当前位置:文档之家› 混凝土的冻融

混凝土的冻融

混凝土的冻融
混凝土的冻融

混凝土的冻融

水利建筑物混凝土:混凝土的冻融

混凝土的抗冻性是混凝土受到的物理作用(干湿变化、温度变化、冻融变化等)的一方面,是反映混凝土耐久性的重要指标之一。对混凝土的抗冻性不能单纯理解为抵抗冻融的性质,不仅在严寒地区混凝土建筑物有抗冻的要求,温热地区混凝土建筑物同样会遭到干、湿、冷、热交替的破坏作用,经历时间长久会发生表层削落,结构疏松等破坏现象。所以对混凝土的冻融破坏的研究显得尤为重要。对混凝土冻融破坏的机理,目前的认识尚不完全一致,按照公认程度较高的,由美国学者T.C.Powerse提出的膨胀压和渗透压理论,吸水饱和的混凝土在其冻融的过程中,遭受的破坏应力主要由两部分组成。其一是当混凝土中的毛细孔水在某负温下发生物态变化,由水转变成冰,体积膨胀9%,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力;其二是当毛细孔水结成冰时,由凝胶孔中过冷水在混凝土微观结构中的迁移和重分布引起的渗管压。由于表面张力的作用,混凝土毛细孔隙中水的冰点随着孔径的减小而降低。凝胶孔水形成冰核的温度在-78℃以下,因而由冰与过冷水的饱和蒸汽压差和过冷水之间的盐分浓度差引起水分迁移而形成渗透压。

另外凝胶不断增大,形成更大膨胀压力,当混凝土受冻时,这两种压力会损伤混

混凝土冻融试验作业

抗冻性能试验作业指导书 1适用范围 1、1慢冻法适用于检验以混凝土试件在气冻水融条件下,以经受得冻融循环次数来表示得混凝凝土得抗冻性能。 1、2快冻法适用于测定混凝土试件在水冻水融条件下,以经受得快速冻融循环次数来表示得混凝凝土抗冻性能。 2检测依据 《普通混凝土长期性能与耐久性能试验方法》(GB/T50082-2009) 3试验方法 3、1慢冻法 3、1、1慢冻法混凝土抗冻性能试验应采用100mm×100mm×100mm立方体试件。 3、1、3慢冻法混凝土抗冻性能试验所用设备应符合下列定。 冻融试验箱应能使试件静止不动,并应通过气冻水融进行冻融循环。在满载运转得条件下,冷冻期间冻融试验箱内空气温度保持在-20℃~-18℃得范围以内。融化期间冻融试验箱内浸泡混凝土试件得水温保持在得范围18℃~20℃以内。满载时冻融试验箱内各点温度极差不应超过2℃。 试件架应采用不锈钢或者其她耐腐蚀得材料制作,其尺寸应与冻融试验箱与所装试件相适应。

称量设备得最大量程应为20公斤,感量不应超过5克。 压力试验机精度至少为±1%,其量程应能使试件得预期破坏荷载值不小于全量程得20%也不大于全量程得80%、试验机上下压板及试件之间可各垫以钢垫板,两承压面均应机械加工与试件接触得压板或垫板得尺寸应大于试件承压面,其不平度应为每100毫米不超过0、02毫米、 温度传感器得温度检测范围不应小于(-20℃~20℃),测量精度应为±0、5℃。 3、1、4慢冻法试验步骤 1、在标准养护室内或同条件养护得冻融试验得试件应在养护龄期为24d时提前将试件从养护地点取出,随后应将试件放在(20±2)℃水中浸泡,浸泡时水面应高出试件顶面(20~30)mm,在水中浸泡时间应为4d,试件应在28d龄期时开始进行冻融试验。始终在水中养护得冻融试验得试件,当试件养护龄期达到28d时,可直接进行后续试验,对此种情况,应在试验报告中予以说明。 2、当试件养护龄期达到28d时应及时取出冻融试验得试件,用湿布擦除表面水分后应对外观尺寸进形测量,试件得外观尺寸应满足本指导书第 3、1、1节得要求,应分别编号、称重,然后按编置入试件架内,且试件架与试件得接触面积不宜超过试件底面得1/5。试件与箱体内壁之间应至少留有20mm得空隙。试件架中各试件之间应至少保持30min得空隙。 3、冷冻时间应在冻融箱内温度降至-18℃时开始计算。每次从装完试件到温度降至-18℃所需得时间应在(1、5~2、0)h内。冻融箱内温度在冷冻时应保持(-20~-18)℃。 4、每次冻融循环中试件得冷冻时间不应小于4h。 5、冻结结束后,应立即加入温度为(18~20)℃得水,使试件转入融化状态,加水时间不应超过10min。控制系统应确保在30min内,水温不低于10℃,且在30min后水温能保持在(18~20)℃。冻融箱内得水面应至少高出试件表面20mm。融化时间不应小于4h。融化完毕视为该次冻融循环结束,可进入下次冻融循环。 6、每25次循环宜对冻融试件进行一次外观检查。当出现严重破坏时,应立即进行称重。当一组试件得平均质量损失率超过5%,可停止其冻融循环试验。 7、试件在达到本作业指导书3、1、2规定得冻融循环次数或施工方委托得冻融循环次数后,试件应称重并进行外观检查,应详细记录试件表面破损、裂缝及边角损失情况。当试件表面破损严重时,应先用高强石膏找平,然后应进行抗压强度试验。抗压强度试验应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T50081得相关规定,可参考混凝土试块抗压得作业指导书。 8、当冻融循环因故中断且试件处于冷冻状态,直至恢复冻融试验为止,并应将故障原因及暂停时间在试验结束中注明。当试件处在融化状态下因故中断时,中断时间不应超过两个冻融循环得时间。在整个试验过程中,超过两个冻融循环时间得中断故障次数不得超过两次。

