当前位置:文档之家› 活塞环基本知识

活塞环基本知识

活塞环基本知识
活塞环基本知识

一、活塞环的基本功能

活塞环主要具有以下四个基本作用:

1.支承作用

活塞环支承活塞并保持活塞在汽缸内的合理位置。

2.密封作用

活塞环在汽缸内如不能完善地保持密封作用,则因燃气大量泄露造成压缩不足,发动机不能获得既定的压缩压力,使功率降低,热效率也随之降低。漏气是造成活塞异常膨胀和变形、咬缸或拉缸、环胶结或卡滞等严重事故的主要原因之一。所以活塞环的密封作用很重要,活塞环只有在完成密封作用的前提下,才能发挥其导热,支承等作用。

3.控制机油的作用

活塞环是在高温和高压的气体作用下,沿汽缸壁往复滑动,为使其能耐久使用,汽缸壁上必须经常地保持适量的润滑油膜,若汽缸壁上附着的机油过多,则多余的机油将被抽吸到燃烧室,使机油消耗量增加,导致发动机性能变坏。因此,经常保持适量的机油是持续发挥发动机性能的必要条件,这就要求气环既起密封作用,又能起调节机油作用;油环则要求能起到保持润滑所需油膜的作用。

4.导热作用

活塞环能有效完成将热量从活塞经活塞环向汽缸壁转移的热移动过程。

二、活塞环的常见结构

活塞环按其在发动机的作用,通常划分为气环(压缩环)、油环(刮油环)两大类。

气环的结构名称按其截面形状和特殊特征划分,常见的有:矩形环、桶面环、锥面环、梯形环、楔形环、鼻形环、止口环、外肩环、镶嵌环、搭口环、L 形环、组合气环、畸形曲面环等。

油环的结构名称按其截面形状和特殊特征划分,常见的有:普油环(平面带槽油环、倒角油环)、螺旋撑簧油环(磷衬、铬衬)、径向衬簧油环、钢带组合油环等。

三、活塞环的常用材料

发动机不断向高速和强化方向发展,为了满足发动机的高性能要求,活塞环的材质也需要不断的改进,对活塞环材料的性能要求有:

1.耐磨性与贮油性

2.强度(抗折强度与疲劳强度)

3.弹性及弹性模数

4.硬度

5.热稳定性

过去应用最普遍的高强度灰铸铁,是活塞环的基本材料,沿用时间最长,是中、低速发动机活塞环的主要材料。而高速发动机上的活塞环几乎全部采用合金铸铁。

我公司活塞环用的铸铁材料大致分为:合金铸铁、球墨铸铁、多元合金铸铁、灰铸铁、耐热合金铸铁。按实际用途及性能归类后经常选用的有:合金铸铁类

1.铬铜铸铁

公司材料代号:YH11(相当于GOETZE的K1材料)

适用范围:小缸径单缸柴油机、空压机、冷冻机及中等负荷和转速的内燃机用活塞环。

2.钨钒钛合金铸铁

材料代号:YH12

适用范围:小缸径单缸柴油机、空压机、冷冻机及中等负荷和转速的内燃机用活塞环。

3.硼铸铁

材料代号:YH13

适用范围:轻型载重汽车发动机用活塞环。

球墨铸铁类

1.公司材料代号:YH21(相当于GOETZE的KV1材料)

适用范围:高转速、高负荷汽车发动机和船舶、机车、工程机械类内燃机用活塞环。

2.公司材料代号:YH22(相当于GOETZE的KV4材料)

适用范围:高转速、高负荷汽车发动机用第一道气环。

多元合金铸铁类

1.公司材料代号:YH31(相当于GOETZE的F14材料)

2.公司材料代号:YH32(相当于GOETZE的K4材料)

适用范围:高转速、高负荷汽车发动机用活塞环。

普通灰铸铁

公司材料代号:YH41

适用范围:小缸径空压机、冷冻机用环及特种密封环。

四、活塞环的表面处理

活塞环的磨损和润滑的机理较为复杂,耐磨性能因素很多,故采取不同的表面处理方法。我公司现有的表面处理方法也很多,可分为软、硬质覆层两种:软质覆层可以加快环的初期磨合,以改善环与汽缸的运动条件,防止熔着磨损的发生,代表性的是磷化、氧化和镀锡、镀铜及涂聚四氟乙烯、二硫化钼等。

