当前位置:文档之家› 热轧带钢卷取温度控制及其改进措施

热轧带钢卷取温度控制及其改进措施

热轧带钢卷取温度控制及其改进措施
热轧带钢卷取温度控制及其改进措施

热轧带钢卷取温度控制及其改进

2010-05-23 16:55:15| 分类:默认分类|举报|字号订阅

袁建光黄传清

摘要: 以宝钢2050mm热连轧机为例,介绍了现代热轧带钢卷取温度控制系统的组成与控制功能。为了满足扩展钢种与规格及卷取温度高精度的要求,对控制模型进行了改进。

关键词:热轧带钢;卷取温度;控制系统;数学模型

The coilling temperature control and improvement for hot rolled strip

YUAN Jian-guang,HUANG Chuan-qing

(Hot Rolling Dept.Baoshan Iron & Steel(Group)Co.,Shanghai 200941,China) Abstract:Taking the 2050mm continuous hot rolling mill of Baoshan Iron and Steel Co.for example,the compositionand function of coiling temperature control system of modern hot strip mill are introduced.In order to meet the need of expanding steel grade and product gauges and increasing coiling temperature precision,the control model of 2050mmm ill was improved.

Keywords:hotrolledstrip;coilingtemperature;controlsystem;mathematicalmodel 1 前言

卷取温度变化可使热轧带钢再结晶晶粒直径、析出物的量和形态发生变化,从而使其力学性能发生变化。精轧温度一定,提高卷取温度,会使再结晶晶粒变大,屈服极限、抗拉强度降低,如图1所示〔1〕。在热轧带钢生产中,卷取温度是影响轧件强度的重要因素,并且对延伸性即材料的加工性也有影响,所以必须对卷取温度进行严格的管理与控制〔1,2〕。

热轧带钢卷取温度的控制主要通过对精轧机后带钢冷却系统的控制来实现。在实际生产中对冷却系统的控制不仅决定了带钢全长卷取温度精度,而且对带钢头部,特别是薄规格带钢在输出辊道上的运行稳定性也有较大的影响〔3〕。

宝钢2050mm热轧厂精轧机后使用层流冷却及采用计算机控制系统对带钢卷取温度进行自动控制。但由于外方提供的模型精度较差,且生产的钢种和产品规格又不断扩大,原模型已不能很好地满足卷取温度高精度的要求。为此,从1994年8月开始逐步对原模型进行改进和完善。

图1卷取温度对热轧带钢力学性能的影响

2 层流冷却

层流冷却的目的是把热轧带钢从终轧温度冷却到规定的卷取温度。层流冷却系统的控制思想是确定一个临界表面温度,在该温度以上采取密集喷水,使其快速冷却达到临界值;然后采取稀疏喷水方式或空气冷却方式使带钢内外热交换,达到均匀冷却;最后根据实测带钢温度进行精调冷却,使其达到卷取温度的允许公差范围〔4〕。

此外,为了使带钢全长性能均匀和穿带稳定,系统还对带钢头部、中部,尾部规定了各种冷却方式〔4〕。

对层流冷却系统的控制主要是控制喷水阀(气动薄膜阀)的关闭。2050mm 轧机层流冷却系统上下各54个阀,其中,上、下前部28个阀和最后4个阀为精调阀,其余为粗调阀,、1个粗调阀的控制区域是精调阀的2倍。设计的总喷水量约为14000m3/h,使用5台泵经高约10m的高位水箱供水,并有1台备用泵。供水系统水压为0.4MPa,在使用处水压约0.07MPa。

在层流冷却区还有侧向喷水系统、辊道冷却喷水系统。侧向喷水的主要作用是吹走带钢表面的冷却水,以提高层流冷却效果。每隔5m布置1个侧喷水嘴,每个侧喷水嘴由1个喷水阀控制。

在层流冷却入口及中后部设有测温仪;在层流冷却尾部设有卷取测温仪,3个测温仪检测的实际带钢温度由仪表微机传递给上级计算机。

3 层流冷却控制模型与控制功能

3.1 层流冷却控制的基本数学模型

根据热传导原理,带钢在层流冷却区与冷却水和空气进行热交换,其表面温度可用冷却时间的函数加以描述,即

T=T0+(Ti-T0)e-KPZ

(1)

式中,T为带钢出冷却区温度/℃;T0为冷却区环境温度/℃;Ti为带钢入冷却区温度/℃;K为模型自适应系数;Z为带钢经过冷却区的冷却时间/s;P为时间常数,按如下公式计算:

(2)

式中,Te为带钢的导温系数;We为带钢的导热系数;h为带钢厚度;K1,K2为模型系数;α1为上喷水与带钢的热交换系数;α2为下喷水与带钢的热交换系数;F为水温、水压和带钢速度综合修正系数。

由上述模型可见,带钢通过冷却区的温度随时间的变化描述为指数关系,而

带钢厚度,带钢导温、导热特性,冷却区冷却能力、水温、水压和带钢速度等对带钢温度指数降低的陡度产生影响。

带钢出粗轧机R4,PCC进行相应的控制计算后,由精轧道次计算程序启动层流冷却卷取温度控制策略程序,根据精轧道次,带钢材质,规格和卷取温度目标值等,进行冷却计划的计算,确定冷却方式、喷水模式和自适应系数等;然后启动冷却预计算程序,计算出达到目标卷取温度所需喷水阀门数和起始阀门位置,并进行最大冷却能力校验;再启动带头调整程序,计算出带钢头尾有特殊卷取温度要求所需的喷水阀门数,最后把设定值传递给基础自动化,并在相应的计算机终端上显示结果。

3.2 2050mm热轧层流冷却控制

宝钢2050mm热轧层流冷却段划分成主冷段和精冷段两部分,其控制功能如图2所示。

图2 2050mm热轧卷取温度控制功能

当主冷段通过开环控制大致接近目标温度,在精冷段通过开环与闭环控制相结合,使其达到目标卷取温度,即在带钢位于终轧测温仪期间,实测终轧温度、带钢厚度和带钢速度,进行周期性的前馈控制计算,并适时把阀门开闭的设定值送给基础自动化;在带钢头部到达卷取测温仪到其尾部离开卷取测温仪期间,利用实测卷取温度对层流冷却进行周期性的反馈控制和自适应计算。

为了解决在较大加、减速时,在一个周期内需多个阀门开闭的问题,PCC 计算出在一个周期内阀门开闭数随带钢速度变化的比例系数,在一个周期内由BAC根据实际速度变化自动进行阀门数的增减,这样可把一个控制周期内的卷取温度波动控制在较小的范围内。

3.3 2050mm热连轧机层流冷却系统的控制功能

3.3.1 淡淡起始阀的选择

上部层流段和下部冷却段第1个打开的阀门位置,不仅对带钢冷却质量产生影响,而且影响带钢在输出辊道上的运行稳定性。第1个打开的上部阀门可使高温带钢在一接触低温冷却水后,把带钢压向辊道的表面,而第1个打开的下部喷水阀门则使高温带钢的下表面受急冷后向上拱翘。所以,系统需具有选择起始阀门位置的功能。一般情况下,上下起始阀门不能处于同一位置时,下部起始阀门只能出现在上部起始阀的后面(按轧制方向)。

3.3.2 冷却与喷水方式的选择

系统设有3种冷却方式供选择:(1)上部和下部均为空气冷却;(2)上

部为水冷,下部为空冷;(3)上下部均为水冷。

主冷区有4种喷水方式,见表1。

表1主冷段的喷水方式

序号喷水方式的名称标志含义

1 全喷水方式××××每组中所有阀门全打开

2 3/4喷水方式×××○每组第4个阀门关闭

3 1/2喷水方式×○×○每组第1、3个阀门关闭

4 1/4喷水方式×○○○每组第1个阀门打开

注:×表示阀门打开;○表示阀门关闭.