冻融对混凝土结构的劣化破坏

混凝土结构冻融破坏研究 桥梁与隧道工程1210 摘要:本文主要介绍了混凝土宏观和微观冻融的机理、混凝土构件冻融影响因素,通过对冻融破坏机理和影响因素分析,提出提高混凝土的抗冻性的对策 绪论 混凝土冻融破坏是由于混凝土中的游离水受冻结冰后体积膨胀,在混凝土内部产生应力,由于反复作用或内应力超过混凝土抵抗强度致使混凝土破坏。建筑材料的冻融行为,贯穿于人类社会的整个时代。也就是说,有了人类社会,就有了材料与结构的冻融行为。这对结构的维护和管理,无疑是一个很大的问题。在工业发展的过程中,对建筑材料的抗冻融抗除冰盐冻融的性能,进行了大量的摸索,建立了快速评价的经济方法。在此基础上又开展了混凝土冻融劣化、除冰盐冻融劣化机理研究。 混凝土冻融的机理 发生了宏观的应力 热膨胀系数不同 构成混凝土的水泥石和集料的热膨胀系数a T是很不同的,其在潮湿状态,水泥石和集料可能有不同点 表1-1 水泥石和集料的热膨胀系数 水泥石 集料 水泥石和冰的热膨胀不同而产生应力,在微小范围内,多次冻融循环进行过程中

有可能适应力进一步增长。水泥石和冰的不同热膨胀系数,清楚的显示出冻害劣化作用。通过扫描电镜检验,也证明了产生的应力使组织结构劣化。 层状的冻结 混凝土结构处于低温下,毛细管中的水分由热端向冷端迁移,也就是由内部向表面迁移。在受冻时混凝土表层先受冻,形成结冰层。在经过多次冻融循环下,混凝土表面发生剥离,又露出新的表面层,进一步剥离。这种部分的很大很深的剥落,是过去海水作用海岸钢筋混凝土结构物特有的一种冻融裂化形式。 温度急降的结果 除冰盐把雪和冰溶解时必须要有一定的热量。在混凝土道路上,在无风干燥的空气下也会有1000倍的蓄热量。故冰雪溶解时所需要的热量,混凝土表层温度急剧下降,从混凝土表面夺取热量,造成混凝土内部发生压应力和拉应力。微观劣化机理 水压 水的密度对温度来说,显示出一种特异的行为,水变成冰时,体积膨胀9%,也就是说,这时就必须排除相同体积的水。但是,在冰生成的周围都是饱和状态,没有适当缓和空间。按照powers的观点,发生了以水压力表征的内部压力。 当水压力超过了混凝土抗拉强度时就发生冻害。,水的压力大小,首先,被排除在周围没有膨胀的空间。因此,powers为了附加膨胀空间而掺入引气剂,而且气泡之间要有一定的距离,也就是气泡间隔系数。 水的压力还与受冻结水的量和冻融时冷却速度有关。在混凝土中有广泛深长的毛细管孔隙率与高的饱和度,冰形成速度高时,认为具有大的压力。但是试件中含水率91%以下时,也会导致劣化。对此powers认为,这是由于孔隙溶液最初在很大的孔隙中受冻的原因。然后冻结进一步进行,在比较小的孔隙中的溶液也开始受冻时,水的排除受到已有大孔隙中冰的阻碍。如果排除的水完全受到阻碍时,理论上认为发生的水压力是200N每平方毫米。 实际上发生的水压力非常小,因为冰的生成不是突然发生的,还有水泥石孔隙的水,并不是一次就完全冻结,而是处于不同温度下不同层次的冻结。即使如此,还必须考虑到特细毛细管受到前面已冻结冰的封堵,孔隙内还有液相存在,会再短的内压力可能达到峰值。

混凝土快速冻融试验操作规程

混凝土快速冻融试验操 作规程 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

混凝土快速冻融试验操作规程 1、如无特殊规定,试件应在28天龄期时开始冻融试验。冻融试验前四天应把试件从养护地点取出,进行外观检查,然后在温度为15~20℃的水中浸泡(包括测温试件)。浸泡时水面至少应高出试件顶面20毫米,试件浸泡4天后进行冻融循环。 2、浸泡完毕后,取出试件,用湿布擦除表面水分,称重测定其横向基频的初始值。 3、试验前先将冷冻液注入试验槽中,在试件桶全部放入试验槽的情况下,冷冻液注入至淹没冷冻槽回流孔为止。冷冻液太多,要防止冷冻液进入试验桶;冷冻液太少,要防止冷冻液不能正常回流。试验槽为开口式结构。在试验过程中,冷冻液会不断吸潮稀释。因此,新加入的冷冻液请勿掺水。 4、通电检查:水泵和风机旋转方向、仪表设定、温度循环的上下限和循环次数。一切正常后才能进行试验。 5、将试件放入试件盒内,为了使试件受温均衡,并消除试件周围水分结冰引起的附加压力,试件的侧面与底部应垫放适当宽度与厚度的橡胶板,在整个试验过程中,盒内水位高度应始终保持高出试件顶面5毫米左右。 6、把试件放入冻融箱内。其中装有测温试件的试件盒应放在冻融箱的中心位置。此时开始冻融循环。 7、冻融循环过程应符合下列要求:A、每次冻融循环应在2~4小时内完成,其中用于融化的时间不得小于整个冻融时间的1/4;

B、在冻结和融化终了时,试件中心温度应分别控制在-17±2℃和8±2℃; C、每块试件从6℃降至-15℃所用的时间不得少于冻结时间的1/2.每块试件从-15℃升至6℃所用时间也不得少于整个融化时间的1/2,试件内外的温差不宜超过28℃; D、冻和融之间的转换时间不宜超过10分钟。 8、试件一般应每隔25次循环作一次横向基频测量,测量前应将试件表面浮渣清洗干净,擦去表面积水,并检查其外部损伤及重量损失。测完后,应立即把试件掉一个头重新装入试件盒内。试件的测量称重及外观检查应尽量迅速,以免水分损失。 9、为了保证试件在冷冻液中冻结时温度均衡,当有一部分试件停冻取出时,应另用试件填充空位。如冻融循环因故中断,试件应保持在冻结状态下,并最好能将试件保存在原容器内用冰块围住。如无这一可能,则应将试件在潮湿状态下用防水材料包裹,加以密封,并存放在-17±2℃的冷冻室或冰箱中。试件处在融解状态下的时间不宜超过两个循环。特殊情况下,超过两个循环周期的次数在整个试验过程中只允许1~2次。 10、冻融达到以下三种情况之一即可停止试验:A、已达到300次循环;B、相对东弹性模量下降到60%以下;C、重量损失5%。