硬质覆层可以提高表面硬度以减少磨料磨损,代表性的是镀铬、喷涂金属陶瓷(钛酸铝、氧化铬)、陶瓷(碳化硼、碳化硅)。

为了提高表面硬度还经常使用的表面处理方法为渗氮、渗硫等。

而为了改善表面的贮油能力,以防熔着磨损,代表性使用的是喷钼和镶嵌贮油性能高的金属氧化物填料。

金属学基础知识

共析钢、亚共析钢、过共析钢 1. 共析钢 碳溶解在铁的晶格中形成固溶体,碳溶解到a――中的固溶体叫铁素体, 溶解到丫一一中的固溶体叫奥氏体。铁素体与奥氏体都具有良好的塑性。当铁碳合金中的碳不能全部溶入铁素体或奥氏体中时,剩余出来的碳将与铁形成化合物——碳化铁(Fe3C)这种化合物的晶体组织叫渗碳体,它的硬度极高,塑性几乎为零。 从反映钢的组织结构与钢的含碳量和钢的温度之间关系的铁碳平衡状态图上可见,当碳的含量正好等于0.77%时,即相当于合金中渗碳体(碳化铁)约占12%,铁素体约占88%时,该合金的相变是在恒温下实现的。即在这种特定比例下的渗碳体和铁素体,在发生相变时,如果消失两者同时消失(加热时),如 果出现则两者又同时出现,在这一点上这种组织与纯金属的相变类似。基于这个原因,人们就把这种由特定比例构成的两相组织当作一种组织来看待,并且命名为珠光体,这种钢就叫做共析钢。即含碳量正好是 0.77%的钢就叫做共析钢,它的组织是珠光体。 2. 亚共析钢 常用的结构钢含碳量大都在0.5%以下,由于含碳量低于 0.77%,所以组织中的 渗碳体量也少于 12%,于是铁素体除去一部分要与渗碳体形成珠光体外,还会有多余的出现,所以这种钢的组织是铁素体+珠光体。碳含量越少,钢组织中珠光体 比例也越小,钢的强度也越低,但塑性越好,这类钢统称为亚共析钢。 3. 过共析钢 工具用钢的含碳量往往超过 0.77%,这种钢组织中渗碳体的比例超过 12%,所以除与铁素体形成珠光体外,还有多余的渗碳体,于是这类钢的组织是珠光体+ 渗碳体。这类钢统称为过共析钢。 二、有关钢材机械性能的名词 1?屈服点(<rS 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点 d s =Ps/Fo(MPa,) Mpa 称为兆帕等于 N (牛顿)/mm2 , ( MPa=106Pa, Pa:帕斯卡=N/m2 ) 2?屈服强度(d 0.2 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服 特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力, 称为条件屈服强度或简称屈服强度 d 0.2。 4. 抗拉强度(db)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度 d b= Pb /Fo ( MPa)。 4.伸长率(3) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5. 屈强比((T s/ )r b 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构 零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金

活塞环拆装、检测和测量

活塞环拆装、检测和测量 活塞环是柴油机燃烧室的组成零件之一,它的功用可归纳为,密封燃烧室、散出活塞热量和调节气缸润滑。活塞环要实现这些功用,必须与气缸壁紧贴,这就要求环具有足够的弹力和符合要求的贴合。环的弹力不足和贴合不良会引起密封性下降,严重时会因环的“压入”而窜气;同时贴合不良也不利益活塞散热和调节气缸润滑(油环)的作用。柴油机工作时,活塞环处在高温高压以及润滑极其困难的条件下,特别第一道环。这一方面使环和缸套遭受强烈的摩擦和磨损,使环弹性减弱和贴合不良,环的工作性能恶化,严重时会引起拉缸、断环。另一方面,环及环槽在高温下受热膨胀,若环的间隙(搭口间隙、天地间隙等)调整不当,也将引起气缸密封不良,环的卡阻、顶死,使柴油机工作性能和使用寿命下降。 为了保证活塞环具有良好的工作性能,必须定期对活塞环进行拆检。为此本内容所要求进行的项目有:1.活塞环拆装;2.活塞环搭口间隙、天地间隙测量;3。活塞环弹性定性检验; 4.活塞环与缸套密封性检验。 任务一活塞环拆装 一、目的:掌握活塞环的拆卸和装配方法 二、设备及工量具:柴油机、活塞环钳(或两绳套) 三、拆装步骤: 1、将活塞从缸中吊出。 2、清洁积碳,对有卡死现象的环,可用轻柴油浸泡后用橡胶锤轻敲使其活动,不得用凿子凿削。 3、将活塞环钳的钳口稳固地装于环的两搭口上,小心地将环慢慢地胀开,使之内径稍大于环槽(或一人将两绳套分别搭于环的两搭口,用两手大拇指分别钩住绳套,然后小心地向外拉使环张开)。注意随时保持环与活塞的同心 4、稳定住环搭口开度,小心地将环提起(或装入),随时调整环与活塞的同心度,使环与活塞同圈间隙均匀地拆出(或装入)活塞环。 5、拆卸时,从两侧向中间逐根拆下,以减少环拆装时行经的距离,并随时做好活塞环的排列顺序及工作面标记(对于中小型柴油机可以从第一道环逐根往下拆)。 6、装配时,先装中间一根环再从两端逐根装入,其排列顺序、工作面及油环的方向不得装错(对于中小型柴油机从最末道油环逐根网上装)。 四、注意事项 1、拆装活塞环时不能过分胀大,避免折断,同时应注意不要划伤活塞壁面。 2、装配活塞环时各道环的位置及工作面不得装错。 3、装配油环时其刃口斜边不得装错。 五、评估标准 1、活塞环卡死在环槽内的处理,能正确对卡死在环槽内的活塞环进行有效的处理。 2、拆卸:拆卸工具选用正确,使用方法得当,拆出或装入过程中,对活塞壁面无划伤或断环现象;拆下的环能按顺序及工作面做好标记;装入时按装入顺序、工作面、油环刃口方向均无差错,相邻搭口错开角度合适。 3、完成时间10min. 任务二活塞环(气环2根,油环1根)搭口间隙。天地间隙测量一、目的:掌握活塞环间隙测量的方法