喷水方式按4个阀门构成1个喷水集管组来执行。全喷方式又称密集喷水方式,3/4~1/4喷水方式又称稀疏喷水方式。

3.3.3 带钢头尾卷取温度调节

系统设有5种方案调节带钢头、尾及中部卷取温度(依次以符号Th、Te、Tm表示):(1)Th=Te=Tm;(2)Th>Tm=Te;(3)Th=Te>Tm;(4)Th=Tm

3.3.4 临界表面温度的确定

带钢进入层流冷却控制区后应尽可能用密集喷水,即用最大的冷却能力把带钢从终轧温度冷却到临界表面温度后改用稀疏喷水进行冷却。

由冷却策略确定带钢临界表面温度,系统为命中这个目标,控制喷水长度,并根据带钢速度的变化,进行跟踪与修正。

3.3.5 冷却能力的检查

系统可按精轧道次计划计算的额定值(终轧温度、带钢速度、加速度和带钢厚度)进行估算。检查层流冷却段是否有足够的冷却能力保证带钢全长达到所要求的卷取温度。

若发现冷却能力严重不足时,系统具有要求改变精轧道次计划的功能。

3.3.6 系统自动确定冷却策略数据

系统可独立从“后计算存放”的表格中获得冷却策略数据。这些数据一般作为带钢材质、卷取目标温度、厚度、速度和终轧温度的表函数出现(即称内部表)、可直接用于冷却系统的控制。

3.3.7 喷水阀门的周期计算

经预计算确定的喷水阀门,在带钢实际冷却过程中,由于实测值与计算值的差异需进行调节,这种调节功能是通过系统对带钢冷却过程的周期计算(每隔2~3s计算一次)来实现的,并以此来更新预计算的控制数据,提高控制精度。

3.3.8 自适应功能

系统对层流冷却段的带钢不断跟踪和自适应修正,以使冷却模型尽可能反映带钢的实际冷却过程。所得自适应系数以钢种分类存放起来,遗传给后面轧制的带钢在层流冷却中使用。

4 2050mm热连轧带钢卷取温度控制优化

宝钢2050mm热轧卷取温度控制由于外方提供的模型精度不够,且生产的钢种和产品规格又在不断扩大,原来的模型已不能很好地满足卷取温度高精度的要求,特别是对厚规格带钢,其控制精度更差。

根据实际情况,首先在不增加设备及硬件投入的情况下,主要通过优化、改进和完善卷取温度控制数学模型,来提高卷取温度控制精度,该工作已在1996年底完成。1998年底基本完成硬件设备和控制系统的改进。

4.1 层流冷却控制精度存在的问题及实施的第1步解决方案

(1)原模型没考虑带钢内部厚度方向的热传导,因此系统误差较大,特别是对于厚板,预设定精度差。现已采用内部表格,按带钢厚度分级,对温度进行补偿。

(2)在PCC控制中,精轧控制和层流冷却控制是两个系统,当轧机最大速度设定过高时,层流冷却能力不足,带钢尾部卷取温度高。现已将精轧机控制与层流冷却控制相互联系起来,系统保证轧机设定的最大速度不超过层流冷却能力。

(3)原设计周期控制为3s,周期控制时间太长,响应慢,控制精度差,现已修改相应控制软件,将控制周期改为2s。

(4)原模型中加速度影响模型精度不高,在加减速时,设定波动太大,控制精度差。现已将加速度影响模型修改为

SUFn=SUF/(1+k.v)

式中,SUFn为加速度影响因素值;SUF为原模型计算值;k为模型系数;v为带钢速度。

(5)原使用的工艺极限参数值与实际不符,对于厚板,当速度低于一定值时,温度控制精度很低。现已对各种情况下的工艺极限参数进行重新确定,使之与实际相符。

(6)对于厚度>16.0mm的带钢,当穿带速度变化较大时,头部温度设定时好时坏。现已根据带钢厚度范围对穿带速度上限进行了限制。

4.2 带钢卷取温度控制第1步优化的效果

经过上述改进后,卷取温度的控制精度得到了显著提高,对比分析见表2。

表2 优化前后的卷取温度控制精度对比(目标值±30℃精度)

带钢厚度/mm 优化前控制精度/% 优化后控制精度/%

2.1~2.5 85.844 96.29

2.5~

3.2 85.524 96.69

3.2~

4.2 86.280 97.16

4.2~6.3 80.922 96.83

6.3~12.6 70.594 95.96

12.6~25.4 40.652 90.25

4.3 卷取温度控制硬件和系统的改进

(1)对层流冷却装置进行了改进,把粗调区改为精调,以进一步提高控制精度。

(2)对层流冷却装置布置形式进行了改进,把反馈控制的调节加大并向后移动一定的位置,增加中间测温仪。

(3)在控制系统上,增加1台计算机专门用于层流冷却的控制,控制周期进一步缩短(1s),利于控制模型和控制软件的进一步开发。

作者简介:袁建光(1961~),男(汉族),四川人,高级工程师,热轧部副部长。

作者单位:宝山钢铁(集团)公司热轧部,上海200941

袁建光黄传清

摘要: 以宝钢2050mm热连轧机为例,介绍了现代热轧带钢卷取温度控制系统的组成与控制功能。为了满足扩展钢种与规格及卷取温度高精度的要求,对控制模型进行了改进。

关键词:热轧带钢;卷取温度;控制系统;数学模型

The coilling temperature control and improvement for hot rolled strip

YUAN Jian-guang,HUANG Chuan-qing

(Hot Rolling Dept.Baoshan Iron & Steel(Group)Co.,Shanghai 200941,China) Abstract:Taking the 2050mm continuous hot rolling mill of Baoshan Iron and Steel Co.for example,the compositionand function of coiling temperature control system of modern hot strip mill are introduced.In order to meet the need of expanding steel grade and product gauges and increasing coiling

temperature precision,the control model of 2050mmm ill was improved.