混凝土快速冻融试验机试验指导书

天津市港源试验仪器厂 混凝土快速冻融试验机作业指导书 一、快冻法测定混凝土抗冻性能试验所用设备应符合下列规定: (1) 快速冻融试验机:应在测温试件(中心试件)中埋设温度传感器外,尚应在冻融箱内防冻液中心、中心与任何一个对角线的两端分别设有温度传感器。运行冻融的装置满载运转时冻融箱内各点温度的极差不得超过2℃。 (2) 试件盒:采用橡胶材料制作,其内表面底部应有半径为3mm橡胶突出部分。盒内水面应至少能高出试件顶面5mm。试件盒横截面尺寸宜为净截面尺寸应为115×115mm,试件盒长度宜为500mm。 (3) 案秤:称量量程20kg,感量不应超过5g。 (4) 动弹性模量测定仪:共振法或敲击法动弹性模量测定仪。 (5) 温度传感器:能在(20~-40)℃范围内测定试件中心温度。测量精度不低于±0.5℃。 二、试件的制备 该试验采用混凝土试件100mm×100mm×400mm。试件每3块为一组,在试验过程中根据试件动弹性模量损失值和质量损失大小来确定试件是否可以继续使用。另外需要制备冻融试验试件外还应制备同样形状尺寸,中心埋有热电偶的测温试件(中心试件),制作测温试件所用混凝土的抗冻性能应高于冻融试件,这样在试验过程中只要测温

试件不发生开裂、质量损失不大于25%时就可以一直使用。 三、试验操作步骤 A、试验在标准养护室或者同等条件下养护24d时将试件从养护地点取出放入20±2℃的水中浸泡,浸泡时睡眠应高于试件上表面20mm,浸泡4天开始进行冻融试验。如果试件在20±2℃的水中直接养护28d的可以直接做冻融试验,对于此种情况,应在试验报告中做出说明; B、浸泡完毕后,取出试件,用湿布擦除表面水分,三个为一组,逐一编号,进行称重、测定其横向基频的初始值并记录测量值; C、将试件放入试件盒内,试件应位于试件盒中心,盒内水位高度应始终保持高出试件顶面5 mm。测温试件(中心试件)盒应放在冻融箱的中心位置,为了防止操作过程中水混入箱体防冻液中,将试件盒拿出在试验箱体外放入试件,并倒入清水至高于试件上表面5mm,然后再将试件盒放入试验箱体中; D、根据国家标准GB/T50082-2009设置仪表参数。中心试件温度通道上限设置到3℃,下限设置到-16℃(因有加热、制冷缓冲所以设置3℃和-16℃),三个液温温度通道均设置液温上限18℃,液温下限设置-25℃,循环次数设置25,总循环次数根据具体试验设定; E、试件一般应每25隔次循环作一次横向基频测量,测量前应将试件表面浮渣清洗干净,擦去表面积水,并检查其外部损伤及重量损失。测完后,应即把试件掉一个头重新装入试件盒内,并加入清水,继续试验。试件的测量、称量及外观检查应尽量迅速,待测试件应用

不同类型的水对混凝土冻融破坏的影响

龙源期刊网 https://www.doczj.com/doc/ba17950914.html, 不同类型的水对混凝土冻融破坏的影响 作者:杨鹏飞 来源:《科技创新与应用》2013年第20期 摘要:文章论述了混凝土冻融破坏问题的重要性,着重研究影响混凝土冻融破坏因素中 不同类型的水对混凝土冻融破坏的影响,总结对混凝土冻融破坏的认识,为解决实际工程中冻融对混凝土的影响提供相关借鉴。 关键词:混凝土;冻融破坏;耐久性 1 混凝土冻融破坏现状 我国地域辽阔,在寒冷冬季的北方地区,尤其东北三省、内蒙古、以及西北五省等省市 自治区,气温均在零度以下。而混凝土在零度以下的环境中易发生冻融破坏,这些地区的混凝土结构破坏基本上均与冻融相关[1]。 2008年初,我国长江以南大部分地区持续冰冻灾害,由于持续的冰冻天气,混凝土输电 塔出现不同程度的结冰现象,在长江以南地区出现这样的现象让人难以预料。无论是冬季严寒的北方,还是特殊情况下的南方,冻融破坏的现象在全国各地均有存在,并且对混凝土耐久性造成了极大的影响。研究冻融破坏对混凝土的影响,对混凝土耐久性研究具有重要意义。 2 混凝土冻融破坏机理研究状况 混凝土的冻融破坏,是一系列物理变化的结果。从大约二十世纪中叶开始,美国与欧洲等科技较为领先的国家或地区均注重研究混凝土冻融破坏机理,并且提出了多种混凝土冻融破坏理论[2]。在此领域以T.C.Powers为代表的理论成为最基本的混凝土冻融破坏理论。截止目前,混凝土的冻融破坏基本理论[3]有膨胀压、渗透压、水的离析成层等理论,但目前学术界 认可度比较高的,仍然是膨胀压理论和渗透压理论。 2.1 膨胀压力理论 混凝土一般是在集料中掺入适当比例的水与水泥,并且引入适当的外加剂所共同组成的。一方面无论是何种集料,在其内部总会或多或少地存在一定的孔隙;另一方面混凝土在拌合、浇筑、振捣和成型过程中,也会残留一定的孔隙。混凝土的这些孔隙中经常含有水,当温度低于零度时,毛细孔中的水会生成冰。由于水冻结成冰体积会增大约9%,随着外界环境温度的逐渐降低,越来越多的水逐渐变成体积膨胀的冰,未结冰的水持续受压,由于四周密闭而无处流动,使得混凝土毛细孔中逐渐产生越来越大的内应力。此内应力积累到一定程度,便会逐渐平衡混凝土内部所能承受的最大涨裂应力,进而使混凝土因涨裂产生破坏。 2.2 渗透压力理论