活塞环三隙及漏光度检检测

活塞环三隙及漏光度检检测 为了确保活塞环与活塞环槽、气缸壁的良好配合,在选配活塞环时,需要进行活塞环的弹力检验、漏光度检验,端隙、侧隙和背隙检验。 1.活塞环的弹力检验,用活塞环弹力检验仪检验。应符合机型的规定要求。 2.活塞环漏光的检验:活塞环漏光度检验的目的是察看活塞环与气缸壁的贴合情况,漏光度过大,活塞环局部接触面积小,而造成漏光和机油上窜,燃烧积碳,排气管排黑烟,选配活塞环时,必须进行漏光检查。 检测程序:将活塞环平放在气缸内,活塞环置于气缸内,用倒置的活塞将其推平,活塞上面放一块直径略小于活塞环外径的圆形盖板,盖住活塞的内圆,在活塞环的下面放一个发亮的灯,从气缸上部观察活塞与气缸壁的缝隙,确定七漏光情况。 漏光度要求:漏光出的缝隙,应不大于0.3mm;在同一根活塞环的漏光不得多于两处,漏光弧长在圆周上一处不得大于30°;同一环上的漏光弧长总和不得超过60°;在环端口处左右30°范围内不允许有漏光现象。 3.三隙检测(端隙、侧隙及背隙) 发动机工作时,活塞环随活塞在气缸内作往复运动时,有径向涨缩变形现象,因此活塞环在气缸内应有开口间隙,与活塞环槽间应有侧隙与背隙。 (1)开口间隙,又称端隙,是活塞冷状态下装入气缸后开口处的间隙。此间隙是为了防止活塞环受热膨胀卡死在气缸内设置的。在检查漏光度的同时可检查端隙,用厚薄规测量。 端隙检验:将活塞环置于气缸内,并用倒置的活塞顶部将其推平,然后用厚薄规测量。若端隙大于规定值,则应重新选配活塞环;若间隙小于规定值,应用细

平锉刀对环的端口进行锉修。 锉修注意事项:活塞环要有支点;只能锉修一端环口且应平整;锉刀单方向行刀;四周用力捏紧检验活塞环,两面都要检验。 端隙:解放一道气环0.50~0.70mm,二道气环0.40~0.60mm,油环0.30~0.50mm 东风一道气环0.29~0.49mm,二道气环0.29~0.49mm,油环0.50~0.70mm (2)侧隙,又称边隙,是环高方向上与环槽 之间的间隙。第一道环因为工作温度过高,一般间隙 比其他环大些,油环侧隙较气环小。此间隙过大会使 环的气密性下降,间隙过小会导致在高温膨胀时相互 间发生“粘住”的危险。用厚薄规测量。 侧隙:解放一道气环0.055~0.087,二道气环0.055~0.087,油环0.40~0.80 东风一道气环0.055~0.087,二道气环0.04~0.072,油环0. 09~0.20 (3)背隙:活塞和活塞环装入气缸后,活塞环 背面与环槽底部间的间隙。为了测量方面,维修中以 环的厚度与环槽的深度差来表示背隙,此数值比实际 背隙要小。 背隙:解放一道未做要求 东风气环0.20~0.90mm,油环0.88~1.335mm 4.使用极限: 气环:端隙2.00~4.00mm,侧隙0.20~0.40mm 油环:端隙2.00~3.00mm,侧隙0.20~0.30mm

金属材料基础知识

金属材料及处理工艺基础知识 一、金属材料分类: 金属材料的分类有多种方式,有按照密度分的,价格分的…常用的是分类是把金属材料分成黑色金属和有色金属两大类。 1.黑色金属:通常指铁,锰、铬及它们的合金。常用的黑色材料为钢铁。其又分为三类:纯铁,钢,铸铁。 纯铁:其主要由Fe组成的,含C量在0.0218%以下,工业中很少用; 钢:含C量在0.0218%-2.3%之间的铁碳合金(不加其他元素的称碳素钢,加入其他合金元素的称合金钢)。其又可以按照成分分类(碳素钢,合金钢),用途分类(轴承钢,不锈钢,工具钢,模具钢,弹簧钢,渗碳用钢,耐磨钢,耐热钢…),品质分类(普通钢,优质钢,高级优质钢),成形方式分类(锻钢,铸钢,热轧钢,冷拉钢),形式分类(板材,棒材,管材,异形钢等)等等。 铸铁:含C量在2.3%-6.69%之间的铁碳合金成为铸铁。按石墨的形态其又可以分为灰铸铁,球墨铸铁,蠕墨铸铁等,石墨的不同形态和基体的配合而具有不同的性能。 2.有色金属:又称非铁金属,指除黑色金属外的金属和合金,如铜、锡、铅、锌、铝、镍锰以及黄铜、青铜、铝合金和轴承合金等。 二、金属材料的使用性能及指标 金属材料常用的性能指标有力学性能和物理性能。 1.力学性能:金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 强度:金属材料在外力作用下抵抗变形和断裂的能力。屈服强度、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示,常用单位为MPa。 屈服强度:金属试样在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。一般的,材料达到屈服强度,就开始伴随着永久的塑性变形,因此其是非常重要的指标。 抗拉强度:金属试样在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。 塑性:金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。 弹性:金属材料在外力作用下抵抗塑性变形的能力(去掉外力后能恢复原状的变形)。 伸长率:金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始