Keywords:hotrolledstrip;coilingtemperature;controlsystem;mathematicalmodel 1 前言

卷取温度变化可使热轧带钢再结晶晶粒直径、析出物的量和形态发生变化,从而使其力学性能发生变化。精轧温度一定,提高卷取温度,会使再结晶晶粒变大,屈服极限、抗拉强度降低,如图1所示〔1〕。在热轧带钢生产中,卷取温度是影响轧件强度的重要因素,并且对延伸性即材料的加工性也有影响,所以必须对卷取温度进行严格的管理与控制〔1,2〕。

热轧带钢卷取温度的控制主要通过对精轧机后带钢冷却系统的控制来实现。在实际生产中对冷却系统的控制不仅决定了带钢全长卷取温度精度,而且对带钢头部,特别是薄规格带钢在输出辊道上的运行稳定性也有较大的影响〔3〕。

宝钢2050mm热轧厂精轧机后使用层流冷却及采用计算机控制系统对带钢卷取温度进行自动控制。但由于外方提供的模型精度较差,且生产的钢种和产品规格又不断扩大,原模型已不能很好地满足卷取温度高精度的要求。为此,从1994年8月开始逐步对原模型进行改进和完善。

图1卷取温度对热轧带钢力学性能的影响

2 层流冷却

层流冷却的目的是把热轧带钢从终轧温度冷却到规定的卷取温度。层流冷却系统的控制思想是确定一个临界表面温度,在该温度以上采取密集喷水,使其快速冷却达到临界值;然后采取稀疏喷水方式或空气冷却方式使带钢内外热交换,达到均匀冷却;最后根据实测带钢温度进行精调冷却,使其达到卷取温度的允许公差范围〔4〕。

此外,为了使带钢全长性能均匀和穿带稳定,系统还对带钢头部、中部,尾部规定了各种冷却方式〔4〕。

对层流冷却系统的控制主要是控制喷水阀(气动薄膜阀)的关闭。2050mm 轧机层流冷却系统上下各54个阀,其中,上、下前部28个阀和最后4个阀为精调阀,其余为粗调阀,、1个粗调阀的控制区域是精调阀的2倍。设计的总喷水量约为14000m3/h,使用5台泵经高约10m的高位水箱供水,并有1台备用泵。供水系统水压为0.4MPa,在使用处水压约0.07MPa。

在层流冷却区还有侧向喷水系统、辊道冷却喷水系统。侧向喷水的主要作用是吹走带钢表面的冷却水,以提高层流冷却效果。每隔5m布置1个侧喷水嘴,

每个侧喷水嘴由1个喷水阀控制。

在层流冷却入口及中后部设有测温仪;在层流冷却尾部设有卷取测温仪,3个测温仪检测的实际带钢温度由仪表微机传递给上级计算机。

3 层流冷却控制模型与控制功能

3.1 层流冷却控制的基本数学模型

根据热传导原理,带钢在层流冷却区与冷却水和空气进行热交换,其表面温度可用冷却时间的函数加以描述,即

T=T0+(Ti-T0)e-KPZ

(1)

式中,T为带钢出冷却区温度/℃;T0为冷却区环境温度/℃;Ti为带钢入冷却区温度/℃;K为模型自适应系数;Z为带钢经过冷却区的冷却时间/s;P为时间常数,按如下公式计算:

(2)

式中,Te为带钢的导温系数;We为带钢的导热系数;h为带钢厚度;K1,K2为模型系数;α1为上喷水与带钢的热交换系数;α2为下喷水与带钢的热交换系数;F为水温、水压和带钢速度综合修正系数。

由上述模型可见,带钢通过冷却区的温度随时间的变化描述为指数关系,而带钢厚度,带钢导温、导热特性,冷却区冷却能力、水温、水压和带钢速度等对带钢温度指数降低的陡度产生影响。

带钢出粗轧机R4,PCC进行相应的控制计算后,由精轧道次计算程序启动层流冷却卷取温度控制策略程序,根据精轧道次,带钢材质,规格和卷取温度目标值等,进行冷却计划的计算,确定冷却方式、喷水模式和自适应系数等;然后启动冷却预计算程序,计算出达到目标卷取温度所需喷水阀门数和起始阀门位置,并进行最大冷却能力校验;再启动带头调整程序,计算出带钢头尾有特殊卷取温度要求所需的喷水阀门数,最后把设定值传递给基础自动化,并在相应的计算机终端上显示结果。

3.2 2050mm热轧层流冷却控制

宝钢2050mm热轧层流冷却段划分成主冷段和精冷段两部分,其控制功能如图2所示。

图2 2050mm热轧卷取温度控制功能

当主冷段通过开环控制大致接近目标温度,在精冷段通过开环与闭环控制相结合,使其达到目标卷取温度,即在带钢位于终轧测温仪期间,实测终轧温度、

带钢厚度和带钢速度,进行周期性的前馈控制计算,并适时把阀门开闭的设定值送给基础自动化;在带钢头部到达卷取测温仪到其尾部离开卷取测温仪期间,利用实测卷取温度对层流冷却进行周期性的反馈控制和自适应计算。

为了解决在较大加、减速时,在一个周期内需多个阀门开闭的问题,PCC 计算出在一个周期内阀门开闭数随带钢速度变化的比例系数,在一个周期内由BAC根据实际速度变化自动进行阀门数的增减,这样可把一个控制周期内的卷取温度波动控制在较小的范围内。

3.3 2050mm热连轧机层流冷却系统的控制功能

3.3.1 淡淡起始阀的选择

上部层流段和下部冷却段第1个打开的阀门位置,不仅对带钢冷却质量产生影响,而且影响带钢在输出辊道上的运行稳定性。第1个打开的上部阀门可使高温带钢在一接触低温冷却水后,把带钢压向辊道的表面,而第1个打开的下部喷水阀门则使高温带钢的下表面受急冷后向上拱翘。所以,系统需具有选择起始阀门位置的功能。一般情况下,上下起始阀门不能处于同一位置时,下部起始阀门只能出现在上部起始阀的后面(按轧制方向)。

3.3.2 冷却与喷水方式的选择

系统设有3种冷却方式供选择:(1)上部和下部均为空气冷却;(2)上部为水冷,下部为空冷;(3)上下部均为水冷。

主冷区有4种喷水方式,见表1。

表1主冷段的喷水方式

序号喷水方式的名称标志含义

1 全喷水方式××××每组中所有阀门全打开

2 3/4喷水方式×××○每组第4个阀门关闭

3 1/2喷水方式×○×○每组第1、3个阀门关闭

4 1/4喷水方式×○○○每组第1个阀门打开

注:×表示阀门打开;○表示阀门关闭.

喷水方式按4个阀门构成1个喷水集管组来执行。全喷方式又称密集喷水方式,3/4~1/4喷水方式又称稀疏喷水方式。

3.3.3 带钢头尾卷取温度调节

系统设有5种方案调节带钢头、尾及中部卷取温度(依次以符号Th、Te、Tm表示):(1)Th=Te=Tm;(2)Th>Tm=Te;(3)Th=Te>Tm;(4)Th=Tm

3.3.4 临界表面温度的确定

带钢进入层流冷却控制区后应尽可能用密集喷水,即用最大的冷却能力把带钢从终轧温度冷却到临界表面温度后改用稀疏喷水进行冷却。

由冷却策略确定带钢临界表面温度,系统为命中这个目标,控制喷水长度,并根据带钢速度的变化,进行跟踪与修正。

3.3.5 冷却能力的检查

系统可按精轧道次计划计算的额定值(终轧温度、带钢速度、加速度和带钢厚度)进行估算。检查层流冷却段是否有足够的冷却能力保证带钢全长达到所要求的卷取温度。

若发现冷却能力严重不足时,系统具有要求改变精轧道次计划的功能。

3.3.6 系统自动确定冷却策略数据

系统可独立从“后计算存放”的表格中获得冷却策略数据。这些数据一般作为带钢材质、卷取目标温度、厚度、速度和终轧温度的表函数出现(即称内部表)、可直接用于冷却系统的控制。

3.3.7 喷水阀门的周期计算

经预计算确定的喷水阀门,在带钢实际冷却过程中,由于实测值与计算值的差异需进行调节,这种调节功能是通过系统对带钢冷却过程的周期计算(每隔2~3s计算一次)来实现的,并以此来更新预计算的控制数据,提高控制精度。