混凝土快速冻融试验操作规程

混凝土快速冻融试验操作规程 1、如无特殊规定,试件应在28天龄期时开始冻融试验。冻融试验前四天应把试件从养护地点取出,进行外观检查,然后在温度为15~20℃的水中浸泡(包括测温试件)。浸泡时水面至少应高出试件顶面20毫米,试件浸泡4天后进行冻融循环。 2、浸泡完毕后,取出试件,用湿布擦除表面水分,称重测定其横向基频的初始值。 3、试验前先将冷冻液注入试验槽中,在试件桶全部放入试验槽的情况下,冷冻液注入至淹没冷冻槽回流孔为止。冷冻液太多,要防止冷冻液进入试验桶;冷冻液太少,要防止冷冻液不能正常回流。试验槽为开口式结构。在试验过程中,冷冻液会不断吸潮稀释。因此,新加入的冷冻液请勿掺水。 4、通电检查:水泵和风机旋转方向、仪表设定、温度循环的上下限和循环次数。一切正常后才能进行试验。 5、将试件放入试件盒内,为了使试件受温均衡,并消除试件周围水分结冰引起的附加压力,试件的侧面与底部应垫放适当宽度与厚度的橡胶板,在整个试验过程中,盒内水位高度应始终保持高出试件顶面5毫米左右。 6、把试件放入冻融箱内。其中装有测温试件的试件盒应放在冻融箱的中心位置。此时开始冻融循环。 7、冻融循环过程应符合下列要求:A、每次冻融循环应在2~4小时内完成,其中用于融化的时间不得小于整个冻融时间的1/4;B、

在冻结和融化终了时,试件中心温度应分别控制在-17±2℃和8±2℃; C、每块试件从6℃降至-15℃所用的时间不得少于冻结时间的1/2.每块试件从-15℃升至6℃所用时间也不得少于整个融化时间的1/2,试件内外的温差不宜超过28℃; D、冻和融之间的转换时间不宜超过10分钟。 8、试件一般应每隔25次循环作一次横向基频测量,测量前应将试件表面浮渣清洗干净,擦去表面积水,并检查其外部损伤及重量损失。测完后,应立即把试件掉一个头重新装入试件盒内。试件的测量称重及外观检查应尽量迅速,以免水分损失。 9、为了保证试件在冷冻液中冻结时温度均衡,当有一部分试件停冻取出时,应另用试件填充空位。如冻融循环因故中断,试件应保持在冻结状态下,并最好能将试件保存在原容器内用冰块围住。如无这一可能,则应将试件在潮湿状态下用防水材料包裹,加以密封,并存放在-17±2℃的冷冻室或冰箱中。试件处在融解状态下的时间不宜超过两个循环。特殊情况下,超过两个循环周期的次数在整个试验过程中只允许1~2次。 10、冻融达到以下三种情况之一即可停止试验:A、已达到300次循环;B、相对东弹性模量下降到60%以下;C、重量损失5%。

对混凝土冻融破坏的几点看法

对混凝土冻融破坏的几点看法 发表时间:2009-09-30T08:36:14.000Z 来源:《农民致富之友》2009年第3-4期供稿作者:王敏[导读] 我国幅员辽阔,环境条件复杂 我国幅员辽阔,环境条件复杂,尤其我省冬季漫长,结冰期达200d以上,严寒日达100多天,冻土深度为1·5~3·0m,最冷的1月份个别地区最低气温达-40℃以下,是全国气温最低的省份。在如此高寒气候环境下,混凝土防渗渠道冻害破坏十分普遍。混凝土的冻融破坏严重影响了建筑物的长期使用和安全运行,为使这些工程继续发挥作用和效益,各部门每年都耗费巨额维修费用,而这些费用为建设费用的1~3 倍,不仅影响工程的正常运行和效益的发挥,还造成人力、物力和财力的严重浪费。如何更好的解决这一问题,笔者通过调查做以下分析; 一、混凝土冻融破坏机理分析 混凝土的抗冻性是混凝土受到的物理作用(干湿变化、温度变化、冻融变化等)的一方面,是反映混凝土耐久性的重要指标之一。吸水饱和的混凝土在其冻融的过程中,遭受的破坏应力主要由两部分组成。一是当混凝土中的毛细孔水在某负温下发生物态变化,由水转变成冰,体积膨胀9%,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力;二是当毛细孔水结成冰时,由凝胶孔中过冷水在混凝土微观结构中的迁移和重分布引起的渗管压。 二、混凝土冻融破坏的影响 它的影响因素为多方面。一是组成混凝土的主要材料性质的影响,如水泥品种、水泥中不同矿物成份对混凝土的耐久性影响较大;二是外加剂的影响,在混凝土施工过程中掺入引气剂或减水剂对改善混凝土的内部结构,改善混凝土的内部孔隙结构可起到缓冲冻胀的作用,提高混凝土的抗冻性;三是施工工艺影响,配合比、混凝土的施工、硬化条件等都与混凝土的耐久性有密切的关系;四是防止受水位变化影响,寒冷季节水位变化会引起混凝土的严重冻融破坏需采取有力措施防止;五是控制施工质量,混凝土施工质量的好坏,将影响它的抗冻性,必须严把质量关,不允许出现蜂窝、麻面,力求密实,表面光滑。 三、混凝土渠道防渗防治冻害的措施 一是避免冻胀。1.尽可能避开粘质土壤,松软土层、淤泥沼泽和高地下水位的地段,选择透水性较强的不易产生冻胀或地下水位埋藏较深的地段,将混凝土渠底冻结层控制在地下毛管水补给高度以上。2. 尽可能采用填方渠道3 .渠线选择在地形较高的脊梁地带。4.有渗水和地面回归水入渠的渠段,尽量有排水设施。 二是削减冻胀。1.换填法。在冻结深度内将混凝土板下的冻胀性土换成非冻胀性材料如碎石、砂砾等。2.隔热保温。将隔热保温材料布设在混凝土板衬砌体背后,减轻或消除寒冷,并可减少换填垫层深度,隔断下层土的水分补给,从而减轻或消除渠床的冻深和冻胀。(作者单位:152013 黑龙江省绥化市北林区永安满族镇农业服务中心)

