当前位置:文档之家› 微电子器件考试必备

微电子器件考试必备

3.3 1、缓变基区内建电场的形成。

答:以NPN 管为例,在基区中,受主杂质浓度NB 是x 的函数。室温下杂质全部电离,因此多子空穴有与受主杂质近似相同的浓度分布。空穴浓度的不均匀导致空穴从高浓度处向低浓度处扩散,而电离杂质却固定不动,于是杂质浓度高的地方空穴浓度低,带负电荷;杂质浓度低的地方空穴浓度高,带正电。空间电荷的分离形成了内建电场。

3.47 1、αR 和α相比小很多的原因。

答:αR :倒向晶体管共基极直流短路电流发达系数;

α:正向晶体管共基极直流短路电流放大系数。

原因:集电结的面积一般比发射结的面积大。在正向管中,从发射结注入到基区的少子几乎全部被集电结所收集;但在倒向管中,从集电结注入到基区的少子,只有少部分能被发射结所收集。

除合金管外,集电区的掺杂浓度一般低于基区,使倒向管的注入效率低。

在缓变基区晶体管中,基区内建电场对倒向管的基区少子起减速作用。

?2、发射区重掺杂效应及其原因。答:发射区掺杂浓度过重时会引起发射区重掺杂效应,即过分加重发射区掺杂不但不能提高注入效率γ,反而会使其下降。原因:发射区禁带宽度变窄和俄歇复合效应增强。?2、倒向管与正向管之间的互易关系。

?答:αI ES =αI CS 。

?3、基区宽度调变效应,及V A 的影响。

?答:①(厄尔利效应)当V CE 增加时,集电结上的反向电压增加,集电结势垒区宽度增宽,势垒区的右侧向中性基区扩展,左侧向中性基区扩展,这使得中性基区宽度W B 减小。基区宽度的减小使基区少子浓度梯度增加,必然导致电流放大系数和集电极电流的增大。

?②对于均匀基区晶体管,厄尔利电压V A :V A =2W B V bi /x dB 。由式得增大V A 的措施是增大基区宽度W B ,减小势垒区宽度x dB ,即增大基区掺杂浓度。但这都与提高电流放大系数相矛盾。

? 3.5 1、I CBO、I CEO的定义。(对NPN管)

?答:I CBO:发射极开路(I B=0),集电结反偏(I BC<0)时集电极电流,称为共基极反向截止电流。

?I CEO:基极开路(I E=0),集电结反偏(I BC<0)时的集电极电流,称为共发射极反向截止电流。

? 3.6 降低r bb’ 的措施

?(1)减小R口B1 与R口B2,即增大基区掺杂与结深,但这会降低β,降低发射结击穿电压与提高发射结势垒电容。

?(2)无源基区重掺杂, 以减小R口B3和CΩ 。?(3)减小S e、S b与d ,增长l ,即采用细线条,并增加基极条的数目,但这受光刻工艺水平和成品率的限制。

?2、基区穿通效应及提高Vpt 的措施。

?答:集电结上的反向电压增大到其势垒区将基区全部占据时,W B ’= 0,这种现象称为基区穿通,相应的集电结反向电压称为基区穿通电压,记为V pt 。

?防止基区穿通的措施:增大W B 与N B 。这与防止厄尔利效应的措施一致,但与提高放大系数α与β的要求相矛盾。

? 3.7 1、基区扩展效应。

?答:基区扩展效应:在大电流下,晶体管特别是缓变基区晶体管的有效基区宽度将随注入电流的增加而扩展。也称为克尔克(Kirk )效应

?2、基区横向扩展。

?答:基区纵向扩展只发生在工作基区上,实际上,当发生基区纵向扩展时,基区在集电结势垒区边上的少子浓度已经很高,因此必然向周围的非工作基区扩散,使基区有效面积变大,这种现象称为“基区的横向扩展”。

?3、电流集边效应(发射结)及其对β、r bb'的影响。?答:①

晶体管工作在大电流状态时,较大的基极电流流过基极电阻,将在基区中产生较大的横向压降,使发射结的正向偏置电压从边缘到中心逐渐减小,发射极电流密度则从中心到边缘逐渐增大,由此而产生发射极电流集边效应,也称为基区电阻自偏压效应。?

②β:β与I C 的平方成反比。?

③r bb':由于电流集边效应,使工作基区局限在发射结边缘下面,基极电流流经的路程缩短,因此r bb’将减小。?

4、发射极单位长度的电流容量。?

答:晶体管在正常使用时,通常以不发生大注入效应和这种基区扩展效应作为集电极电流的上限。这个上限是对应于这些效应的各种临界电流密度中最小的一个,设为J CR 。由于电流集边效应,可以假设电流都集中在发射结边缘宽度为y 0的区域内。将单位发射极长度内不发生这些效应的最大电流称为发射极单位长度的电流容量。?i 0=J CR y 0.