3.3.8 自适应功能

系统对层流冷却段的带钢不断跟踪和自适应修正,以使冷却模型尽可能反映带钢的实际冷却过程。所得自适应系数以钢种分类存放起来,遗传给后面轧制的带钢在层流冷却中使用。

4 2050mm热连轧带钢卷取温度控制优化

宝钢2050mm热轧卷取温度控制由于外方提供的模型精度不够,且生产的钢种和产品规格又在不断扩大,原来的模型已不能很好地满足卷取温度高精度的要求,特别是对厚规格带钢,其控制精度更差。

根据实际情况,首先在不增加设备及硬件投入的情况下,主要通过优化、改进和完善卷取温度控制数学模型,来提高卷取温度控制精度,该工作已在1996年底完成。1998年底基本完成硬件设备和控制系统的改进。

4.1 层流冷却控制精度存在的问题及实施的第1步解决方案

(1)原模型没考虑带钢内部厚度方向的热传导,因此系统误差较大,特别是对于厚板,预设定精度差。现已采用内部表格,按带钢厚度分级,对温度进行补偿。

(2)在PCC控制中,精轧控制和层流冷却控制是两个系统,当轧机最大

速度设定过高时,层流冷却能力不足,带钢尾部卷取温度高。现已将精轧机控制与层流冷却控制相互联系起来,系统保证轧机设定的最大速度不超过层流冷却能力。

(3)原设计周期控制为3s,周期控制时间太长,响应慢,控制精度差,现已修改相应控制软件,将控制周期改为2s。

(4)原模型中加速度影响模型精度不高,在加减速时,设定波动太大,控制精度差。现已将加速度影响模型修改为

SUFn=SUF/(1+k.v)

式中,SUFn为加速度影响因素值;SUF为原模型计算值;k为模型系数;v为带钢速度。

(5)原使用的工艺极限参数值与实际不符,对于厚板,当速度低于一定值时,温度控制精度很低。现已对各种情况下的工艺极限参数进行重新确定,使之与实际相符。

(6)对于厚度>16.0mm的带钢,当穿带速度变化较大时,头部温度设定时好时坏。现已根据带钢厚度范围对穿带速度上限进行了限制。

4.2 带钢卷取温度控制第1步优化的效果

经过上述改进后,卷取温度的控制精度得到了显著提高,对比分析见表2。表2 优化前后的卷取温度控制精度对比(目标值±30℃精度)

带钢厚度/mm 优化前控制精度/% 优化后控制精度/%

2.1~2.5 85.844 96.29

2.5~

3.2 85.524 96.69

3.2~

4.2 86.280 97.16

4.2~6.3 80.922 96.83

6.3~12.6 70.594 95.96

12.6~25.4 40.652 90.25

4.3 卷取温度控制硬件和系统的改进

(1)对层流冷却装置进行了改进,把粗调区改为精调,以进一步提高控制精度。

(2)对层流冷却装置布置形式进行了改进,把反馈控制的调节加大并向后移动一定的位置,增加中间测温仪。

(3)在控制系统上,增加1台计算机专门用于层流冷却的控制,控制周期进一步缩短(1s),利于控制模型和控制软件的进一步开发。

作者简介:袁建光(1961~),男(汉族),四川人,高级工程师,热轧部副

部长。

作者单位:宝山钢铁(集团)公司热轧部,上海200941

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

带钢热连轧卷取温度控制标准系统

1国内外带钢热连轧卷取温度控制系统的发展现状及意义 1.1带钢热连轧的国内外发展状况 1.1.1国外发展状况 从1924年阿斯兰1470 mm和1926年巴特勒1070 mm带钢热连轧机计算起,带钢热连轧机已经有八十多年的发展历史了。它具有综合技术性强、生产效率高、经济效益大、发展迅速、自动化程度高、新技术使用广泛等特点。可以作为衡量国家工业发展水平的一个重要标志。现在,我国已经具备设计和制造带钢热连轧机的能力了。带钢热连轧卷取温度控制系统也有将近五十年的发展历史了。1958年以前,实现了模拟AGC(自动厚度控制);1960年以前,实现了轧机调速、压下、活套控制的电动自动化;1962年,美国在麦克劳斯(Mclouth)钢铁公司1525 mm热轧机上实现了计算机控制;1964年,日本在新日铁堺厂1420 mm热轧上实现了计算机控制;1971年11月日本新日铁大分厂2235 mm热轧计算机控制系统投入运行,该热轧计算机控制系统作为当时的设计典范。1980年以后,带钢热连轧计算机控制系统发展得更加迅速,趋向成熟。 图1.1 鞍钢2150钢厂带钢热连轧2150mm层流冷却生产现场图片 80年代末期开始,国外许多热轧带钢厂对现有冷却设备进行改造,目的是提高冷却能力及温度控制精度。为了提高温度控制精度,避免因控制阀门开闭引起的冷却水量波动,造成温度控制精度波动,国外热轧带钢厂的冷却设备均设置高位水箱,有些工厂具有水箱液面高度恒定控制技术。为了提高带钢宽度方向上水量分布的均匀性

和提高下部冷却能力,对喷水装置进行了改造。为了提高卷取温度的控制精度,每个控制阀门所控制的水量减少,即控制单元呈细分化趋势。日本众多热轧带钢厂在层流冷却段内设置测温仪表,检测带钢中间温度,为控制模型实现前馈控制功能及提高设定计算精度服务。有些工厂在冷却段中间设置带钢相变过程检测仪,为模型计算带钢相变热服务。微合金高强度钢板的开发,对卷取温度控制精度提出了更高的要求。国外许多热轧带钢厂对现有的过程机控制系统进行改造,有些工厂单独设置一台过程机来控制卷取温度,以提高模型计算速度、缩短再设定计算周期,提高控制精度。 随着冷却设备的更新、改造,控制模型功能的扩展及模型的进一步理论化,国外众多热轧带钢厂的卷取温度控制精度日益提高,带钢全长卷取温度±20℃的命中率大于94%,控制技术的优化满足了新钢种开发的需要,使热轧带钢的使用领域进一步扩大。 1.1.2国内发展状况 1978年12月投产的武汉钢铁(集团)公司的1700mm热连轧机控制系统是我国引进的第一套带钢热连轧计算机控制系统。这个系统基本是按照日本新日铁大分厂的模式设计的。 1993年11月,在武汉钢铁(集团)公司、重庆钢铁设计研究院、北京科技大学的共同合作下,完成了武汉钢铁(集团)公司1700 mm热连轧机计算机系统的更新改造工程。在国内首次采用“硬件引进,软件立足国内”的方针,新系统在不停产的情况下顺利投入使用,并获得了比原有系统更好的控制效果。该系统已正常运行至今,产品的控制精度得到提高,该项目获得了冶金部科技进步特等奖,获得了国家科技进步一等奖。 随后,在1995年5月,武汉钢铁(集团)公司、北京科技大学、冶金自动化研究院、北京钢铁设计研究院等单位又共同完成了太原钢铁(集团)公司1549mm热连轧机控制系统的建立和开发。 这两个项目的实施,标志着我国已经有能力依靠自己的力量设计和开发像热连轧这样过程控制系统。 为了提高冷却效果,曾提出过各种冷却方式。实验表明,低压大水量的冷却系统的冷却效果比较好。20世纪60年代以来,所建的热轧带钢轧机,绝大部分都采用低压大水量的层流冷却。图1.1为卷取温度控制系统结构图。