活塞环的基本材料

活塞环的基本材料 当今活塞环应用各种品质的铸铁材料和钢。首先考察铸铁材料,按照用材料强度、延伸率、疲劳强度和耐磨性等指标表征的承载能力,可选用的铸造品质的全部范围见表1。对于第一道压缩环应特别优先选用一种具有高抗弯强度和弹性模数的球墨铸铁,其基体为马氏体,以获得高的硬度,可使侧面具有较好的耐磨性。 第二道活塞环能应用无镀层环,开发了一种在调质热处理状态下呈现细化片状组织铸造品质的材料,通过生成铬、钒、锰和钨元素的特殊碳化物,以及马氏体基体组织,以获得良好的耐磨性。而GOE44可锻铸铁是一种在细化珠光体基体组织中有针对性地生成残余碳化物成分的材料,能将高抗切向力强度与良好的耐磨性结合起来。 由于对材料强度和疲劳强度以及良好耐磨性的要求越来越高,现在趋向于进一步优化球状石墨的生成,以便在静态(装配状态)和动态负荷下获得特别高的抗弯强度,同时用贝氏体基体组织来获得活塞环侧面和工作表面较低的磨损率。 由于汽油机和柴油机活塞结构高度降低,压缩环的轴向高度相应减小,特别是面对20MPa气缸爆发压力,对机械结构的要求越来越高,这一切都要求提高活塞环侧面的强度和耐磨性。钢材料特别适合于这些要求。与铸铁材料相比,钢具有良好的机械动态承载能力,因此在弯曲负荷增大的情况下具有高的疲劳强度。当然,通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明,通过附加的化学处理(CPS法)可使氮化钢活塞环的动态强度提高大约30%。 首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高,从而获得良好的耐磨性。如果要使用调质处理的Cr-Si低合金钢的话,则环工作表面镀层是必需的。 在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环,其中特别是欧洲和日本偏爱于氮化钢环。在汽油机高转速的使用条件下,现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。 在欧洲轿车柴油机,即升功率大于50k W/的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险,但是在每种情况下槽和环侧面总磨损量的差异并不大。 在柴油机上,由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之,间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。 原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验,这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了。但是,自从上世纪60年代以来,具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

项目教学(活塞环三隙的测量)

项目教学(活塞环三隙的测量) 注意事项 1、操作规定时间: 20分钟(含准备时间)。 2、请首先按要求在作业表上填写你的姓名、班级。 3、请仔细阅读各种题目的回答或操作要求,在规定的时间和地点完成相应的项目。 4、不要在作业表上乱写乱画,填写无关的内容。 1、本题分值:45分 采用现场实物检测方式对指定的活塞环三隙进行测量,并完成作业表及确定相应的维修方案。 操作要求: 1、合理选择和规范使用工具、仪器、仪表、量具; 2、作业项目齐全;作业流程合理; 3、量具的使用、读数方法、读数结果正确; 4、按要求对活塞环的端隙、侧隙进行检测,并根据检测结果提出维修方案; 5、口述活塞环背隙的检测方法并记录; 6、相应数据的计算方法及结果正确; 7、安全与文明作业。 检测所需工量具 工量具名称规格数量备注发动机维修手册考点提供 活塞环拆装钳1套考点提供 游标卡尺1把考点提供 厚溥规0-100mm 1把考点提供 活塞连杆组考点提供 工具车配备常用工具1台考点提供 抹布考点提供