?2、正向二次击穿及其机理。

?答:正向二次击穿是指在I B>0时发生的二次击穿。其原因是电流集中在一条细丝之内,因此又称为电流集中型二次击穿,或热不稳定型二次击穿。

?晶体管内的电流分布不可能是完全均匀的。电流集边效应就是不均匀的重要因素之一。此外,发射结的掺杂不均匀及晶格缺陷等,都有可能使得电流的初始分布不均匀。由于电流具有正温度系数,这种初始的不均匀在一定的条件下可能产生恶性循环,使电流分布的不均匀越来越严重,最后导致电流集中在一个极小的区域内。

?解决电流集中效应的方法:采用多个发射极镇流电阻。?防止热击穿最有效的方法是降低热阻。

?3、晶体管的安全工作区。

?答:是指晶体管能安全可靠地工作,并具有较长寿命的工作范围。

? 3.8 1、特征频率的定义。

?答:当|β?|降为1 时的频率称为特征频率,记为f T 。?f T =|β0|fβ。

?2、提高特征频率的途径。答:1)在f T不太高时,τec中起主要作用的是基区渡越时间τb。减小基区渡越时间是提

高f

T 的有效途径。一是采用浅结工艺制作薄基区,以减

小W

B 。二是制作缓变基区晶体管,提高基区电场因子η

。但也不能过高,一般将η控制在3~6之间。(2)在f

T 较高时,其它三个时间常数的作用已不可忽视。减小

τeb,选用工作电流以减小r e,尽量较小结面积,以减小发射结势垒电容。(3)尽量减小τd,降低集电区电阻率,以减小集电结势垒区宽度。但这与提高击穿电压相矛盾,因此,必须兼顾。(4)尽量减小τc,降低集电区电阻率,减小集电区厚度,以减小集电区串联电阻。

? 3.10 1、M的定义及其提高措施。

?答:①功率增益与频率平方的乘积称为高频优值,记为M 。高频优值也称为功率增益-带宽乘积,是综合衡量晶体管的功率放大能力与频率特性的重要参数。

?②提高M的各项具体措施及其副作用:

9提高M 的各项具体措施及其副作

用要使r bb ’↓,应:(1) l ↑ ( 因)

(2) s ↓ ( 因,但受工艺水平限制

)(3) R 口B ↓①N B ↑(但使β↓,C

TE ↑,BV

EBO ↓)l r 1b b ∝'s r ∝'b b ②W B ↑(但使τb ↑,β↓,f T

↓)要使C TC ↓,应:(1) A C ↓ ( l ↓, s ↓)

(2) N C ↓ ( 但使r cs ↑,τd ↑)

可见乘积r bb’C TC 与l 无关而与s 2 成正比,所以高频晶体

管必须采用细线条。要使f T ↑,应使

τec ↓。由于

?要使τeb↓,应:(1) r e↓→I E↑(因,但受大注入等

限制)。

?(2) C

TE

↓①A E↓( l↓, s↓ ) ②N B↓( 但会使r bb’↑,V A↓)

?要使τb↓,应:(1) W B↓( 但会使r bb

↑,V A↓,且受工艺限制)(2) η↑ ( 采用平面工艺)

?要使τd↓,应:x dc↓ →N C↑( 但会使BV CBO↓ , C TC↑)

?要使τc↓,应:(1) r cs↓①N C↑( 但会使BV CBO↓ , C TC↑)②

集电区厚度d

c

↓③A C↑( 但会使C TC↑)

?(2) C TC↓①A C ↓②N C↓( 但会使r cs↑)

?因此,(1) 对W B 的要求,应减小W B 。

?对N B的要求,采用无源基区(即非工作基区)重掺杂来

缓解。(3) 对N

C 的要求,通过在重掺杂的N+衬底上生

长一层轻掺杂的N-外延层。

? 3.11 1、开启时间和关断时间。

?①开启时间t on:表示晶体管由截止关态过渡到导通开态所需要的时间;它由延迟时间t d和上升时间t r两部分组成。

?延迟时间t d:表示从加入驱动脉冲,到集电极电流上升到

0.1I CSa所需要的时间。

?上升时间t r:表示集电极电流从0.1I CSa上升到0.9I CSa所需的时间。

?②关断时间t off:表示晶体管由导通开态过渡到截止关断状态所需要的时间。它是由贮存时间t s和下降时间t f两部分组成。

?存储时间t s:表示输入脉冲跳变到零,到集电极电流下降到0.9I CSa所需要的时间。

?下降时间t r:表示集电极电流从0.9I CSa下降到0.1I CSa所需的时间。

?2、上升过程。

?答:延迟过程结束后,发射结导通,晶体管进入放大区,i C逐渐上升。经过上升时间t r后晶体管到达临界饱和点,i C上升到临界饱和值I CSa。在上升过程中,发射结电压V BE只略有增加,所以基极电流i B几乎维持I b1不变。

? 3.4 1、两种输出特性曲线的比较。

?答:两种曲线很相似,当输入电流一定时,两种特性曲线的输出电流基本上保持不变,不随输出端电压的增加而变化,只有当输入电流改变时,输出电流才会跟着变化。因此,晶体管是一种电流控制器。

?不同点:①共基极电流放大系数比共基极的大得多;?②共基极电路的输出电阻比共射极的大;