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

混凝土温控措施(1)知识交流

混凝土温度控制 1概述 温控措施要求 (2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。 (3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。 (4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。 15.14.5.3 合理的层厚及间歇期 (1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。若需变动,应经监理人书面批准。 (2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m ,层间间歇时间4~9天。 表15-7 大体积混凝土浇筑层间间歇时间单位:天 注:低温季节浇筑取下限值。 (3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。 (4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。

15.14.5.4 合理的施工程序和进度 主体建筑物施工程序和进度安排,应满足以下几点要求: (1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。 (2) 贴坡混凝土安排在10月至次年4月施工。 (3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。 15.14.5.5 混凝土表面保护 (1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。 (2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。应重视防止气温骤降及寒潮的冲击。所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。浇筑块的棱角和突出部分应加强保护。 各部位主要保温要求如下: 1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。 2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。施工期的永久保温指保温至本标工程完工前。β值取15.14.5.5(2) 1)中下限值。 3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。 4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。β值取15.14.5.5(2) 1)中上限值。

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

热轧带钢质量控制标准

热轧带钢质量控制标准 1、范围 本标准规定了信钢公司碳素结构钢和低合金结构钢热轧钢带的质量控制标准。 本标准适用于厚度不大于8.0mm、宽度345mm~520mm的碳素结构钢和低合金结构钢热轧钢带。成分、尺寸、外形、力学性能、试验方法等规定相关内容参考:GB/T 3524-2005 2、连铸坯化学成分范围及质量要求 2.1成分(依据国家标准:GB/T 700-2006、GB/T 1591—2008) Q195带钢一般均需要进一步冷轧,最高冷轧到0.35mm。炼钢工序要求脱氧彻底(小于60ppm),吹氩时间大于7分钟,中包满包浇注,严格控制夹杂物。

对连铸坯出现的凹陷、内裂、气泡、割痕等缺陷,要予挑出降级处理或切割回炉。 3、带钢尺寸、外形、重量及允许偏差 3.1 钢带厚度允许偏差:0~-0.15mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 如果用户有具体要求,按用户要求执行。 3.2钢带宽度允许偏差:(不切边) 宽度<450 0~+3mm 宽度﹥450~520 0~+4mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 特别注意:对于专门做管子的352mm、432mm等钢带,宽度允许偏差要求更严格,务必控制到位。 3.3钢带的厚度应均匀,在同一横截面的中间部分和两边部分测量三点厚度,其最大差值(三点差)要求:0~0.15mm。 3.4供冷轧用的钢带,沿轧制方向的厚度应均匀,在同一直线上任意测定三点厚度,其最大差值(同条差)不大于0.16mm。 3.5钢带应严格控制镰刀弯,每米不大于2mm。 钢带边部不允许有波浪弯出现。 3.6 钢带的一边塔形高度不得超过30mm。 4、力学性能

混凝土的温控计算及温控措施(计算公式)

4.混凝土的温控计算及温控措施 4.1 C30大体积混凝土配合比设计及试配。 为降低C30大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。 4.1.1原材料选用 水泥:C30大体积混凝土应选用水化热较低的水泥,并尽可能减少水泥用量。本工程选用了普通硅酸盐水泥,即PO42.5海螺牌水泥。 细骨料:根据试验采用Ⅱ区中砂。 粗骨料:在可泵送情况下,选用粒径5-32.5连续级配石子,以减少水泥用量和混凝土收缩变形。 含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。 掺合料:采用添加粉煤灰技术。项目部根据试验选定才用二级粉煤灰,在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,大大降低了混凝土前3天的水化热。 外加剂:采用外加膨胀剂(AEA)技术。在混凝土中添加占胶凝材料8%的AEA。试验表明,在混凝土添加了AEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,从而提高了提高混凝土抗裂强度和抗渗性能。 4.1.2试配及施工配合比确定 根据试验室配合比设计试配,确定每立方米混凝土配合比为PO42.5级水泥 305kg,砂(中砂)752kg、连续级配碎石(粒径5—31.5mm)1063kg,掺合料65kg,外加剂25kg,水190kg,坍落度120士20mm。 4.2混凝土温度验算 假若承台周边没有任何散热和热损失条件(现场为砖地模且在砼施工时周边分层回填夯实),水化热全部转化成温升后的温度值,在混凝土表面覆盖一层麻袋作为保温层,则混凝土水化热绝热温升值为(混凝土在3-3.5d的水化热为峰值,则取3d砼温度): 计算参数:混凝土为C30 P8、普硅水泥为P.O42.5

质量控制篇

质量控制篇 化验室的质量保证是贯穿检测全过程的质量保证体系,包括:人 员素质、监测分析方法的选定、采样、数据处理和报告、审核等一系 列质量保证措施和技术要求。 1. 实验室质量控制措施 采取质控措施 空白试验 查找原因 人员 设施、设备、环境 化验 标样、回收率 质控失控 质控受控 化验室负责人 数据处理给出分析结 果 审查结果 质控受控 报出结果

图6-1实验室质量控制措施流程图 6.1化验人员的要求 6.1.1化验人员应具备扎实的实验室化验基础理论和专业知识,正确、熟练的掌握化验项目的方法和操作,学习和了解污水处理工艺的基本常识。 6.1.2凡担任化验工作,报告化验数据的人员必须参加化验工的合格证考试(包括基本理论、基本操作技能和实际样品的分析三部分)。考核合格才具备上岗资格。 6.2仪器设备的管理和定期检查 6.2.1为保证化验数据的准确可靠,该化验室须认真执行计量法,对所用计量分析仪器进行鉴定,经鉴定合格方可使用。 6.2.2按计量法规定,定期送法定计量检定机构进行鉴定,合格方可使用。 6.2.3新购置的计量器具需经计量部门鉴定合格后方可使用。 6.3化验分析方法的选用和验证 6.3.1化验室进、出水化验项目BOD5、T-N、T-P、TSS、NH3-N、COD均采用国家标准方法进行化验。其他化验项目尽可能采用国家标准方法。 6.3.2被化验室采用的方法需经过方法验证方可采用。证明该方法可被采用的条件:准确度(标准样品测定、回收率测定等);精密度(平行测定、重复测定等);空白试验等。

6.4采样的质量保证 6.4.1采样工作应严格按照该手册5.1采样规定进行工作。 6.5实验室的基础条件 6.5.1实验室环境:应保持实验室整洁、安全的操作环境,通风良好,布局合理。相互干扰的化验项目不在同一实验室内操作。对产生刺激性、腐蚀性、有毒气体的实验操作应在通风橱内进行。分析天平设置专室,做到防尘、防震、防噪声,并保持一定的干燥度。 6.5.2实验室应保证充足的电力供应,应按仪器设备需要配齐火、地、零线,电缆线确保良好的绝缘性能。 6.5.3实验室应保证充足的自来水供应,并做到管线合理。 6.5.4化学试剂:应采用符合分析法所规定的等级化学试剂。配置一般试液,应不低于分析纯级。取用时,应遵循“量用为出,只出不进”的原则,取用后及时密塞,分类保存,严格防止试剂被污染。不应将固体试剂与液体试剂或试液混合储放。定期检查药品存放条件和随时更换超期或不合格的药品和试剂。 6.5.5实验用水:该化验室选用电导率小于3.0us/cm。实验用水须经化验室检定合格后方可采用,化验结果登记在实验室用水记录。6.5.6实验器皿:根据实验需要,选用合适材质的器皿,使用后及时清洗、晾干,防止灰尘等玷污。 6.5.7试液的配置和标准溶液的标定 6.5. 7.1试液,应根据使用情况适量配置。选用合适材质和溶剂的试剂瓶盛装,注意瓶塞的密合性。