活塞环三隙检测评分表 班级:姓名:用时:分钟总得分: 序号考核项目配分扣分标准(每项累计扣分不超过配分)扣分 1安全文明否决造成人身、设备重大事故,或恶意顶撞考官、严重扰乱考场秩序,立即终止考试,此题计0 分 2安全文明生产7 分(1)不穿工作服扣1 分、不穿工作鞋扣1 分、不戴工作帽扣1 分 (2)竣工后未清理工量具,每件扣1 分 (3)竣工后未清理考核场地,扣2 分 (4)不服从考官、出言不逊,每次扣1 分 3工量具准备 5 分(1)工量具每少准备1 件扣1分 (2)工量具选择不当,每次扣2 分 (3)未校验量具每次扣2 分 4维修手册使用 3 分每查错一个数据或漏查1个数据扣1 分,根据工单填写情况对照维修手册标准值评分 5活塞环的拆卸 6 分(1)未使用活塞环拆装钳进行拆卸每次扣2 分 (2)拆卸顺序错误每次扣2 分 (3)活塞环拆装钳使用不正确扣2 分 6活塞环端隙测量7 分(1)未清洁气缸和量具扣1 分 (2)活塞环放入气缸中的位置错误扣1分 (3)量具使用不正确扣1 分 (4)测量数据不正确每个扣1分 (5)结果判断不正确扣1 分 7活塞环侧隙测量7 分(1)未清洁被测零件每个扣1 分 (2)量具未清洁扣1 分,量具使用不正确扣1分(3)测量数据不正确每个扣1 分 (4)结果判断不正确扣1 分 8活塞环背隙测量 5 分口述测量方法并填入记录表中,每漏述一个步骤扣1 分 9维修记录 5 分(1)维修记录字迹撩草扣2 分 (2)填写不完整,每项扣1 分 10合计45 分

活塞环检测原理

活塞环检测原理 本标准等效采用ISO6621/2-1984《内燃机活塞环检测原理》。 1主题内容与适用范围 本标准规定了气缸直径小于或等于200 mm的往复活塞式内燃机活塞环的检验方法。 本标准适用于气缸直径小于或等于200 mm的往复活塞式内燃机活塞环。在类似条件下工作的压缩机活塞环也可参照使用。 2引用标准 GB131机械制图表面粗糙度代号及其注法 GB1031表面粗糙度参数及其数值 GB3505表面粗糙度术语表面及其参数 GB14223内燃机活塞环梯形和楔形环 3检验方法 3.1通用检验条件 除特殊规定外,所有检验方法均应符合下述通用条件: a.活塞环应以自由状态(即非受力状态)放置在基准面上,不应有附加力施加在活塞环上; b.有些检验是将活塞环置于具有气缸基本直径的环规中,使其处于闭合状态下进行的。当用这种方法检验具有方向性的活塞环时,环的上侧面应朝向基准面; c.检验时,应使用分辨力不超过被测量尺寸公差的10%的仪器。 3.2特性和检验方法 活塞环特性和检验方法见表1和表2的规定。 表1 活塞环特性

活塞环的检验方法: 3.2.1环高,mm a. 平行侧面环h1 定义:在与基准面垂直方向,任意位置处两侧面之间的距离(见图a和图b)。 b. 梯形环h3 定义:在与基准面垂直方向,距外圆面a6处两侧面之间的距离(见图d)。 检验方法: 用两个半径为1.5±0.05 mm的球面测头测量,测量力约1N(见图C)。油环应测量实体部位(见图b)。

(a)方法A 在规定的a6值处测量尺寸h3(见图d)。用两个半径为1.5±0.05mm的球面测头测量,测量力约1N(见图e)。采用平行规代替梯形规校验测量仪器时,球面测头将引起的误差如下: 对于6°梯形环:0.004 mm 对于15°梯形环:0.026 mm 为了得到正确的梯形测量高度,应从实测值中减去上述数值。 a6值在GB/T 14223中规定。 图e中,上测头轴线对A轴线的同轴度为0.002mm。 (b)方法B 在规定的高度h3值处测量尺寸a6(见图d)。用平面测头测量,测量力约1N,环放置在两个锐边圆盘之间,圆盘间距等于规定的量规高度h3(见图f)。h3值在GB/T 14223中规定 检验方法示意图 3.2.2径向厚度a1,mm 定义:环内、外圆之间的径向距离(见图a)。

活塞环的材料

活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2许用应力(㎏)推荐使用范 围 工作 应力 安装应力 灰铸铁合金铸铁亚共晶铸 铁 球墨铸铁碳钢马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油 环 压缩环油 环 压缩环油 环 IST IST OIL刮片 环 IST 钢带衬环 许用剪应力200㎏/mm2

活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si:2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造

金属材料基础知识汇总

《金属材料基础知识》 第一部分金属材料及热处理基本知识 一,材料性能:通常所指的金属材料性能包括两个方面: 1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。使用性能决定了材料的应用范围,使用安全可靠性和寿命。 2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。 工艺性能对制造成本、生产效率、产品质量有重要影响。 二,材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。 承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。这些指标可以通过力学性能试验测定。 1,强度金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。抗拉强度σb和屈服强度σs是评价材料强度性能的两个主要指标。一般金属材料构件都是在弹性状态下工作的。是不允许发生塑性变形,所以机械设计中一般采用屈服强度σs作为强度指标,并加安全系数。2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。评定材料塑性的指标通常用伸长率和断面收缩率。 伸长率δ=[(L1—L0)/L0]100% L0---试件原来的长度L1---试件拉断后的长度 断面收缩率φ=[(A1—A0)/A0]100% A0----试件原来的截面积A1---试件拉断后颈缩处的截面积 断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。 对必须承受 强烈变形的材料,塑性优良的材料冷压成型的性能好。 3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。另外,硬度较高的材料耐磨性也较好。 工程中常用的硬度测试方法有以下四种 (1)布氏硬度HB (2)洛氏硬度HRc(3)维氏硬度HV (4)里氏硬度HL 4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。 材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。以Ak表示,Sn为断口处的截面积,则冲击韧性ak=Ak/Sn。 在承压类特种设备材料的冲击试验中应用较多。 三金属学与热处理的基本知识 1,金属的晶体结构--物质是由原子构成的。根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。 晶体内部原子的排列方式称为晶体结构。常见的晶体结构有:

最新 金属和金属材料基础知识汇编及练习测试题

最新金属和金属材料基础知识汇编及练习测试题 一、金属和金属材料选择题 1.取甲、乙、丙、丁四种金属粉末,分别投入相同浓度的稀盐酸中,只有甲、乙能产生气体,甲反应更剧烈;再取一小块丁投入丙的硝酸盐溶液中,丁的表面有丙析出。则甲、乙、丙、丁四种金属的活动性顺序为() A.甲>乙>丁>丙B.乙>甲>丙>丁 C.丁>丙>乙>甲D.乙>甲>丁>丙 【答案】A 【解析】 投入相同浓度的稀盐酸中,只有甲、乙能产生气体,甲反应更剧烈,说明甲和乙均排在氢前面,甲比乙活泼;取一小块丁投入丙的硝酸盐溶液中,丁的表面有丙析出,说明丁比丙活泼,活泼金属可以把不活泼金属从他的盐溶液中置换出来。甲、乙、丙、丁四种金属的活动性顺序为甲>乙>丁>丙。故选A。 点睛∶金属活动顺序表的应用⑴排在氢前面的金属可以与稀硫酸或盐酸反应置换出氢气,排在氢后面的金属则不能⑵排在前面金属可以把排在其后面的金属从它的盐溶液中置换出来⑶从左到右金属活动性越来越弱。 2.向Cu(NO3)2、AgNO3、Al(NO3)3的混合溶液中加入一定量的Zn,充分反应后过滤。关于滤渣和滤液有以下四种说法,正确的有() ①滤渣的组成有三种可能②滤液中一定含有Zn(NO3)2和Al(NO3)3 ③向滤渣中加入稀盐酸一定有气泡产生④反应前后溶液的质量可能相等 A.1个 B.2个 C.3个 D.4个 【答案】C 【解析】 【详解】 锌的金属活动性比铜、银强,比铝弱,不能与硝酸铝溶液反应;向Cu(NO3)2、AgNO3、 Al(NO3)3的混合溶液中加入一定量的Zn,锌首先与AgNO3溶液反应生成硝酸锌溶液和银,AgNO3反应完,若还有锌粉,锌才能与Cu(NO3)2溶液反应生成硝酸锌溶液和铜; ①滤渣的组成有三种可能,可能只含有银,也可能含有银和铜,也可能是银、铜和过量的锌,故①正确; ②硝酸铝没有参加反应,反应后生成硝酸锌,滤液中一定含有Zn(NO3)2和Al(NO3)3,故②正确; ③向滤渣中加入稀盐酸不一定有气泡产生,滤渣中可能不含锌,故③错误; ④锌与硝酸银、硝酸铜反应的化学方程式分别是Zn+2AgNO3═Zn(NO3)2+2Ag、Zn+ Cu(NO3)2═Zn(NO3)2+Cu,根据化学方程式可知,每65份质量的锌反应生成216份质量的银,参加反应的锌的质量小于生成银的质量,反应后溶液质量减小;每65份质量的锌反应生成64份质量的铜,参加反应的锌的质量大于生成铜的质量,反应后溶液质量增大;所以反应前后溶液的质量可能相等,故④正确。正确的是①②④有3个。故选C。

活塞环检测

实训项目:活塞环检测。 使用工具/设备:塞尺。 实训目的:掌握活塞环间隙的检测要领。 实训重点:活塞环间隙的测量方法。 实训难点:活塞环的间隙数值正确读取。 实训流程: 1 活塞环主要的间隙有开口间隙(端面间隙)和侧间隙,这两个间隙过大或过小对发动机的动力影响很大。过小或造成活塞环卡死,失去应用的密封作用,过大会造成发动机机油消耗量过大,同样也会降低发动机的动力。 2 活塞环开口间隙(端面间隙)测量方法:将活塞环(第一二道)放入气缸筒内,使用活塞顶部轻轻推入至活塞在上止点活塞环所处的位置,注意放平,不得歪斜。选择塞尺合适的尺寸测量片放入开口处,测量其开口间隙数值,应符合发动机的技术标准。 3 活塞环侧间隙的测量方法:将活塞环放入活塞环槽内,使用合适的塞尺测量片测量活塞环与环槽之间的间隙,应符合发动机的技术标准。 4 如果活塞环开口间隙(端面间隙)过小,可使用什锦锉锉刀进行修整到规定的数值。 5 侧间隙过小可以使用研磨方法进行修理,在没有记号的一面进行研磨,也可车削活塞的环槽。 注意事项:防止用力过大折断活塞环。 实训现场安全应急预案: 为了确保教学实训中的人员与财产的安全,为了避免不必要的人身和财物的损害,遵循“安全第一,预防为主”的方针,高度重视实训室安全工作,增强安全防范意识。特规定教学实训室安全防护措施与与应急方案。 1 现场准备在有效期内的消防灭火器,懂初起火灾的扑救知识与应用。 2 现场备有医疗救护用品与药品。 3 待发动机温度降至或接近环境温度时方可操作。 4 严禁携带易燃、易爆、有毒物品带入实训室, 5 学生进入实训室严格遵守实训室安全管理规定,严禁打闹嬉笑,对不明白的设备及工具不要随意触动,服从实训课老师的指挥。 6 遇有紧急情况,如火灾、人员伤害等,会拨打119、120报警电话。