?③随着输出端电压的减小,共射极特性曲线在V CE下降为零前,输出电流I C就已经开始下降,而共基极特性曲线在V CB=0时还保持水平,要到V CB为负值时才开始下降。

? 3.5 1、负阻区及其形成原因。

?答:①负阻区:在击穿后出现一段电流上升电压反而下降,增量电阻为负值的区域,然后才维持一个相对恒定的电压,称为维持电压V

SUS。

?②

微电子器件 课程复习题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子 浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。内建电场的方向是从( )区指向( )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为 ( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。 10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。

11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很 小,是因为反向电流的电荷来源是()。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。 每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化 为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以() 电流为主。 15、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄 基区二极管中,少子浓度的分布近似为()。 16、小注入条件是指注入某区边界附近的()浓度远小于该区的() 浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的()浓度远大于该区的() 浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 18、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN结 的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 19、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向 电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 20、在PN结开关管中,在外加电压从正向变为反向后的一段时间内,会出现一个较大的 反向电流。引起这个电流的原因是存储在()区中的()电荷。这个电荷的消失途径有两条,即()和()。 21、从器件本身的角度,提高开关管的开关速度的主要措施是()和

电子科技大学微电子器件实验讲义

1-1 1-2 1-1 1-2 1XJ4810 2 3 1XJ4810 XJ48101-3 1 2 3 50Hz 4 5 6

XJ4810XJ4810[1] 1-3 XJ4810 23DG6 npn 1R i R i CE V B BE i I V R 3DG6V CE = 10V Q R i 1- 4 0~10V + + 0.1~1k x 0 .1V/ y 0.1mA/ x 1V/10V x 0.1V/V CE =10V 1-5 .200101.002 .03 10 V V B BE i CE I V R 1-4 1-5

2h FE h FE 1- 4 0~50V + + 0.1~1k x 2V/ y 2mA/ 0.02mA/ 1-6 11002. 02.2100 1.010 10101010B C V CE V mA C I B C V CE V mA C I FE I I I I h h FE h FE 1-7x 1-6 1-7 I B g I B B I CE c V I g ""--2mA/I E

CB V E C I I 3V CES V BES V CES V BES V CES C --E V BES B --E V BES =0.7~0.8V V BES =0.3~0.4V V CES V BES V BES 1-4I C =10mA I B =1mA 0~50V 0.5~1K + + x 0.05V/ y 1mA/ 0.1mA/ / 10 1011I C =10mA V CE V CES 1-8V CES =0.15V y x 0.1V/1-9I B =1mA V BE V BES 1-9V BES = 0.78V 1-8 V CES 1-9 V BES 4BV CBO BV CEO BV EBO V B BV CEO BV CBO c Wc BV CBO x mB V B W C c W C BV CBO C --B BV CEO

832微电子器件-电子科技大学2015硕士入学考试真题

电子科技大学 2015年攻读硕士学位研究生入学考试试题电子科技大学2016年硕士研究生入学考试初试自命题科目及代码汇总 ?111单独考试政治理论 ?241法语(二外) ?242德语(二外) ?243日语(二外) ?244英语(二外仅日语方向) ?288单独考试英语 ?601数学分析 ?602高等数学 ?613分子生物学 ?615日语水平测试 ?616公共管理综合 ?621英语水平测试 ?622心理学综合 ?623新闻传播理论 ?625宪法学 ?688单独考试高等数学 ?689西方行政史 ?690中国近现代史 ?691政治学原理 ?692数学物理基础?694生物学综合 ?694生物学综合 ?695口腔综合 ?804行政法与行政诉讼法学 ?805新闻传播实务 ?806行政管理综合 ?808金融学基础 ?809管理学原理 ?811大学物理 ?812地理信息系统基础 ?813电磁场与电磁波 ?814电力电子技术 ?815电路分析基础 ?818固体物理 ?820计算机专业基础 ?821经济学基础 ?824理论力学 ?825密码学基础与网络安全 ?830数字图像处理 ?831通信与信号系统 ?832微电子器件 ?834物理化学 ?835线性代数 ?836信号与系统和数字电路 ?839自动控制原理 ?840物理光学 ?845英美文学基础知识及运用 ?846英语语言学基础知识及运用 ?847日语专业基础知识及应用 ?852近代物理基础 ?853细胞生物学 ?854国际政治学 ?855辩证唯物主义和历史唯物主 义 ?856测控通信原理 ?857概率论与数理统计 ?858信号与系统 ?859测控通信基础 ?860软件工程学科基础综合

微电子器件刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 c h p h E ηη====υωυ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点 来看,半导体和绝缘体都存在着禁 带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流 子近乎为零,所以绝缘体室温下不 能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件可靠性复习题