混凝土冻融循环破坏研究进展

第26卷 第6期Vo l 126 No 16材 料 科 学 与 工 程 学 报Jo urnal o f Mater ials Science &Eng ineer ing 总第116期Dec.2008 文章编号:1673-2812(2008)06-0990-05 混凝土冻融循环破坏研究进展 张士萍,邓 敏,唐明述 (南京工业大学材料科学与工程学院,江苏南京 210016) =摘 要> 本文对目前混凝土冻融破坏研究新进展进行了全面综述,介绍了已有的关于冻融破坏机理的几种 假说,并且对静水压理论和渗透压理论的适用条件以及合理性提出了质疑。同时论述了孔结构、饱水度、含气量和环境条件对冻融破坏的影响,国内外冻融循环试验方法和判据以及预防冻融破坏的措施。 =关键词> 混凝土;冻融循环;机理 中图分类号:T U 528 文献标识码:A Advance in Research on Damagement of Concrete Due to Freeze -thaw Cycles ZHANG Sh -i ping,DENG Min,TANG Ming -shu (College of Materials Science and Engineering,Nanjing University of Technology,Nanjing 210009,C hina) =Abstract > T he advance in research on damag ement o f co ncr ete caused by freeze -thaw cycles is reviewed.T he ex isting hy po theses fo r deter io ratio n of concrete due to fr eeze -thaw cycles is discussed,and ther e is do ubt on the applicability and ratio nalit y of hydraulic pressur e and osmo tic pressur e.T he effect o f pore st ruct ur e,w ater satur ation,air -entr aining and env iro nmental co nditions o n f reeze -thaw damag ement,the testing methods and cr iteria fo r fr eeze -thaw cycles and prev entiv e measures ar e also present ed. =Key words > concrete;f reeze -thaw cycles;mechanism 收稿日期:2007-11-14;修订日期:2008-03-03 作者简介:张士萍(1982-),女,江苏南京人,博士研究生,从事水泥混凝土耐久性方面的研究。E -m ail :zhang shipi ng1982@126.co m. 1 引 言 混凝土用于工程建设迄今已有150年左右的历史。人们对混凝土性能的改善和提高随着工程实践的增多和科学技术的发展而不断完善。随着时间的推移,人们认识到已建工程并非都是耐久的,远低于设计寿命、过早破坏的事例层出不穷。这些过早/衰老0的工程不仅需要耗用庞大的重建与维修费用,还会造成间接经济损失和安全隐患,专家们把这种现象称为/混凝土耐久性危机0,发达国家已经为此付出了巨大代价。 抗冻性是混凝土耐久性的最重要的指标之一。因此,工程界对提高混凝土抗冻性非常关心。混凝土的抗冻耐久性引起国内外众多学者的兴趣,不仅因为它是影响混凝土使用寿命与性能的一个非常重要的因素,同时也因为混凝土的冻害发生的范围极其广泛。我国地域辽阔,有相当大的地区处于严寒地带,不少水工建筑物出现了冻融破坏现象。寒冷地区的水工、港工、道路和桥梁等工程中的混凝土 结构物或构筑物在冻融循环作用下的冻融破坏是运行过程 中的主要病害[1]。但是,目前关于混凝土冻融破坏机理众说纷纭,高性能混凝土抗冻性试验结果也不一致。这使得在工程实践中对如何提高混凝土抗冻性,以及对掺粉煤灰混凝土在一些重要工程部位的应用是否适当等问题存在不同看法。 2 冻融破坏机理 混凝土的冻融破坏过程是比较复杂的物理变化过程。 一般认为,冻融破坏主要是因为在某一冻结温度下,水结冰产生体积膨胀,过冷水发生迁移,引起各种压力,当压力超过混凝土能承受的应力时,混凝土内部孔隙及微裂缝逐渐增大,扩展并互相连通,强度逐渐降低,造成混凝土破坏[2]。 目前提出的冻融破坏理论主要有静水压经典理论、渗透压理论、冰棱镜理论、基于过冷液体的静水压修正理论、饱水度理论等等[3-7]。但目前公认程度较高的,仍是由美国学者T.C.Po wer s 提出的膨胀压理论和渗透压理论,他认为

混凝土冻融循环及抗水渗透试验作业指导书

混凝土冻融循环及抗水渗透试验作业指导书 1、目的:为了确定混凝土性能特征值,如混凝土的抗渗之后的性能变化,及相应确定它们的标号,特编制其作业指导书。 2、引用标准: GB/T50082-2009 普通混凝土长期性能和耐久性试验方法标准 3、抗冻试验(慢冻法) 3.1试验设备:冻融试验箱、压力试验机。 3.2慢冻法抗冻试验所采用的试件:采用尺寸为100mm×100mm×100mm的立方体试件三块。 3.3混凝土抗冻性能按下列步骤进行 3.3.1 在标准养护室内或同条件养护的冻融试验的试件应在养护龄期为24d时提前将试件从养护地点取出,随后应将试件放在(20±2)℃水中浸泡,浸泡时水面应高出试件顶面(20~30)mm,在水中浸泡的时间应为4d,试件应在28d 龄期时开始进行冻融试验。始终在水中养护的冻融试验的的试件,当试件养护龄期达到28d时,可直接进行后续试验,。 3.3.2浸泡完毕后,取出试样,用湿布擦除表面水分,测量、称重,按编号置入试架内,试件与箱体内内壁之间留有20mm的空隙,试件架中各试件之间应至少保持30mm的空隙。 3.3.3冷冻时间应在冻融箱内温度降至-18℃时开始计算。

3.3.4每次冻融循环中试件的冷冻时间不应小于4h。 3.3.5冷冻结束后,应立即加入温度为(18~20)℃的水,使试件转入融化状态,加水时间不应超过10min。冻融箱内的水面应至少高出试件表面20mm,融化的时间不应小于4h。融化完毕即为该次冻融循环结束,进行下一次循环试验。3.3.6每25次循环宜对冻融试件进行一次外观检查。当出现破坏时,应立即进行称重。 当一组件的平均失重率超过5%,可停止其冻融循环试验。3.3.7混凝土试件达到上4.1.2规定的冻融循环次数后,即应进行抗压强度试验。 抗压试验前应称重并进行外观检查,详细记录试件表面破损、裂缝及边角缺损情况,如果试件表面破坏严重,则应由石膏找平后再进行试压。 3.3.8在冻融试验过程中,如因故需中断试验,为避免失水和影响强度,应将冻融试件移入标养室保存,直至恢复冻融试验为止。此时应将故障原因及暂停时间在试验结果中说明。 3.4 混凝土冻融试验后的结果评定 3.4.1混凝土冻融试验后按下式计算其强度损失率: △fc=×100 [见标准式(3.1.5-1)]

KDR-V型混凝土快速冻融试验机安全操作规程

编号:SM-ZD-67521 KDR-V型混凝土快速冻融试验机安全操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

