质实验求取传质单元高度,利用 K x a =G A /( V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----=?X G A =L (x 2-x 1)求出 H OL = Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓 l g △p

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。 ΔP , k P a

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

化工原理实验报告(氧解析)

化工原理实验报告 实验名称:氧解析实验 班级:化实1101 学号:2011011499 姓名:张旸 同组人:陈文汉,黄凤磊,杨波 实验日期:2014.04.14

一、 报告摘要 本实验利用气体分别通过干、湿填料层,测流体流动因其的填料层压降与空塔气速的 关系,并利用双对数坐标画出关系。同时,做传质实验求取传质单元高度,利用公式求取H OL 二、实验目的及任务 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 三、实验原理 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a 并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方程为: G A =K x a V p △x m 即K x a = G A / ( V p △x m ) 其中]) ()(ln[)()x -x (112221e22m e e e x x x x x x ----= ?X lg u a l g △p a’ b c d 填料层压降—空塔气速示意 x 1 y 1 y 2 x 2

餐厨垃圾好氧堆肥化处理实验

实验20餐厨垃圾好氧堆肥化处理实验 一、实验目的 堆肥化是有机废弃物无害化处理与资源化利用的重要方法之一。通过本实 验,使得学生了解影响堆肥化的因素。知道如何准备堆肥材料、如何进行堆肥过 程控制和获取相关实验数据,以及如何判断堆肥的稳定化。 二、实验原理 堆肥化是指利用自然界中广泛存在的微生物,通过人为的调节和控制,促进 可生物降解的有机物向稳定的腐殖质转化的生物化学过程。堆肥化的产物称为 堆肥,但有时也把堆肥化简单地称作堆肥。 通过堆肥化处理,我们可以将有机物转变成有机肥料或土壤调节剂,实现废 弃物的资源化转化,且这些堆肥的最终产物已经稳定化,对环境不会造成危害。 因此,堆肥化是有机废弃物稳定化、资源化和无害化处理的有效方法之一。 三、实验材料、仪器与要求 1.实验材料 所用堆肥材料取自本校学生食堂的厨房垃圾,包括各种蔬菜、水果的根、茎、 叶、皮、核等,以及少量剩饭、剩菜。此外,还需一些锯末,用于调节含水率和 C/N比。 2.堆肥反应器 直径200 mm,高500 mm,有效工作体积15.7 I,,由一台200 w气泵供气, 带温度和氧传感器,可自动测量堆肥温度、进气和排气中(五浓度,并与数据检测记 录仪和计算机相连,实现温度和Q浓度数据的自动记录分析。 3.测定内容 (1)初始和堆肥结束时,堆肥材料的含水率(MC)、总固体(TS)、挥发性固 体(VS)、碳氮比(C/N);

(2)堆肥过程中,堆肥材料的温度、进气和排气中0。浓度。 4.分析和记录仪器 烘箱、马弗炉、天平、T()C和TN测定仪、数据检测记录仪、计算机、便携式 O:/C()。测定仪。 5.分组安排 4人1组,每班8组。 6.实验时间 由于本实验需要延续较长的时间,并且在整个过程中都需要进行数据采集 和分析,故把整个实验分成两个部分。第一个实验是垃圾的准备和装料;第二个 实验是过程中和结束时的数据采集、检测和结果分析。 四、实验步骤 1.准备材料 从本校学生食堂收集厨房垃圾,切碎成1~2 cm后,先测定其含水率(MC)、 总固体(TS)、挥发性固体(VS)、碳氮比(C/N);之后,根据测定结果进行材料的 调理,主要调节材料的MC和C/N,通过填加锯末调节含水率(MC)至60%,C/ N比在20~30之间。影响堆肥化过程的因素很多,这些因素主要包括通风供氧量、含水率、温度、有机质含量、颗粒度、碳氮比、碳磷比、pH值等。对厨房垃圾而言,本实验只对MC和C/N进行调节。 2.装料和通气 把经过调理准备好的堆肥材料装入反应器中,盖好上盖,开始启动气泵通 气。通过气体流量计控制通风量在o.2 m3/(min·m{物料)左右,或控制排气 中O。浓度在14%~17%之问。 3.温度和02采集记录 由温度和氧传感器测量堆肥温度、进气和排气中():浓度,由数据检测记录 仪记录数据,设定l h测定1次。 4.翻堆 观察堆肥温度的变化,当堆肥温度由环境温度上升到最高温度(60~ 70℃),之后下降到接近环境温度不再变化时,终止通气,把堆肥材料取出,进 行第一次翻堆,把材料充分翻动、混合后再放回反应器中,盖好上盖,重新肩动

氧解析实验报告(终稿)