混凝土入模温度控制

石家庄至武汉客运专线新建铁路工程 (河南段2标段) 混凝土入模温度控制措施 编制: 审核: 审批: 中铁二十局集团石武客专河南段项目部一分部

2008年11月

混凝土入模温度控制措施 黄河公铁两用桥北引桥是我分部施工的一个重点工程。施工中对于混凝土的耐久性指标要求比较高,每一个施工环节都应严格控制,以确保混凝土能够真正达到耐久性要求。结合我单位施工实际情况,本着既要保证混凝土施工质量,又要保证工期顺利进行的原则,针对混凝土入模温度这一要求,特制定以下措施: 一、夏期施工中对砼入模温度的控制 当昼夜平均气温(当地时间6时、14时及21时室外气温的平均值)高于30℃时,即已进入夏期施工,混凝土入模温度不宜高于30℃ 1、采用砼搅拌运输车运输砼。运输车储运罐装混凝土前用水冲洗降温,并在砼搅拌运输车罐顶设置棉纱降温刷,及时浇水使降温刷保持湿润,在罐车行走转动过程中,使罐车周边湿润,蒸发水汽降低温度,并尽量缩短运输时间。运输混凝土过程中宜慢速搅拌混凝土,不得在运输过程加水搅拌。 2、夏期浇筑砼前,要做好充分准备,备足施工机械,创造好连续浇筑的条件。砼从搅拌机到入模的时间及浇筑时间要尽量缩短。 3、施工时间段的选择 环境温度势必会增加用于拌制混凝土的各种材料的温度。根据夏季天气的特征,通过试验室测得睛天时不同时间段的平均温度: 8:00温度为27.5℃,14:00温度为33.7℃,17:00温度为28.7℃,19:00温度为27.3℃,进入夜间后温度会逐渐降低。所以,施工开盘时间选定在19:00以后,避开高温时段。 4、原材料的温度控制

(1)、水泥和粉煤灰的温度控制 优先采用进场时间较长的水泥和粉煤灰进行拌制混凝土,尽可能降低水泥及粉煤灰在生产过程中存留的余热。通过测温得出新进材料与放置24小时以上的材料相比温度平均差15℃,2天后温度基本稳定。通过对温度相对稳定的水泥进行测试得出平均温度为 38.6℃。粉煤灰温度为33.6℃。所以采用温度较稳定的胶凝材料是控制混凝土温度最为关键的一点。 (2)、集料的温度控制 从混凝土配合比中可以看出,一方混凝土中粗细骨料用量将近占总量80%,所以控制好粗细骨料的温度是控制混凝土入模温度的基础。通过对粗细骨料的温度测试得出:8:00为27.3℃,14:00为33.2℃,17:00为28.9℃,19:00为27.3℃,根据以上不同时段对集料温度测试结果,综合考虑,降低骨料温度可以采用以下措施: A、采用通风良好的遮阳大棚料场,避免太阳直射达到降温目的。 B、避开白天高温时段,在晚19:00以后环境温度逐渐下降之后和早上7:00以前环境温度还未上升之前这一时间段内进行施工。 C、应急时可采用对骨料洒水降温的方法进行降温。(注意含水率的测试,以保证混凝土配合比的质量) (3)、水温控制 水温控制是降低混凝土入模温度的最佳方法。通过对刚抽出的地下水进行测温,测得温度为18℃(必要时可采用冰块降温),采用刚抽出的地下水用于砼拌制混凝土可以满足降温要求。 (4)、外加剂温度控制 外加剂掺量较少,并且,外加剂罐放置在拌和楼下通风阴凉处,所以对混凝土的温度影响很小,故不考虑其温度对混凝土入模温度的影响。

混凝土温控的措施1

1绪论 实习任务:根据所学内容和相关专业知识,简述大体积混凝土温度应力 的概念以及应力作用下产生的裂缝。详述大体积混凝土温度控制的任务和作用, 以及在不同施工阶段解释说明温控的具体措施。 实习的作用:全面检验和巩固课程学习效果,可以利用所学理论解决实 际水利工程问题的能力,增强我们的专业素质,提高自我的学习能力,和实践 能力。 2温度应力 2.1温度应力的概念:由于温度变化,结构或构件产生伸或缩,而当伸缩受到限制时,结构或构件内部便产生应力,称为温度应力。 2.2产生的原因:在凝固、冷却的过程中因为产品结构、环境等因素造成各个位置散热条件不会完全相同,热胀冷缩而形成的互相之间因为收缩而产生的作用力。 3温度裂缝 3.1裂缝的类型:(1)表面裂缝(2)贯穿裂缝和深沉裂缝 3.2裂缝的部位 (1)表面裂缝:多发生在浇筑块侧壁,方向不定,数量较多。 (2)贯穿裂缝和深沉裂缝:这种裂缝自基础面向上开展,严重时可能贯穿整个坝段。此种裂缝切割的深度达3~5m,宽度达1~3mm,且多垂直基面向上延伸,既能平行纵缝贯穿,也能沿流向贯穿。 3.3温度裂缝的原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果, 一方面是 混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 (1)表面裂缝:混凝土浇筑后,其内部由于水化热温升,体积膨胀,如遇寒潮,表层降温收缩。内胀外缩,在混凝土内部产生压应力,表层产生拉应力。在混凝土内处于内外温度平均值的点应力为零,高于平均值的点承受压应力,低于平均值的点承受拉应

大体积砼的温控措施及施工工艺

大体积砼的温控措施及施工工艺 (1)大体积砼的温控措施 大体积混凝土在施工阶段产生的温度应力往往超过外荷载引起的结构应力,使混凝土产生温度裂缝,影响锚碇使用年限。因此,锚碇大体积混凝土的温度控制成为确保锚碇施工质量的关键问题。在施工过程中,我们将采取以下措施:A砂石料和拌和水预冷却措施 按照温控方案的要求,在每次混凝土开盘前,工地试验人员都须测定和记录砂、石、水泥、粉煤灰和拌合用水的温度,据以计算其混凝土出盘温度和入模温度。当环境温度较高,混凝土拌和料的入模温度达不到设计温度要求时,采用原材料预冷措施,降低混凝土拌和料的温度。 B冷却拌和用水 采用冰水作拌和用水降低拌和料温度。 C集料预冷 粗集料的温度对混凝土拌和料的温度影响最大。采取冰水喷洒集料预冷,搭盖通风席棚遮阳。

(2)大体积砼的施工工艺 A浇注 混凝土采用90 m3/h陆上拌合站集中拌合,2台输送泵浇筑各块混凝土。 按设计图纸和温控方案划分各层厚度。分层布置参见混凝土浇注分层布置图。每层由于浇注面积大、混凝土方量多,考虑到混凝土生产能力的限制,施工从一侧开始,以坡比1:5按斜面法布料,由低处向高处浇注,水平推进作业。在下层混凝土初凝前,上层混凝土浇筑到位,以保证混凝土浇筑质量。上下层混凝土浇注间歇时间控制在4-7d。由于混凝土采用泵送施工,具有较大的流动性,施工时在前端设置挡板。混凝土浇注时间选择在室外温度较底时进行,以夜间施工为主,并按气温控制混凝土入仓温度。为保证混凝土的均匀性和密实性,在浇注过程中加强振捣。振动器采用型号为φ100mm-150mm和φ60mm-35mm,两者结合使用,按施工规范要求反复振捣。在浇注过程中随时检查模板、支架钢筋、预埋件、预留孔和混凝土垫块的稳固情况,当发现有变形、