KDR-V型混凝土快速冻融试验机安 全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 1.开机前准备:检查机组周围是否有异样;检查机组电源连接是否妥当(相电压是否符合机组电压要求);冻水泵经试压、排污、放空气、试运行后是否处于无故障备用状态;检查试验箱内是否干净,不得有小颗粒及丝状物,否则损坏水泵或堵塞管路。填写仪器使用记录。 2.进行冻融试验前先将试件按标准进行养护,龄期前4d 进行泡水,泡水结束后进行称重,编号,(编号不要写在试件表面以免试件破坏造成编号无法识别,最好用独立的金属牌) 3.对每个已经称量,编号的试件进行动弹模量测定,做好相应的记录,把试件套上橡胶筒(方法是先把试件倒立,把标牌放到试件上,拿起橡胶筒倒过来套在试件上,稍微用力把橡胶筒套到试件顶部,再把橡胶筒倒过来,凭试件自重落到橡胶筒底部),再把套好的橡胶筒试件轻轻放入试验箱

浅析混凝土冻融破坏及治理措施

描述:本文分析了混凝土的冻融破坏及影响混凝土抗冻性能的因素,并介绍唐河灌区在实践中处理混凝土的冻融破坏的方法。 摘要:本文分析了混凝土的冻融破坏及影响混凝土抗冻性能的因素,并介绍唐河灌区在实践中处理混凝土的冻融破坏的方法。 一、引言 混凝土是当代最主要的土木工程材料之一。由于其良好的抗渗性、耐久性及原材料来源广且生产工艺简单、能耗低的特点被广泛应用于渠道衬砌及渠系建筑物的改造中。 唐河灌区在续建配套与节水改造工程中就大量的使用了混凝土及钢筋混凝土。起到了很好的防渗及抗冲效果,使全灌区渠道轮灌周期减少了5~7天。已实施的灌区节水工程衬砌段渠道水利用系数平均提高0.156,全灌区渠道水利用系数由0.42提高到0.443,减少了水量的损失。但是我们也应该看到由于混凝土结构的工作环境比较恶劣,必然受到水流、气温、风砂等的影响。当野外温度较低时,混凝土会因为冻融循环而发生破坏,由此需要很大的代价来维修和重建,这已成为灌区反复投入大量的人力、物力而未能根本解决的问题之一,造成极大的浪费。 二、混凝土的冻融破坏 (一)冻融破坏的特征 表面剥落是混凝土发生冻融破坏的显著特征,严重时可能露出石子。在混凝土受冻过程中,冰冻应力使混凝土产生裂纹。冰冻所产生的裂纹一般多而细小,因此,在单纯冻融破坏的场合,一般不会看到较粗大的裂缝。但是,在冻融反复交替的情况下,这些细小的裂纹会不断地扩展,相互贯通,使得表层的砂浆或净浆脱落。冻融破坏不仅引起混凝土表面剥落,而且导致混凝土力学性能的显著降低。大量试验研究表明:随着冻融次数的增加,混凝土的强度特性均呈下降趋势,其中反映最敏感的是抗拉强度和抗折强度,即随着冻融次数的增加,混凝土的抗拉强度和抗折强度迅速下降,而抗压强度下降趋势较缓。 (二)影响混凝土抗冻性的因素 混凝土的抗冻性是指混凝土在含水饱和状态下能经受多次冻融循环而不破坏,同时强度不严重降低的性能而且其质量也不显著减小的性质。影响混凝土抗冻性能的因素有以下几个方面的:一是水泥的品种;二是骨料的性质;三是混凝土的密实度;四是混凝土的强度等级;五是混凝土的孔隙构造和数量以及孔隙的

水工建筑物混凝土的冻融破坏及防治

水工建筑物混凝土的冻融破坏及防治 【摘要】通过对混凝土的冻融破坏机理及影响因素分析,提出了水工建筑物混凝土冻融破坏的防治措施,原则上应为防重于治,以达到或延长工程的使用寿命。 【关键词】防治;混凝土;冻融破坏;水工建筑物 The jelly of water work building concrete melt to break and prevention and cure Yao Hong (Tulufan Xinjiang Marine hydraulic engineering quality direct station Tulufan Xinjiang 841000) 【Abstract】Pass to freeze concrete to melt to break mechanism and impact factor analysis, put forward the concrete jelly of the water work building to melt break of prevention and cure measure, in principle should for defend heavy in cure to attain or extension engineering of service life. 【Key words】Prevention and cure;Concrete;The jelly melt to break;Water work building 1. 前言 水工建筑物多以混凝土结构组成,而这些混凝土结构多处在气候恶劣的环境中,受泥沙、水流、物理、化学、气温等影响因素颇多。混凝土的破坏以、冻融破坏为常见,致使许多水工建筑物的运行寿命大为缩短,造成极大浪费。如某灌区混凝土渠某些地段也发生严重冻融破坏等等,所以有必要进一步探讨水工建筑物混凝土的冻融破坏机理及防治措施。 2. 混凝土冻融破坏机理分析 混凝土的抗冻性是混凝土受到的物理作用(干湿变化、温度变化、冻融变化等)的一方面,是反映混凝土耐久性的重要指标之一。对混凝土的抗冻性不能单纯理解为抵抗冻融的性质,不仅在严寒地区混凝土建筑物有抗冻的要求,温热地区混凝土建筑物同样会遭到干、湿、冷、热交替的破坏作用,经历时间长久会发生表层削落,结构疏松等破坏现象,都发生过不同程度的冻融破坏。所以对混凝土的冻融破坏的研究显得尤为重要。对混凝土冻融破坏的机理,目前的认识尚不完全一致,按照公认程度较高的,由美国学者T.C.Powerse提出的膨胀压和渗透压理论,吸水饱和的混凝土在其冻融的过程中,遭受的破坏应力主要由两部