活塞环的材料

第二章活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏)推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si: 2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求的最佳金相组织。 2 热处理 采用适当的热处理方法,以调整活塞环的金相组织及消除加工应力。 3 刚度 活塞环是一个刚度差的弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保 许用剪应力200㎏/mm2

04第三章活塞环的设计

第三章活塞环的设计 内燃机的性能与活塞环的设计息息相关。目前世界上活塞环设计已进入标准化系列化时代。 3.1 活塞环的设计原则 根据活塞环的作用和工作条件,活塞环的设计应满足如下要求: 1 有适当的弹力,以利初始密封; 2 有较高的机械强度和热稳定性好; 3 易磨合且有足够的耐磨性和抗结胶能力; 4 加工工艺简单,成本低廉。 活塞环设计采用弹性弯曲理论,综合考虑环装入活塞的张开应力和环在气缸中的工作应力。根据这些应力的最佳比例和环材料的强度和弹性模量,实际环的自由状态开口距离为2.5~3.5倍的环径向厚度,环直径/径向厚度之比在22~34之间。 经长期设计经验之积累和广泛的发动机运转测试,得出了压缩环、油环和环槽设计参数的推荐范围,如表3-1~3-4所示的数据,给活塞环设计提供一个全面的指南。 表3-1 气环侧隙 环直径间隙 顶环第二和第三道环 76~178mm >178~250mm >250~405 mm >405~600mm >600mm 0.064/0.114 mm 0.076/0.127 mm 0.102/0.152 mm 0.152/0.216 mm 0.152/0.229 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-2 油环侧隙 环直径间隙 76~178 mm >178~250 mm >250~405 mm >405~600 mm >600 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-3 闭口间隙 发动机型式单位缸径的闭口间隙 水冷 风冷及两冲程 0.003/0.004 0.004/0.005表3-4 侧面光洁度 活塞环直径侧面光洁度CLA ≤178 mm >178~405 mm >405~920 mm 最大0.4μm 最大0.8μm 最大1.6μm

金属材料基本知识

金属材料基本知识 1、什么是变形?变形有几种形式? 构件在外力作用下,发生尺寸和形状改变的现象。变形的基本形式:有弹性变形、永久变形(塑性变形)和断裂变形三种。构件在外力作用下发生变形,外力去除后能恢复原来形状和尺寸,材料的这一特性称为弹性。这种在外力去除后能消失的变形称为弹性变形。若外力去除后,只能部分的恢复原状,还残留一部分不能消失的变形,材料的这一特性称为塑性。外力去除后不能消失而永远残留的变形,称为塑性变形或残余变形,也称永久变形。工程上,一般要求构件在正常工作时,只能发生少量弹性变形,而不能出现永久变形。但对材料进行某种加工(如弯曲、压延、锻打)时,则希望它产生永久变形。 3、什么是强度?什么是刚度?什么是韧性? 材料或构件承受外力时,抵抗塑性变形或破坏的能力称强度。钢材在较大外力作用下可能不被破坏,木材在较小外力作用下而可能会断裂,我们说钢材的强度比木材高。材料或构件承受外力时抵抗变形的能力称为刚度。刚度不仅与材料种类有关,还与构件的结构形式、尺寸等有关。比如管式空气预热器管箱与钢管省煤器组件相比,前者抗变形能力要比后者好,我们称前者的刚度强(好),后者的刚度弱(差)。刚度好的构件,在外力作用下的稳定性也好。材料抵抗冲击载荷的能力称为韧性或冲击韧性,即材料承受冲击载荷时迅速产生塑性变形的性能。锅炉承压部件所使用的材料应具有较好的韧性。 4、什么是塑性材料?什么是脆性材料? 在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往滑事故前兆,其危险性也就更大。脆性材料抵抗冲击载荷的能力更差。 5、什么是应力、应变和弹性模量? 材料或构件在单位截面上所承受的垂直作用力称为应力。外力为拉力时,所产生的应力为拉应力;外力为压缩力时,产生的应力为压应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。对于一定的材料,弹性模量是常数,弹性模量越大,在一定应力下,产生的弹性变形量越小。弹性模量随温度升高而降低。转动机械的轴与叶轮,要求在转动过程中产生较小的变形,就需要选用弹性模量较大的材料。 6、什么叫应力集中? 应力集中:由于构件截面尺寸突然变化而引起应力局部增大的现象,称为应力集中。在等截面构件中,应力是均匀分布的。若构件上有孔、沟槽、凸肩、阶梯等,使截面尺寸发生突然变化时,在截面发生变化的部位,应力不再是均匀分布,在附近小范围内,应力将局部增大。应力集中的程度,可用应力集中系数来表示。应力集中系数的大小,只与构件形状和尺寸有关,与材料无关。工程上常用典型构件的应力集中系数,已通过试验确定。应力集中处的局部应力值,有时可能很大,会影响部件使用奉命,是部件损坏的重要原因之一。为防止和减小这种不利影响,应尽可能避免截面尺寸发生突然变化,构件的外形轮廓应平缓光滑,必要的孔、槽最好配置在低应力区。另外,金属材料内部或焊缝有气孔、夹渣、裂纹以及“焊不透”、“咬边”等缺陷,也会引起应力集中。 7、什么是强度极限(抗拉强度)与屈服极限? 强度极限与屈服极限是通过试验确定的。在拉伸试验过程中,应力达到某一数值后,虽然不再增加甚至略有下降,试件的应变还在继续增加,并产生明显的塑性变形,好像材料暂