1、什么是可靠性 答:可靠性是指产品在规定条件下和规定的时间内,完成规定功能的能力。 2、固有可靠性 答:指产品的原材料性能及制成后在工作过程中所受应力,在设计阶段所赋予的,在制造过程中加以保证的可靠性。 3、使用可靠性 答:指产品在实际使用中表现出的可靠性。 4、失效 答:产品(器件)失去规定的功能称为失效。 5、可靠度,及其表达式 答:可靠度是指产品在规定的条件下,在规定的时间内,完成规定功能的概率。 表达式:R(t)=P{ξ>t}。 6、失效概率 答:失效概率是指产品在规定的条件下载时间t以前失效的概率。 7、失效概率密度 答:失效密度是指产品在t时刻的单位时间内,发生失效的概率 8、瞬时失效率

答:失效率是指在时刻t尚未失效的器件在单位时间内失效的概率。 9、平均寿命 答:器件寿命这一随机变量的平均值称为平均寿命。 10、可靠寿命 答:对一些电子产品,当其可靠度降到r时的工作时间称为产品的可靠寿命。 11、菲特的定义 答:简单地说就是100万个器件工作1000h后只出现一个失效。 12、解释浴盆曲线的各个周期的含义 答:第一区:早期失效阶段:此阶段失效率较高,失效随时间增加而下降,器件失效主要是由一种或几种具有普遍性的原因所造成,此阶段的延续时间和失效比例是不同的。第二区:偶然失效阶段:失效率变化不大,是器件的良好阶段,失效常由多种而又不严重的偶然因素造成。第三区:损耗失效阶段:失效率上升,大部分器件相继失效,失效是由带全局性的原因造成,损伤严重,寿命即将终止。 13、指数分布的可靠度,失效率,寿命方差,可靠寿命,中位寿命 答:指数分布可靠度:f(t)=λe-λt(0≤t<∞,0<λ<∞)失效率:λ=λe-λt/e-λt寿命方差:D(ξ)=1/λ2可靠寿命:tr(R)=ln(1/R)1/λ中位寿命:tr (0.5)=0.693*1/λ 14、什么是系统

微电子器件实验5模版 联合仿真 nmos

南京邮电大学 课内实验报告 课程名:微电子器件设计 任课教师: 专业:微电子学 学号: 姓名: 2014/2015学年第2学期 南京邮电大学电子科学与工程学院

《微电子器件设计》课程实验第 5 次实验报告 实验内容及基本要求: 实验项目名称:MOS晶体管的工艺器件联合仿真 实验类型:验证 每组人数:1 实验内容及要求: 内容:采用Tsuprem4仿真软件对MOS晶体管进行工艺仿真,并采用MEDICI仿真软件对该MOS晶体管进行器件仿真。 要求:能够将工艺仿真软件得到的器件数据输出到某个文件中,并能在器件仿真中调用该文件。会画出并分析器件仿真结果。 实验考核办法: 实验结束要求写出实验报告。内容如下: 1、问题的分析与解答; 2、结果分析,比较不同器件结构参数对仿真结果的影响; 3、器件设计的进一步思考。 实验结果:(附后) 实验代码如下: COMMENT Example 9B - TSUPREM-4/MEDICI Interface COMMENT TSUPREM-4 Input File OPTION DEVICE=PS COMMENT Specify the mesh LINE X LOCATION=0 SPACING=0.20 LINE X LOCATION=0.9 SPACING=0.06 LINE X LOCATION=1.8 SPACING=0.2 LINE Y LOCATION=0 SPACING=0.01 LINE Y LOCATION=0.1 SPACING=0.01 LINE Y LOCATION=0.5 SPACING=0.10

LINE Y LOCATION=1.5 SPACING=0.2 LINE Y LOCATION=3.0 SPACING=1.0 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.0 Y.MAX=0.15 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.06 Y.MAX=0.20 ELIMIN COL X.MIN=0.8 Y.MIN=1.0 COMMENT Initialize and plot mesh structure INITIALIZ <100> BORON=1E15 SELECT TITLE=”TSUPREM-4: Initial Mesh” PLOT.2D GRID COMMENT Initial oxide DEPOSIT OXIDE THICKNESS=0.03 COMMENT Models selection. For this simple example, the OED COMMENT model is not turned on (to reduce CPU time) METHOD VERTICAL COMMENT P-well implant IMPLANT BORON DOSE=3E13 ENERGY=45 COMMENT P-well drive DIFFUSE TEMP=1100 TIME=500 DRYO2 PRESS=0.02 ETCH OXIDE ALL COMMENT Pad oxidation DIFFUSE TEMP=900 TIME=20 DRYO2 COMMENT Pad nitride DEPOSIT NITRIDE THICKNESS=0.1 COMMENT Field oxidation DIFFUSE TEMP=1000 TIME=360 WETO2 ETCH NITRIDE ALL COMMENT Vt adjust implant IMPLANT BORON ENERGY=40 DOSE=1E12 ETCH OXIDE ALL COMMENT Gate oxidation DIFFUSE TEMP=900 TIME=35 DRYO2 DEPOSIT POLYSILICON THICKNESS=0.3 DIVISIONS=4 COMMENT Poly and oxide etch ETCH POLY LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 ETCH OXIDE LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 DEPOSIT OXIDE THICKNESS=0.02 COMMENT LDD implant IMPLANT PHOS ENERGY=50 DOSE=5E13 COMMENT LTO DEPOSIT OXIDE THICK=0.2 DIVISIONS=10 COMMENT Spacer etch ETCH OXIDE DRY THICK=0.22 COMMENT S/D implant IMPLANT ARSENIC ENERGY=100