混凝土冻融损伤过程研究

广东建材2018年第9期 混凝土冻融损伤过程研究 马开志 (中国能源建设集团广东省电力设计研究院有限公司) 【摘要】总结了混凝土冻融损伤机理的理论;结合相关学者的冻融损伤实验,分析了冻融循环过程中混凝土材料内部水分的状态转换及含量变化过程;探讨了在温度变化情况下,冰的热胀冷缩性质对混凝土冻融损伤的影响;论述了混凝土材料冻融损伤的过程。 【关键词】混凝土;冻融循环;损伤过程 1引言 混凝土的抗冻性是混凝土耐久性最重要的指标之一[1]。在寒冷地区,当建筑物环境温度和湿度变化较大时,混凝土材料必须具有足够的抗冻性。长期以来,通过对实践经验的总结和混凝土材料性能的研究,工程界已经基本掌握了提高混凝土的抗冻性能,控制混凝土结构的冻害程度的技术,例如在混凝土配合比设计时控制水灰比、引入含气剂等。但是,目前学术界对混凝土的冻融损伤过程仍不十分清楚,在混凝土冻融损伤机理方面的研究进展缓慢,国内外很多学者虽然提出了各种假说,但还没能形成共识。 2混凝土冻融破坏理论 最早开始混凝土冻融损伤机理研究的是美国学者T.C.powers,他在1945年提出了混凝土材料冻融损伤的静水压理论[2,3],认为在水分冻结过程中,混凝土内部的水分由气泡向外部空隙移动,激发巨大的静水压力导致混凝土的破坏。在提出了静水压力理论后,Powers 在试验中发现,水泥浆体中的水在冻结时并不是向外排出,而是向着冰冻区移动,基于这一现象,Powers和Helmuth于1953年提出了混凝土的冻融损伤机理的渗透压理论[4]。 在19世纪70年代,瑞典学者Fagerlund提出了临界饱和湿度的概念。认为对空隙材料存在一个临界的饱和湿度,当气泡中的湿度超过这个临界饱和湿度时,即使冻融一次,也会导致材料退化甚至产生裂缝。临界饱和湿度的概念是基于静水压理论提出来的,由于它的一般性,使其对所有的冻融损伤理论都适用[5,6]。同时代的G.G.Litvan根据等温吸附理论和实验研究指出,在多孔材料中,气泡中吸附的水分不能在原位冻结。由于气泡内未冻液和气泡外的蒸汽压的差别,会发生解吸附过程,使水分向气泡外迁移。因此,水分不能在气泡中结冻,而是在气泡外部附近发生冻结。但当温度低于-20℃时,周围小空隙的中的水分将会向大气泡中流动并在其中冻结[7,8]。 M.J.Setzer根据空隙中的未冻水、蒸汽和冰在冰点以下的三相稳定平衡原理,提出了冻融破坏的微观冰棱镜理论[9]。认为在冻融循环过程中,温度变化会产生活塞效应,在温度降低时将凝胶孔中的水分挤出至微冰晶部分冻结,而升温时吸入周围环境中的水分。微观冰晶则像一个阀门一样,阻碍水分的流动。活塞效应使混凝土湿度不断增大,最终冰的膨胀造成混凝土的破坏。 Bernard Erlin和Bryant Mather考虑了冰的体积随温度变化的特点,综合静水压力和渗透压力理论,分析了混凝土冻融破坏过程[10]。认为在冻融循环的降温过程中,冰的体积收缩所产生的新的空间使周围的水分向冻结区流动,这构成了渗透压的主要组成部分。 虽然静水压理论和渗透压理论本身还有很多缺陷,例如它们不能解释混凝土在冻结体积不发生变化液体中的冻融破坏,并且两者在水分流动方向上有本质的矛盾,但它们是混凝土抗冻破坏中的经典理论,一般认为,水胶比大、强度较低以及龄期较短、水化程度较低的混凝土,静水压力破坏是主要的;而对水胶比较小、强度较高及含盐量大的环境下冻融的混凝土,渗透压起主要作用[1]。其他的一些理论目前仍在发展中,在学术界还没有取得共识。 3混凝土冻融损伤过程的宏观表象 一般认为,混凝土的循环冻融损伤过程是一个物理 材料研究与应用 15 --

冻融破坏

一、混凝土冻融破坏机理分析 混凝土的抗冻性是混凝土受到的物理作用(干湿变化、温度变化、冻融变化等)的一方面,是反映混凝土耐久性的重要指标之一。吸水饱和的混凝土在其冻融的过程中,遭受的破坏应力主要由两部分组成。其一是当混凝土中的毛细孔水在某负温下发生物态变化,由水转变成冰,体积膨胀9%,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力;其二是当毛细孔水结成冰时,由凝胶孔中过冷水在混凝土微观结构中的迁移和重分布引起的渗管压。由于表面张力的作用,混凝土毛细孔隙中水的冰点随着孔径的减小而降低。凝胶孔水形成冰核的温度在-78℃以下,因而由冰与过冷水的饱和蒸汽压差和过冷水之间的盐分浓度差引起水分迁移而形成渗透压力。 另外凝胶不断大,形成更大膨胀压力,当混凝土受冻时,这两种压力会损伤混凝土内部微观结构,只有当经过反复多次的冻融循环以后,损伤逐步积累不断扩大,发展成互相连通的裂缝,使混凝土的强度逐步降低,最后甚至完全丧失。从实际中不难看出,处在干燥条件的混凝土显然不存在冻融破坏的问题,所以饱水状态是混凝土发生冻融破坏的必要条件之一,另一必要条件是外界气温正负变化,使混凝土孔隙中的水反复发生冻融循环,这两个必要条件,决定了混凝土冻融破坏是从混凝土表面开始的层层剥蚀破坏。 二、混凝土冻融破坏影响 混凝土冻融破坏的影响因素是多方面的。一是组成混凝土的主要材料性质的影响,如;水泥的品种、水泥中不同矿物成份对混凝土的耐久性影响较大,又如骨料的影响,除了骨料本身的质量对混凝土的抗冻性的影响以外,骨料的渗透性和吸湿性对混凝土的抗冻性也有决定性的作用;二是外加剂的影响,在混凝土施工过程中掺入引气剂或减水剂对改善混凝土的内部结构,改善混凝土的内部孔隙结构可起到缓冲冻胀的作用,大大降低冻胀应力,提高混凝土的抗冻性;三是施工工艺影响,配合比、混凝土的施工、硬化条件等都与混凝土的耐久性有密切的关系,同时混凝土中的单位用水量是影响混凝土抗冻性的一个重要因素;四是防止受水位变化影响,寒冷季节水位变化会引起混凝土的严重冻融破坏需采取有力措施防止;五是严格控制施工质量,混凝土施工质量的好坏,将影响它的抗冻性,因此必须把好质量关,不允许出现蜂窝、麻面,力求密实,表面光滑。 三、混凝土冻融破坏的防治措施 1.预防措施 (1)在混凝土施工中应根据不同情况选择含有不同矿物成份和不同性能的水泥、骨料和外加剂,从材料方面确保混凝土的耐久性; (2)严格混凝土制作配合比,一定要根据结构类型和所处的环境条件,试验确定关键参数,主要是降低混凝土的水灰比,水泥水化所需水分仅为其重量的25%左右,若水量加,多余的水就游离析出,产出孔隙,饱和后易受冻胀破坏;另外掺入引气型外加剂是提高混凝土抗冻性最有效的途径之一;