热轧带钢表面质量检测系统的工程设计与实践

2005年第6期宝 钢 技 术 热轧带钢表面质量检测系统的工程设计与实践 刘 钟1,吴 杰1,张 华2 (1.上海宝钢工程技术有限公司,上海 201900;2.宝钢股份公司,上海 200941) 摘要:由于受工艺条件、生产环境的制约,热轧带钢表面缺陷识别一直是困扰生产厂提高产品质量和生产率,减少用户质量异议的瓶颈问题。文章介绍了热轧带钢表面质量检测系统的原理与构成,并介绍了宝钢热轧厂两条生产线的带钢表面质量检测装置及其配套设施的工程设计。 关键词:热轧带钢;表面检测;缺陷;识别 中图分类号:TP216 文献标识码:B 文章编号:1008-0716(2005)06-0057-05 D esi gn and Practi ce of the Hot Str i p Surface Qua lity I n specti on Syste m L I U Zhong1 WU J ie1 ZHAN G H ua2 (1.Shangha i Baosteel Eng i n eer i n g&Equ i p m en t Co.,L td,Shangha i201900,Ch i n a; 2.Baoshan I ron&Steel Co.,L td.,Shangha i200941,Ch i n a) Abstract:The online recogniti on of the surface defects of a full coil of hot stri p has al w ays been a“bottleneck”p r oble m which puzzles manufacturers in i m p r ove ment of their p r oduct quality,in2 crease of p r oductivity and decrease of comp laints about p r oduct quality fr om cust omers due t o re2 strains of technol ogical conditi ons and p r oducti on envir on ment.The p rinci p le and compositi on of the hot stri p surface ins pecti on syste m are intr oduced,t ogether with hot stri p surface ins pecti on devices f or t w o p r oducti on lines of Baosteel B ranch Hot Rollin g Plant,and the engineering design f or auxilia2 ry facilities. Key W ords:hot stri p,surface ins pecti on,defect,recogniti on 1 前言 热轧带钢表面质量检测通常只对带钢尾部一段采用目视检查方式。一般情况下,从卷取机下线的热卷,通过检查线的开卷机打开带钢尾部,切取一段钢板,在输出辊道上人工检查带钢上下表面质量,如发现连续性质量缺陷则采取相应措施。这种只对带钢尾部很短的一段区域进行表面质量抽检的检测方式,不能及时反映带钢表面质量的全貌,给下道工序生产带来困难,造成用户质量异议。另外,由于缺乏有效的带钢表面质量检测手段,无法提供轧辊更换优化指导,不能进行准确的产品质量等级判定,造成不必要的产品降级。与冷轧线和镀锌线相比,热轧线上进行带钢表面质 刘 钟 博士 1968年生 1997年毕业于西北大学 现从事工业自动化专业 电话 66786678-2144量在线检测并非容易,因为其环境更为恶劣,主要表现为:带钢温度高,辐射热量大;表面状态复杂,缺陷类型多;下表面检测受辊缝宽度制约;轧制过程中水滴、灰尘影响缺陷识别;轧制速度变化大;带钢浪形和中心位置不断变化。 尽管如此,源于生产的需求,近年来国内外一些研究机构都致力于热轧带钢表面质量在线检测系统的研制,并成功推出各自的产品。以VA I SI A S为代表的线扫描摄像机检测系统和以Parsy2 tec为代表的面扫描摄像机检测系统都已在热轧线上成功应用。由于面扫描摄像机检测系统能克服带钢上下抖动和左右摆动给检测带来的影响,因此热轧带钢表面质量检测一般采用面扫描摄像技术,但相应设备安装难度大,投资较高。 宝钢分公司热轧厂为了保证热轧产品表面质量,满足下道工序生产和市场对高质量产品的需 75

混凝土温度控制措施

混凝土温度控制措施 一、混凝土工程执行的温控标准 (1)混凝土温度控制应遵循《水工混凝土施工规范》(DL/T5144-2001)中的有关规定; (2)具体温控措施见设计方的《大坝混凝土施工技术要求》; (3)趾板、面板强约束区混凝土在低温季节浇筑; (4)趾板混凝土最高温度不超过33~35?C,面板混凝土最高温度不超过31~33?C,基础约束区稳定温度16.5?C。 二、混凝土温控措施 (1)合理安排混凝土施工时段 趾板、面板及基础强约束区的混凝土在低温季节浇筑。 (2)优化配合比设计 严格选择优质原材料,按设计推荐的配合比进行配合比试验,确定最佳配合比。掺用高效优质复合型外加剂、I级优质粉煤灰,提高混凝土的增强、抗裂性能。 (3)严格按设计要求和施工规范分缝分块分层 趾板沿长度方向设施工缝,施工缝间距不超过25~30m;在趾板转折点、地质缺陷处或基岩岩性发生变化处设置伸缩缝;面板混凝土分缝分块严格按施工图纸要求进行。 (4)加强养护与通水散热。 在混凝土表面覆盖绒毛毡保温被或双层草袋进行保温,防止气温骤升时表面水份过分挥发或气温骤降等产生表面干缩裂缝。夏季浇筑混凝土时,在仓面内采取喷雾、隔热、防晒等措施,运输设备设置遮阳棚等。混凝土表面连续喷(洒)

水养护。对一般浇筑层连续养护至上一层施工;对面板和趾板混凝土,保湿养护至大坝蓄水。 (5)加强施工组织管理,确保现场施工顺利进行 在混凝土浇筑前,作好各项准备工作,机械设备、材料供应、施工人员等均安排充足,做到“人停机不停”。在滑模上部设置防雨棚,若温度较高,可起到遮阳防晒的作用;若遇气温较低,可起到保温作用,必要时在棚内设置碘钨灯升温。若浇筑混凝土期间温度较高,则尽量利用夜间施工,避开中午高温时段。

混凝土温控施工方案

辽宁省绥中猴山水库工程 混凝土温控专项方案 编制: 审核: 批准: 中国水利水电第六工程局有限公司 辽宁省猴山水库工程项目部

二〇一六年五月 混凝土温控专项方案 一、概述 1、工程简介 猴山水库工程位于绥中县狗河中游范家乡赵家甸村上游约1km处,距离绥中县城约35km,距离前卫火车站约25km。坝址以上河道长47.9km,控制流域面积377km2,占狗河全流域面积的70%。水库任务是以城市供水为主,兼顾灌溉的大型综合利用水利枢纽工程。 水库最大库容为1.6×108m3,工程等别为II等,工程规模为大(2)型,永久性主要建筑物拦河坝、副坝建筑物级别定为2级;临时性建筑物为4级。主要建筑物的设计洪水重现期采用100年(P=1%),校核洪水重现期采用1000年(P=0.1%),消能防冲建筑物设计洪水重现期采用50年(P=2%)。 拦河大坝为混凝土重力坝,最大坝高51.60m,由左、右岸挡水坝段、门库坝段、引水坝段及溢流坝段等组成。主坝坝顶全长349.0m,其中左岸挡水坝段长116.0m,右岸挡水坝段长110.0m,溢流坝段长69.0m,引水坝段长16.0m,门库坝段长38.0m。挡水坝段坝顶宽度为8m,坝顶高程138.20m,最低建基面高程86.60m。 2、水文气象 本工程位于绥中县狗河流域,地处中纬度,属于温带季风气候区,其特点是冬季以西北季风为主,严寒干燥;夏季以东南季风为主,炎热多雨,四季冷暖干湿分明。 多年平均气温在9.5℃,极端最高气温达39.8℃,极端最低气温为-26.3℃。结冰时间一般为11月上旬,融冻时间为3月中旬。最冷月为一月,多年平均温度为-7.7℃。多年平均相对湿度为62%,多年平均最大相对湿度出现在7月,为84%;多年平均最小出现在12月,为50%。 3、编制目的 混凝土自然散热缓慢,浇筑后水泥水化热集中,混凝土内部温度迅速上升,且幅度较大。为了防止混凝土内外温差过大,在温度应力的作用下而发生裂缝,混凝土的浇筑温度及内部最高温度必须加以控制。