微电子器件课程复习题教学内容

微电子器件课程复习 题

“微电子器件”课程复习题 一、填空题 1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=?,则室温下该区的平衡多子 浓度p p0与平衡少子浓度n p0分别为( )和( )。 2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。内建电场 的方向是从( )区指向( )区。 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。由此方程可以看出,掺 杂浓度越高,则内建电场的斜率越( )。 4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ), 内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。 5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为 ( )。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型 区与耗尽区边界上的少子浓度n p 为( )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓 度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。 10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组 成。

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

832微电子器件考试大纲详细

考试科目832微电子器件考试形式笔试(闭卷) 考试时间180分钟考试总分150分 一、总体要求 主要考察学生掌握“微电子器件”的基本知识、基本理论的情况,以及用这些基本知识和基本理论分析问题和解决问题的能力。 二、内容 1.半导体器件基本方程 1)半导体器件基本方程的物理意义 2)一维形式的半导体器件基本方程 3)基本方程的主要简化形式 2.PN结 1)突变结与线性缓变结的定义 2)PN结空间电荷区的形成

4)耗尽区宽度、内建电场与内建电势的计算5)正向及反向电压下PN结中的载流子运动情况6)PN结的能带图 7)PN结的少子分布图 8) PN结的直流伏安特性 9)PN结反向饱和电流的计算及影响因素 10)薄基区二极管的特点

11)大注入效应 12)PN结雪崩击穿的机理、雪崩击穿电压的计算及影响因素、齐纳击穿的机理及特点、热击穿的机理13)PN结势垒电容与扩散电容的定义、计算与特点 14)PN结的交流小信号参数与等效电路 15)PN结的开关特性与少子存储效应

2)基区输运系数与发射结注入效率的定义及计算 3)共基极与共发射极直流电流放大系数的定义及计算 4)基区渡越时间的概念及计算 5)缓变基区晶体管的特点 6)小电流时电流放大系数的下降 7)发射区重掺杂效应 8)晶体管的直流电流电压方程、晶体管的直流输出特性曲线图

9)基区宽度调变效应 10)晶体管各种反向电流的定义与测量 11)晶体管各种击穿电压的定义与测量、基区穿通效应12)方块电阻的概念及计算

13)晶体管的小信号参数 14)晶体管的电流放大系数与频率的关系、组成晶体管信号延迟时间的四个主要时间常数、高频晶体管特征频率的定义、计算与测量、影响特征频率的主要因素

GJB548B_2005微电子器件试验方法和程序文件

WORD 格式整理 GJB 548B-2005 微电子器件试验方法和程序 点击次数: 181 发布时间: 2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996 中华人民共和国国家军用标准 微电子器件试验方法和程序 Test methods and procedures for microelectronic device 方法 1009.2盐雾(盐汽) 1目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1术语和定义 1.1.1腐蚀corrosion 指涂层和 ( 或 ) 底金属由于化学或电化学的作用而逐渐地损坏 1.1.2腐蚀部位corrosion site 指涂层和 ( 或 ) 底金属被腐蚀的部位,即腐蚀位置 1.1.3腐蚀生成物(淀积物) corrosion product(dcposit) 指腐蚀作用的结果 ( 即锈或氧化铁、氧化镍、氧化锡等 ) 。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4腐蚀色斑corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。 1.1.5气泡blister 指涂层和底金属之间的局部突起和分离 1.1.6针孔pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7凹坑pitting 指涂层和 ( 或 ) 底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8起皮flaking 指局部涂层分离,而使底金属显露

2设备 盐雾试验所用设备应包括: a)带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料( 玻璃、塑料等) 制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风, 以防止产生“高压” ,并保持盐雾的均匀分布; b)能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采 用符合试验条件 C 和 D( 见 3.2) 要求的备用盐溶液容器; c)使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由 20%氧、80%氮组成的混合气体 ( 应防止诸如油和灰尘 等杂质随气体进入雾化器中); d)试验箱应能加热和控制 e)在高于试验箱温度的某温度下,使空气潮湿的手段; f)空气或惰性气体于燥器; g)1 倍 ~3 倍、 10 倍~20 倍和 30 倍 ~60 倍的放大镜。 3 程序 3.1试验箱的维护和初始处理 试验箱的清洗是为了保证把会对试验结果产生不良影响的所有物质清除出试验箱。使试验箱工作在 (35 ±3) ℃ ,用去离子水或蒸馏水进行必要的清洗。每当容器里的盐溶液用完时,就应当清洗试验箱。 某些试验可能在清洗 之前进行,这取决于盛盐溶液的容器的大小和所规定的试验条件( 见 3.2) 。当需要做长时间试验 ( 见 3.2 的试验 条件 C 和 D)时,盛盐溶液的容器可采用备用的容器来补充,以便试验不中断。清洗后,试 验箱开始工作时,盐溶