氧解析实验报告 课程名称:化工原理实验 学校:北京化工大学 学院:化学工程学院 专业:化学工程与工艺 班级:化工 1001 学号: 17 姓名:闵翔 实验日期: 2013年4月8日 同组人员:吕博杨、刘子彦、玛莎莉娜

一、实验摘要 本实验利用吸收柱使水吸收纯氧形成富氧水,送入解析塔顶再用空气进行解析,测定不同液量和气量下的解析液相体积总传质系数,并进行关联,同时对四种不同填料的传质效果及流体力学性能进行比较。 二、实验目的及任务 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握液相体积总传质系数K x a的测定方法并分析影响因素。 4、学习气-液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 三、基本原理 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层“压降—空塔气速”关系示意如图1所示。

(1)在双对数坐标系中,此压降对气速作图可得斜率为~2的直线(图中Aa直线)。 (2)当有喷淋量时,在低气速下(c点以前)压降正比于气速的~2次方,但大于相同气速下干填料的压降(图中bc段)。 (3)随气速的增加,出现载点(图中c点),持液量开始增大,“压降—气速”线向上弯,斜率变陡(图中cd段)。 (4)到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。 图1填料层“压降—空塔气速”关系

2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图2所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,即平衡线为直线,操作线也为直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方程为 m p x A X aV K G ?=, 即m P A x X V G a K ?=/ ])()(ln[) ()(11221122e e e e m x x x x x x x x X -----=? ()12x x L G A -= Ω=Z V P 相关填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z =-Ω=?12

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L (x G 21 A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-=-=?2 11 2 Ω =a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

二氧化碳吸收与解吸实验.docx

氧化碳吸收与解吸实验 一、 实验目的 1. 了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测 定数据的处理分析,加深对填料塔流体力学性能基本理论的理解, 加深对填料塔传 质性能理论的理解。 2. 掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、 实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较 大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传 质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料 塔液侧传质膜系数和总传质系数。 三、 实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强 降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下 填料层的压强降JP 与气速U 的关系如图一所示: 图一填料层的P ?U 关系 当液体喷淋量L o =0时,干填料的丄P ?U 的关系是直线,如图中的直线

当有一定的喷淋量时,厶P?U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P?U关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1. 二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为气膜G A = k g A( P A - P Ai) ( 1) 液膜G^k I A(C Ai -C A) (2) 式中:G A —A组分的传质速率,kmoI S J; A —两相接触面积,m; P A —气侧A组分的平均分压,Pa; P Ai —相界面上A组分的平均分压,Pa; C A—液侧A组分的平均浓度,kmol m j3 C Ai —相界面上A组分的浓度kmol m J3 k g —以分压表达推动力的气侧传质膜系数,kmol m^ s^1 Pa j; kι—以物质的量浓度表达推动力的液侧传质膜系数,m S J。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表 达为:G A=K G A(P A-P A)(3) G A=K L A(C A -C A)(4) 式中:P A —液相中A组分的实际浓度所要求的气相平衡分压,Pa; C A —气相中A组分的实际分压所要求的液相平衡浓度,kmol m^ ; K G —以气相分压表示推动力的总传质系数或简称为气相传质总系数, kmol m ^2SV Pa 4;

焚烧与热解-东华大学环境学院大三实验报告

《环工综合实验(2)》(焚烧与热解实验) 实验报告 专业环境工程 班级卓越环工1101 姓名黄雪琼 指导教师余阳 成绩 东华大学环境科学与工程学院实验中心 二0一四年四月

实验题目焚烧与热解实验实验类别综合 实验室2142 实验时间2014年4月14日13时~ 16时 实验环境温度:17.7℃湿度:67% 同组人数7 本实验报告由我独立完成,绝无抄袭!承诺人签名 一、实验目的 废物焚烧和热解过程中,有机成分在高温条件下进行分解破坏,实现快速、显著减容。与生化法相比,焚烧和热解热解方法处理周期短、占地面积小、可实现最大程度的减容、延长填埋场使用寿命。与普通焚烧法相比,热解过程产生的二次污染少。热解生成气或液体燃料在空气中燃烧与固体废物直接燃烧相比,不仅燃烧效率高,所引起污染也低。 本实验的目的: (1)了解焚烧和热解的概念; (2)熟悉焚烧和热解过程的控制参数。 二、实验仪器及设备 电阻炉:

热解炉 1 实验仪器 1、实验装置 实验装置为一套自制的装置组成。主要由控制装置、热解炉和液体冷凝收集系统三部分组成。 热解炉可选取卧式或立式电炉,要求炉管能耐受800 ℃以上的高温,炉膛密闭。液体冷凝装置要求有一定腐蚀耐受能力。 2 实验材料与仪器仪表 (1)实验材料,可以选取普通混合收集的有机城市生活垃圾,也可选取纸张、塑料、橡胶等单类别的垃圾。 (2)烘箱1台 (3)电解装置1台。 (4)量筒100ml 1支 (5)电子天平1台 三、实验原理 焚烧: 焚烧炉内温度控制在980℃左右,焚烧后体积比原来可缩小50-80%,分类收集的可燃性垃圾经焚烧处理后甚至可缩小90%。近年来,将焚烧处理与高温

吸收与解吸实验

一、实验目的 12 3 4 二、实验原理 ㈠、吸收实验 根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程: Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m ) 式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算 已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出) Ls[Kmol/h]=Vs ×ρ水/M 水 101 1'29]/[ρρρρV M V h Kmol G B B B =?=?= 空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 2 2 21 1111y y Y y y Y -= -= 且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P m y x m y x x x x x x x x x x x x e e e e m 1 1221 112221 2 1 2ln = = -=?-=????-?= ?

㈡、解吸实验 低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算 已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 0112 2 21 11=-= -= y y Y y y Y 且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出: m m y x 1 *1== 则可计算出G a 和X 2 2、ΔY m 的计算 根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P 1 12 21112221 2 1 2ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ?=?=-=?-=????-?= ? 根据 e e Y y y y Y 换算成将-= 1 三、实验装置

含铬废水处理实验报告

实验含铬废水的处理及其相关参数的测定 一、实验目的 (1)了解工业废水处理流程,掌握各单元操作的实验原理。掌握由这些单元操作组成的处理流程。 (2)了解除铬过程中各因素之间的关系。 (3)掌握相关的水质参数的测定方法。 二、实验原理 1.化学还原法——铁氧体法 铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为: Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2O HCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O 再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物: Fe3++3OH-=Fe(OH)3↓ Fe2++2OH-=Fe(OH)2↓ Cr3++3OH-=Cr(OH)3↓ 由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。 实验室检验废水处理的结果,常采用比色法分析水中的铬含量。其原理为:Cr(Ⅵ)在酸性介质中与二苯基碳酰二肼反应生成紫红色配合物,其水溶液颜色对光的吸收程度与Cr(Ⅵ)的含量成正比。只要把样品溶液颜色与标准系列的颜色采用目视比较或用分光光度计测出此溶液的吸光度就能确定样品中Cr(Ⅵ)的含量。 为防止溶液中Fe2+、Fe3+及Hg22+、Hg2+等打扰,可适当加入适量的H3PO4消除。 2.活性炭吸附法 废水处理中,吸附法主要用于废水中的微量污染物,达到深度净化的目的;本实验选活性炭吸附法,活性炭有吸附铬的性能,但因其吸附能力有限只适合处理含铬量低的废水,

氧解吸实验-学生

4 氧解吸实验 一、实验目的及任务: 1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 5、两种不同填料的传质性能比较(选做)。 二、基本原理: 本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶行关联,得到K x a=AL a ·V b 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1、填料塔流体力学特性: 气体通过干填料层时,流体流动引起的压降和湍流流 动引起的压降规律相一致。在双对数坐标系中,此压降对 气速作图可得一斜率为1.8~2的直线(图中aa 线)。当有 喷淋量时,在低气速下(c 点以前)压降也正比于气速的 1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。 随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。到液泛点 (图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验: 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相 传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为: m p x A x V a K G ???= m p A x x V G a K ??= 其中 2 2112211ln )()(e e e e m x x x x x x x x x -----=? ()21x x L G A -= Ω?=Z V p 相关的填料层高度的基本计算式为: 图1 填料层压降塔气速关系示意图

化工原理吸收实验报告

化工原理吸收实验报 告 Revised on November 25, 2020

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系 2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式:

吸收解吸实训装置操作规程

吸收解吸实训装置实验指导书 郑州树仁科技有限公司

目录 一、前言......................................................................................................................... 错误!未定义书签。 二、实训目的................................................................................................................. 错误!未定义书签。 三、实训原理................................................................................................................. 错误!未定义书签。 四、吸收解吸实训装置介绍......................................................................................... 错误!未定义书签。 (一) 装置介绍..................................................................................................... 错误!未定义书签。 (二) 吸收解吸工艺............................................................................................. 错误!未定义书签。 (三) 工艺流程图 (6) (四) 吸收解吸配置单......................................................................................... 错误!未定义书签。 (五) 装置仪表及控制系统一览表..................................................................... 错误!未定义书签。 (六) 设备能耗一览表......................................................................................... 错误!未定义书签。 五、实验步骤................................................................................................................. 错误!未定义书签。 (一) 开机准备 (8) (二) 正常开机 (8) (三)正常关机 (10) (四) 液泛 (9) (五) 记录数据表................................................................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档