大体积混凝土冷却循环水温控措施方案

大体积混凝土冷却循环水温控措施 由于大体积混凝土具有结构厚、体形大、施工技术要求高等特点,在大体积混凝土施工过程中,因水泥水化热作用产生很大的热量,混凝土表面热量散失较快,内部热量不易散发,从而内部与表面产生较大的温差。当温差超过一定临界值时,致使混凝土产生温度应力裂缝,从而影响工程的耐久性。本工程底板 3.2米、2.6米厚采用“大体积混凝土冷却循环水温控施工工法”,防止了大体积混凝土产生温度应力裂缝的质量通病。 采用冷却循环水温控法降低大体积混凝土温升,通过测温点内热偶传感器所测混凝土内温度的变化规律,自动调节循环水管水流速度,平衡大体积混凝土内外温度,防止混凝土温差所产生的应力裂缝,确保工程质量。 5.11.1施工工艺流程 施工工艺流程见下图 5.11.2 砼温升和冷却循环水管、测温点埋设计算 (1)砼温升计算 根据经验公式:Tmax= To +Q/10 式中 Tmax----为砼内部的最高升温值; To----为砼浇筑温度。按夏天15天平均气温取30℃; Q-----为C30每立方米砼中PO42.5矿渣水泥用量取368㎏/m 3, 则施工中砼中心最高温升值为:Tmax=30+368/10=66.8℃

1)根据《高层建筑施工手册》及热交换原理,每一立方砼在规定时间内,内部中心温度降低到表面温度时放出的热量,等于砼在硬化期间散失到大气中的热量。 2)依据该基础设计尺寸、配筋、埋件、留洞、夏天昼夜气温变化及砼温升梯度等情况,以¢48冷却循环水管所承担的砼理论降温体积为基准,通过精确计算(计算过程略)确定,冷却循环水管道按照左、中、右三个循环系统进行安装。冷却循环水管安装上下中心距为660mm,左右中心距为1710mm(如下图所示),三个系统循环水管呈之字形布置。

大体积混凝土温控方案

大体积混凝土施工温度控制方案 一、编制依据 1、京沪高速铁路高性能混凝土实施细则 2、路桥施工计算手册 3、高性能混凝土配合比选定报告 4、京沪高速铁路桥梁承台、墩台身设计图 二、原材料进行控制 根据京沪高速铁路高性能混凝土施工实施细则,我公司原材料采取以下措施防止大体积混凝土温度裂纹。 1、采用高标号低、中热水泥,尽量减少每立方米水泥用量,减少水化热。 2、选择水泥时,选用铝酸三钙、游离氧化钙、氧化镁和三氧化硫尽可能低的低收缩水泥,水泥中碱含量小于0.6%。 3、选择粒径为5~31.5mm的二级配碎石配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。 4、选用平均粒径较大的中砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 5、为了改善混凝土的和易性便于输送,掺加适量的粉煤灰。粉煤灰对降低水化热、改善混凝土和易性有利。

6、在混凝土中掺加减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。 三、优化混凝土配合比 1、选择强度、耐久性适宜,混凝土收缩性能相对较好、费用经济的配合比进行施工。 2、细骨料的体积为骨料总体积的34%~38%。 3、在满足和易性的基础上,尽量选用较少的胶凝材料用量,胶凝材料的组成及适用比例通过混凝土试验及结构物热工计算必选后确定。 4、在选取适当水胶比的情况下,混凝土的强度储备在满足设计强度的前提下,56天标养强度不超过设计强度等级的140%。 5、混凝土的设计坍落度不应过大。 四、降低入模前混凝土浇灌的温度,入模温度不大于25度,具体措施如下 1、采用冰水配制混凝土,或在搅拌站配置有深水井,采用冰凉的井水配制。 2、粗细骨料均搭设遮阳棚,避免日光曝晒。 3、夏季施工尽量安排在晚9:00~早8:00之间,一最大限度的降低大体积混凝土入模温度。 4、不使用温度过高的水泥。 五、混凝土浇注完成后,延缓温差梯度与降温梯度的措施 1、首次进行承台、墩台施工时,选择4个代表性截面进行混凝土

热轧带钢产品标准

热轧板带产品标准

1、碳素结构钢板卷 注:1) Q235A、B级沸腾钢锰含量上限为0.60%。 2) 沸腾钢硅含量不大于0.07%;半镇静钢硅含量不大于0.17%;镇静钢硅含量下限值为0.12%。 3) D级钢应含有足够的形成细晶粒结构的元素,例如钢中酸溶铝含量不小于0.015%或全铝含量不小于 0.020%。 4) 联系钢中残余元素铬、镍、铜含量应各不大于0.30%,氧气转炉钢的氮含量应不大于0.008%。如供方 能保证,均可不做分析。经需方同意,A级钢的铜含量可不大于0.35%。同时,供方需做铜含量的分析,并在质量证明书中注明其含量。

注:1)B为试样宽度,a为钢材厚度; 2)Q195的屈服强度只作参考,不作为交货条件; 3)拉伸、弯曲试验,钢板和钢带取横向试样,延伸率允许比规定降低1%(绝对值); 4)各牌号A级钢的冷弯试验,在需方有要求时才进行。当冷弯试验合格时,抗拉强度上限可以不做交货条件。 11)优质碳素结构钢板卷 注:1)允许有游离渗碳体组织存在,按GB/T13299第一评级图评级,乙级的级别范围为0、1、2、3级; 2)镇静钢应进行低倍检验,一般疏松、中心疏松及偏析不大于3.0级; 3)根据需方要求,可检查钢中非金属夹杂物,其合格级别由供需双方协商规定; 4)根据需方要求,经供需双方协议可补充以下要求:修改化学成分;检验晶粒度;检验显微组织;加严力学性能指标;进行V型缺口冲击试验等; 5)厚度小于4mm

3、低合金高强度结构钢板卷 2) V、Nb、Ti、Al用于细化晶粒,表中规定的数值并不意味每个元素都应该含有的量,而是当使用该 元素时该元素的含量。除A、B级钢外,其它各级钢应至少含有其中一种并达到规定含量,若这些元素同时使用,则至少应有一种元素的含量不低于规定的最小植; 3)钢中残余元素Cr、Ni、Cu的含量应不大于0.3%,供方如能保证可不作分析;

相关主题
文本预览
相关文档 最新文档