微电子工程学复习题

第一章: 1、电子器件微型化和大规模集成的含义是什么?其具有怎样的实际意义。 答:电子器件微型化主要是指器件的最小尺寸,也就是特征尺寸变小了。大规模集成是指在单个芯片上所继承的电子器件数量越来越多。 电子器件微型化和大规模集成的意义: 1)提高速度和降低功耗只有提高集成度,才能减少电子系统内部的连线和最大限度地减少封装管壳对速度的影响。提高速度和提高集成度是统一的,前者必须通过后者来实现。同时采用低功耗、高速度的电路结构(器件结构) 2)提高成品率与可靠性大规模集成电路内部包含的大量元件都已彼此极其紧密地集成在一块小晶片上,因此不像中、小规模集成电路组成的电子系统那样,由于元件与元件,或电路与电路之间装配不紧密,互连线长且暴露在外,易受外界各种杂散信号的干扰,所以说大规模集成电路提高了系统可靠性。 为了提高为电子器件的成品率,需要在少增加电路芯片面积的前提下尽可能容纳更多的电子元件,也就是采取提高元件密度的集成方法。 3)低成本大规模集成电路制造成本和价格比中、小规模集成电路大幅度下降是因为集成度和劳动生产率的不断提高。 综上所述,大规模和超大规模集成电路的微型化、低成本、高可靠和高频高速四大特点,正是电子设备长期追求的技术指标和经济指标,而这四大特点中后三个特点皆源于微型化的特点。因此这四大特点是统一的、不可分割的。 2、超大规模集成电路面临哪些挑战? 答:首先是大直径的硅材料, 随着集成电路技术的发展,硅单晶直拉生产技术,在单晶尺寸、金属杂质含量、掺杂元素和氧分布的均匀性及结晶缺陷等方面得到了不断的改进。目前,通常使用的硅单晶抛光片的直径已达到300mm,400mm硅单晶片的制造也已经开始。如何控制400mm晶体中点缺陷将是面临的重大挑战。 其次是光刻技术:在微电子制造技术中,最为关键的是用于电路图形生成和复制的光刻技术。更短波长光源、新的透镜材料和更高数字孔径光学系统的加工技术,成为首先需要解决的问题;同时,由于光刻尺寸要小于光源波长,使得移相和光学邻近效应矫正等波前工程技术成为光学光刻的另一项关键技术。 最后是器件工艺。当器件的沟道长度缩小到0.1um时,已开始逼近传统的半导体物理的极限。随之而来的是栅氧化层不断减薄,SiO2作为传统的栅氧化层已经难以保证器件的性能。同时随着半导体器件工艺的特征尺寸不断地缩小,芯片内部的多层内连线工艺也逐渐成为半导体工艺发展的挑战。 3、阐述微电子学概念及其重要性。 答:微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、子系统及系统的电子学分支。 微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。 微电子学是以实现电路和系统的集成为目的的,故实用性极强。微电子学中所实现的电路和系统又称为集成电路和集成系统。 微电子学是信息领域的重要基础学科,在信息领域中,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息载体的科学,构成了信息科学的基石。其发展水平直接影响着整个信息技术的发展。 微电子科学技术是信息技术中的关键之所在,其发展水平和产业规模是一个国家经济实力的重要标志。

电子科技大学《微电子器件》课程教学大纲

电子科技大学 《微电子器件》课程教学大纲 课程编号:65030145适用专业:电子科学与技术 集成电路设计与集成系统 学时数:72(含实验12)学分数:4.5 先修课程:《半导体物理》 考核方式:考试 执笔者:张庆中编写日期:2006年4月 一、课程性质和任务 本课程的授课对象是“电子科学与技术(微电子技术方向)”专业和“集成电路设计与集成系统”专业的本科生,属于专业方向选修课。本课程的目的是使学生掌握二极管、双极型与场效应晶体管的基本理论,这些内容都是本领域高级专业技术人员所必须掌握的。本课程同时也是本专业其它后续课程如《集成电路原理》等的先修课程。 二、课程教学内容和要求 1、理论教学(60学时) 基本半导体方程(3学时): 掌握一维形式的泊松方程、电子与空穴的电流密度方程、电子与空穴的连续性方程,掌握基本半导体方程的主要简化形式。 PN结(18学时): 了解突变结与线性缓变结、PN结的平衡状态,理解空间电荷区的形成,了解耗尽近似的适用性(自学),掌握内建电场与扩散电势差、PN结在正向及反向电压下的能带图、少子分布与伏安特性,理解正向导通电压、大注入效应,掌握PN结的击穿特性、PN结的势垒电容与扩散电容、交流小信号参数与等效电路、PN结的开关特性。 这部分内容的重点是PN结空间电荷区的形成、耗尽层宽度与扩散电势差的推导与计算、PN结伏安特性的推导、势垒电容与扩散电容的概念及其计算、PN结的交流小信号参数与等效电路、少子存储效应、雪崩击穿的概念及击穿电压的计算。 这部分内容的难点是PN结内建电场的计算、少子分布的推导与少子分布图、大注入时的内建电场与Webster效应、扩散电容表达式的推导、雪崩倍增因子的推导等。 双极型晶体管(25学时): 了解均匀基区与缓变基区,理解晶体管的基区输运系数与发射结注入效率,掌握晶体管的直流电流放大系数,理解发射区重掺杂效应,