混凝土冻融破坏研究现状_李金平

混凝土冻融破坏研究现状* 李金平 盛 煜 丑亚玲 (中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室 甘肃兰州 730000) 摘 要 主要从混凝土的冻融破坏机理、影响因素及提高混凝土抗冻性的措施三方面入手,总结和分析了混凝土的冻融破坏研究现状。认为,目前最为主要的冻融破坏理论是膨胀压力理论和渗透压力理论。还总结了当前提高混凝土抗冻性的几项基本措施。 关键词 混凝土 冻融破坏 冻融破坏机制 引气剂 引言 某些混凝土工程的过早破坏,其原因不是由于强度不足,而是由于混凝土耐久性不良,且大多数与混凝土冻融作用有关。低温对混凝土不利,例如在港口工程、铁路、桥涵、混凝土路面工程、城市立交桥工程以及北方严寒地区的工业与民用建筑等混凝土结构中,都存在着不同程度的冻融破坏。较为典型的工程如东北的云峰水电站,大坝建成运行不到10年,溢流坝表面混凝土冻融破坏面积就高达10000m2,占整个溢流坝面积的50%左右,混凝土平均冻融剥蚀深度达10cm以上。 1 混凝土的冻融破坏机理 混凝土的冻结破坏过程是比较复杂的物理变化过程。混凝土是由硬化的水泥浆体和骨料组成的含毛细孔的复合材料,为了获得浇筑混凝土所必须的和易性,其拌和水量总多于水泥水化所需的水量,多余的水就滞留在混凝土中,形成占有一定体积的连通毛细孔。于是常温下硬化混凝土就是由未水化的水泥、水泥水化产物、集料、水、空气共同组成的气—液—固三相平衡体系,当混凝土处于负温时,其内部孔隙中的水分将发生从液相到固相的转变。因此那些连通的毛细孔就是导致混凝土遭受冻害的主要因素。但是目前关于混凝土冻融破坏机理众说纷纭。在这方面T. C.Powers和R.A.Helmuth等人的研究工作为混凝土的冻融破坏机理奠定了理论基础。到目前为止,提出的混凝土冻融破坏理论有很多种。沙际得认为目前提出的混凝土冻融破坏机理有六种,即水的离析层理论、膨胀压理论、渗透压理论、充水系数理论、临界饱水值理论和孔结构理论。而张子明等认为混凝土的冻融破坏理论,按其发展大致有四种:“奶瓶”理论、膨胀压力理论、渗透压力理论、Livtan理论。但目前公认程度较高的,仍是由美国学者T.C.Powers提出的膨胀压理论和渗透压理论,他认为吸水饱和的混凝土在冻融过程中遭受的破坏力主要有以下两部分:膨胀压力和渗透压力。 1.1 膨胀压力理论 在一定负温下混凝土中的毛细孔水发生物态变化,由水变成冰,体积膨胀9%,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力。这种在负温下因水体积膨胀而产生膨胀压力从而导致的破坏,主要取决于混凝土中水的存在形式及其内部微观孔隙结构和外界正负温度变化等因素。 在混凝土硬化初期混凝土中水存在的形式:①结晶水,这部分水是不可能结冰的;②吸附水,也称凝胶水,存在于各种水化物,因凝胶孔尺寸很小,一般低温不结冰,须在-78℃以下成冰。这部分水可认为在自然条件下是不可能结冰的,也就无冻融破坏作用;③毛细孔水,存在于毛细孔中,这部分水是可冻的,且毛细孔中水蒸气的冰点随毛细孔半径的减小而下降;④游离水,也称自由水,存在于各种固体颗粒间,是可冻水。 由此可见混凝土冻害是由于游离水和孔径较大的毛细水结冰造成的。若硬化混凝土孔隙中的游离水达到饱和,水转化为冰体积约增大9%,则膨胀会在混凝土内部产生内应力,使混凝土结构发生破坏。Powers于1949年提出了计算混凝土中毛细孔水由于结冰膨胀,向邻近的气孔排出多余的水分时,所产生的最大压力的计算公式。 P m ax=η(1.09-1/s)μc(λ/3)κ(1)式中 η为水的粘性系数;s为混凝土中毛细孔的饱水度;μc为水的冻结速率;κ为渗透率;λ为孔隙水到溢出边界的最大距离。 该理论主要说明孔隙饱水程度和含气量(λ随着气泡孔隙的增加而减低)对混凝土冻融破坏的影响,并且注意到与渗透率直接相关的毛细孔隙率的重要性。所以在一定负温下混凝土受冻程度与混凝土孔隙结构及孔隙中饱水程度等有很大的关系。 混凝土孔隙水的存在是混凝土发生冻融破坏的必要条件之一,另一必要条件是外界气温正负变化,使混凝土孔隙中的水反复发生冻融循环,这就验证了混凝土的冻融破坏与混凝土中孔隙水存在的形式、混凝土的内部结构、外界冻结温度等因素有关。这也是膨胀压力理论被一直应用的缘由。 1.2 渗透压力理论 由于仅以水结冰时体积膨胀9%的观点无法解释复杂的混凝土受冻破坏的动力学过程,而且试验也表明水饱和度低于91%时,混凝土也可能受冻破坏。这就迫使人们对混凝土冻融破坏的机理作进一步研究,并由此得出了渗透压力理论。渗透压力是由孔内冰与未冻水两相的自由能之差引起的。在一定的温度 · 1 · 李金平等:混凝土冻融破坏研究现状 *中国科学院知识创新工程重大项目(KZCX1-S W-04)。 李金平,男,博士研究生。

相关主题
文本预览
相关文档 最新文档