活塞环的材料

第二章活塞环得材料 活塞环材料品种繁多、性能各异。选择活塞环得材料要考虑其使用条件、性能要求与环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高得机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定得强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性与工艺性等。目前,活塞环材料主要就是铸铁,随着发动机得强化,出现了从灰铸铁过渡到可锻铸铁与球墨铸铁以及钢材得趋向。常用得材料与性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏) 推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环得材料主要就是灰铸铁、合金铸铁与球墨铸铁,其材料得成份与性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3、5-3、75% Si:2、2-2、75% Mn:0、6-0、8% P:0、3-0、8% S:小于0、10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁得基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:就是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点就是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要就是因铸铁中含有石墨就是优良得固体润滑剂,当活塞环处于临界摩擦或干摩擦得状态下,铸铁材料就显示出其优越得自身润滑性能。 如摩擦或润滑问题,能充分解决得话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2、1 活塞环得一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号得铸铁。材质就是活塞环机械性能与使用寿命得基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求得最佳金相组织。 2 热处理 采用适当得热处理方法,以调整活塞环得金相组织及消除加工应力。 3 刚度 活塞环就是一个刚度差得弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保证加工时工件具有足够得刚度,达到尺寸、形状与粗糙度要求。 许用剪应力200㎏/mm2

活塞环三隙的测量

活塞环三隙的测量 【学习目标】 1、知识目标:掌握发动机活塞环三隙的测量方法 2、能力目标:利用网络、视频等自学,同学之间相互交流 3、情感目标:培养专业兴趣,独立思考,合作交流,自我管理的能力 【重点难点】 1、合理使用工具测量活塞环的三隙 【自主学习】 回顾内容: 1、气环为一带有切口的弹性片圆装环,在自由状态下,气环的外径略 气缸的直径,当环装入气缸后,产生弹力压紧在气缸壁上,其切口处有一定间隙称为。 A、大于 B、小于 C、端隙 新课内容: 一、活塞环三隙检测 1、活塞环端隙检测方法 (1)把活塞环装入到气缸内,然后用不带活塞环的活塞将其推到该环处在的上 止点位置,用塞尺检查端隙是否符合要求。 (2) 量具用之前应该清 洁校准 (3)塞尺感觉稍有阻力, 即为间隙值。 左图是检测发动机活塞环端 隙 (4)测量本组发动机活塞 环端隙,正确读出测量气环端隙值为mm。

2、活塞环侧隙检测方法 将环放在环槽内,围绕环槽滚动一圈,环在槽内应滚动自如,既不松动,又无阻滞现象。然后用塞尺测量侧隙值,应符合要求。 (1)量具用之前应该清洁校准 (2)塞尺感觉稍有阻力,即为间隙值。 (3)测量活塞侧隙时要将活塞环槽清洁干净。 下图是检测发动机活塞环侧隙 测量此发动机活塞环侧隙,正确读出气环侧隙值为mm。 3、活塞环背隙检测方法 用游标卡尺测量出活塞环槽的深度和活塞环的宽度,两者的差即为背隙,应符合要求。 (1)测量此发动机活塞环背隙,正确读出气环背隙值为mm。 【合作探究】 1、活塞环三隙过大,会对发动机造成什么影响

【自我评估】 1、请根据自己任务的完成情况,对自己的学习进行自我评估,并提出改进意见 2、你对本次课有何更好的建议,还存在哪些问题? 评语:

相关主题
文本预览
相关文档 最新文档