微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

微电子材料与器件复习题(终极版)(1)

《微电子材料与器件》复习题 1.设计制备NMOSFET的工艺,并画出流程图。 概括的说就是先场氧,后栅氧,再淀多晶SI,最后有源区注入 (1)衬底P-SI;(2)初始氧化;光刻I;场区注硼,注硼是为了提高场区的表面浓度,以提高场开启;场区氧化;去掉有源区的SI3N4和SIO2;预栅氧,为离子注入作准备;调整阈电压注入(注硼),目的是改变有源区表面的掺杂浓度,获得要求的晶硅;光刻II,刻多晶硅,不去胶;离子注入,源漏区注砷,热退火;去胶,低温淀积SIO2;光刻III刻引线孔;蒸铝;光刻IV刻电极; 形成N阱初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷 形成P阱去掉光刻胶 在N阱区生长厚氧化层,其它区域被氮化硅层保护而不会被氧化 去掉氮化硅层 P阱离子注入,注硼 推阱退火驱入 去掉N阱区的氧化层 形成场隔离区 生长一层薄氧化层 淀积一层氮化硅 光刻场隔离区,非隔离区被光刻胶保护起来 反应离子刻蚀氮化硅 场区离子注入 热生长厚的场氧化层 去掉氮化硅层 形成多晶硅栅 生长栅氧化层 淀积多晶硅 光刻多晶硅栅 刻蚀多晶硅栅 形成硅化物 淀积氧化层 反应离子刻蚀氧化层,形成侧壁氧化层 淀积难熔金属Ti或Co等 低温退火,形成C-47相的TiSi2或CoSi 去掉氧化层上的没有发生化学反应的Ti或Co 高温退火,形成低阻稳定的TiSi2或CoSi2 形成N管源漏区 光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区 形成P管源漏区

光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区 形成接触孔 化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔 形成第一层金属 淀积金属钨(W),形成钨塞 淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形 形成穿通接触孔 化学气相淀积PETEOS 通过化学机械抛光进行平坦化 光刻穿通接触孔版 反应离子刻蚀绝缘层,形成穿通接触孔 形成第二层金属 淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第二层金属版,定义出连线图形 反应离子刻蚀,形成第二层金属互连图形 合金形成钝化层 在低温条件下(小于300℃)淀积氮化硅 光刻钝化版 刻蚀氮化硅,形成钝化图形 测试、封装,完成集成电路的制造工艺 2.集成电路工艺主要分为哪几大类,每一类中包括哪些主要工艺,并简述各工 艺的主要作用。 要制造一块集成电路,需要经过集成电路设计、掩膜版制造、原始材料制造、芯片加工、封装、测试等工序。集成电路设计主要包括功能设计、逻辑设计、电路设计、掩膜版图设计、计算机仿真等,芯片加工包括图形转换、刻蚀、掺杂、制膜。图形转换:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上掺杂:根据设计的需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触等制膜:制作各种材料的薄膜 图形转换:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上掺杂:根据设计的需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触等制膜:制作各种材料的薄膜 3.简述光刻的工艺过程。 光刻工序:光刻胶的涂覆→爆光→显影→刻蚀→去胶。光刻的基本要素是掩模板和光刻胶。在光刻过程中将液态的光刻胶滴在高速旋转的硅片上;或者先把液态的光刻胶滴在硅片上,之后再高速旋转硅片。其目的是在硅片表面上形成一层胶膜。然后对硅片进行前烘,经过前烘的光刻胶称为牢固附着在硅片上的一层固态薄膜,经过曝光之后,使用特定的溶剂对光刻胶进行显影,部分区域的光刻胶将被溶解掉(对负胶,没曝光区域光刻胶被溶解,对正胶,曝光区域

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电 性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。 3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 ~1kΩ(适当选择) ?x轴作用电压0 .1V/度 ?y轴作用电流10A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 十、实验结论:

2014年电子科技大学微电子器件考研真题

电子科技大学 2014年攻读硕士学位研究生入学考试试题 考试科目:832 微电子器件 注:所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。 一、填空题(共48分,每空1.5分) 1、PN结二极管用途广泛,在作为变容二极管使用时,主要利用其()向偏置的 ()电容;在作为温度传感器使用时,主要利用其正向导通压降会随温度的升高而()。 2、一个P+N型的二极管,电子和空穴的寿命分别为τn和τp,在外加正向直流电压V1时电流 为I1,当外加电压反向为-V2时,器件会经历一段反向恢复过程,这主要是由正向导通时存储在()型中性区中的非平衡少子造成的,该非平衡少子的总量为 ()。 3、防止PN结发生热击穿,最有效的措施是降低器件的()。同时,禁带宽带越 ()的半导体材料,其热稳定性越好。(第二个空填“大”或“小”) 4、双极型晶体管的基区宽度调变效应越严重,其厄尔利电压越(),共发射极增量输 出电阻越()。(填“大”或“小”) 5、已知双极型晶体管的基区度越时间和基区少子寿命分别为τb和τB,则1/τB表示的物理 意义为(),因此τb/τB可以表示 ()。 6、MOSFET的亚阈区摆幅S反应了在亚阈区中()的控制能力。 栅氧化层越厚,则S越(),该控制能力越()。(第二个空填“大”或“小”,第三个空填“强”或“弱”) 7、当金属和P型半导体形成金-半接触时,如果金属的功函数大于半导体的功函数,半导体表 面将形成(),该结构()单向导电性。(从以下选项中选择) A 电子阻挡层 B 电子反阻挡层C空穴阻挡层 D 空穴反阻挡层 E 具有 F 不具有 微电子器件试题共6页,第1页

8、MOSFET的跨导是()特性曲线的斜率,而漏源电导是()特性曲 线的斜率。在模拟电路中,MOSFET一般工作在()区,此时理想情况下漏源电导应为零,但实际上由于()和(),漏源电导通常为正的有限值。 9、短沟道MOSFET中采用偏置栅结构或漏端轻掺杂结构,是为了降低漏端附近的电场强度, 从而抑制()效应,防止器件电学特性退化。 10、如果以SiGe来制作BJT的发射区,Si来制作BJT的基区,则与全部采用Si材料的双极 型晶体管相比,其共基极电流放大系数α将()。(填“增大”、“减小”或“不变”) 11、根据恒场等比例缩小法则,当MOSFET的沟道长度缩小K倍时,其阈值电压变为之前的 (),总电容变为之前的(),最高工作频率变为之前的()。 12、研究发现硅-二氧化硅系统中,存在四种形式的电荷或能量状态,包括Na+、K+等可动离 子、()、()以及二氧化硅层中的电离陷阱电荷,通常它们都带正电,因此()型MOSFET的衬底表面更容易反型。 13、PMOS的衬底相对于源端应该接()电位。当|V BS|增加时,PMOS的阈值电压绝对值 将(),该效应叫做()。(第二个空填“增大”、“减小” 或“不变”) 二、简答与作图题(共57分) 1、如图所示,一块掺杂浓度为N D的无限长均匀N型半导体材料,在x的负半轴有一束光稳定地照射在半导体表面,产生体密度为G0的电子-空穴对。(9分) (1)写出该半导体材料在x正半轴的少子扩散方程。(只考虑少子在x方向的运动) (2)如果要通过上述扩散方程求解x正半轴的少子分布,应该采用什么样的边界条件?(3)如果该半导体材料在x正半轴的长度缩短为W(W远小于少子扩散长度),又应该采用什么样的边界条件求解? 微电子器件试题共6页,第2页

GJB548B微电子器件试验方法和程序文件(2020年8月整理).pdf

GJB 548B-2005 微电子器件试验方法和程序 点击次数:181 发布时间:2011-3-1 14:24:07 GJB 548B-2005 代替 GJB 548A-1996 中华人民共和国国家军用标准 微电子器件试验方法和程序 Test methods and procedures for microelectronic device 方法 1009.2 盐雾(盐汽) 1 目的 本试验是为了模拟海边空气对器件影响的一个加速的腐蚀试验 1.1 术语和定义 1.1.1 腐蚀 corrosion 指涂层和(或)底金属由于化学或电化学的作用而逐渐地损坏 1.1.2 腐蚀部位 corrosion site 指涂层和(或)底金属被腐蚀的部位,即腐蚀位置 1.1.3 腐蚀生成物(淀积物) corrosion product(dcposit) 指腐蚀作用的结果(即锈或氧化铁、氧化镍、氧化锡等)。腐蚀生成物可能在原来腐蚀部位,或者由于盐液的流 动或蔓延而覆盖非腐蚀区域。 1.1.4 腐蚀色斑 corrosion stain 腐蚀色斑是由腐蚀产生的半透明沉淀物。

1.1.5 气泡 blister 指涂层和底金属之间的局部突起和分离 1.1.6 针孔 pinhole 指涂层中产生的小孔,它是完全贯穿涂层的一种缺陷。 1.1.7 凹坑 pitting 指涂层和(或)底金属的局部腐蚀,在某一点或小区域形成空洞 1.1.8 起皮 flaking 指局部涂层分离,而使底金属显露 2 设备 盐雾试验所用设备应包括: a) 带有支撑器件夹具的试验箱。该箱及其附件应彩不会与盐雾发生作用的材料(玻璃、塑料等)制造。在试验 箱内,与试验样品接触的所有零件,应当用不产生电解腐蚀的材料制造。该箱应适当通风,以防止产生“高压” ,并保持盐雾的均匀分布; b) 能适当地防止周围环境条件对盐溶液容器的影响。如需要,为了进行长时间试验,可采用符合试验条件C和D( 见3.2)要求的备用盐溶液容器; c) 使盐液雾化的手段,包括合适的喷嘴和压缩空气或者由20%氧、80%氮组成的混合气体(应防止诸如油和灰尘 等杂质随气体进入雾化器中);

相关主题
文本预览
相关文档 最新文档