当前位置:文档之家› Rolle定理及其推广形式论文:Rolle定理及其推广形式的证明

Rolle定理及其推广形式论文:Rolle定理及其推广形式的证明

Rolle定理及其推广形式论文:Rolle定理及其推广形式的证明
Rolle定理及其推广形式论文:Rolle定理及其推广形式的证明

Rolle定理及其推广形式论文:Rolle定理及其推广形式的

证明

【摘要】运用区间套定理给出了rolle定理的证明,此外给出了rolle定理的推广形式,同时通过引入开区间上的最值定理给出了其证明.

【关键词】rolle定理;区间套定理;介质定理;连续;可导

基金项目:新疆昌吉学院科研基金项目(2010ssqd024)

一、引言

微分中值定理是微积分学的重要理论组成部分,是研究函数性质的有力工具.它不仅沟通了函数及其导数的关系,

同时也是微分学理论及应用的桥梁和基石.在通常的教材中,微分中值定理建立在rolle定理之上,而rolle定理是以“可导函数在其极值点导数为零”为基础,但反之导数为零的点不一定是极值点.此外,rolle定理要求函数在闭区间连续、开区间可导以及端点的值相等,且三个条件缺一不可.我们知道这三个条件仅是结论成立的充分条件而非必要条件,导致其在应用上有很大的局限性,因此本文试图将rolle定理做进一步推广并给出其证明.

二、预备知识

本文的证明要用到如下的预备知识及引理.

(介质定理)设函数f(x)在[a,b]上连续,且f(a)≠

f(b).若c是介于f(a)和f(b)之间的任何实数,则至少存在一点x0∈(a,b),使得f(x0)=c.

(最值定理)若函数f(x)在闭区间[a,b]上连续,则

f(x)在[a,b]上有最大值与最小值.

(区间套定理)设有一列闭区间{[an,bn]}满足:

(1)[a n+1,b n+1][a n+1,b n+1],即an≤a n+10,满足f(x)f(x0),显然f(ξ)为(a,b)内的最大值.证毕.

引理3 设函数f(x)在(a,b)上连续,且lim n→

a+f(x)=lim n→b-f(x)=+∞,则函数f(x)在(a,b)内存在最小值.

引理3的证明同引理2类似,故从略.引理2中f(x)无最小值,引理3中f(x)无最大值.此外,当lim n→a+f(x)=+∞,lim n→b-f(x)=-∞或lim n→a+f(x)=-∞,lim n→b-f(x)=+∞时,f(x)既无最小值也无最大值.

三、rolle定理及推广形式的证明

(rolle定理)设函数f(x)在[a,b]上连续,(a,b)上可导,f(a)=f(b),则必存在ξ∈(a,b),使得f′(ξ)=0.

证明通过反复运用引理1,我们可以得到区间序列{[an,bn]}满足:

(1)[a,b][a1,b1][a2,b2]

(2)f(an)=f(bn).

(3)bn-an≤12n(b-a).

由区间套定理知必有ξ∈(a,b),使得lim n→∞

an=lim n→∞bn=ξ,且anmax{a,0},构造函数

h(t)=fb0-ab0-tt,t∈(a,b0),易知h(t)在(a,b0)满足(1)的情况,lim x→a+f(x)=lim x→+∞f(x)=a及

lim x→a+f(x)=lim x→+∞f(x)=±∞分别对应于①及②的情况,由前面讨论知t0∈(a,b0),h′(t0)=f′b0-ab0-tt(b0-a)b0(b0-a0)2=0,取ξ=(b0-a)t0b0-t0即证.

⑥当区间为(-∞,b)时,构造函数h

(t)=fa0-ba0-tt,t(a0,b),类似于⑤的证明,取

ξ=(a0-b)t0a0-t0即证.

推论设函数f(x)在[a,b)(或为(a,b],a,b可以为∞)上连续,在(a,b)上可导,满足lim x→b-f(x)=f(a)[或为lim x→a+f(x)=f(b)],则至少存在一点

ξ∈(a,b),使得f′(ξ)=0.

显然由前面的证明易得出上述推论,由于证明类似,这

里不再作详细证明.

四、结束语

本文通过运用实数的完备性理论中的区间套定理来给

出rolle定理的另一个证明.同时通过对rolle定理的条件做进一步的讨论,给出了在区间端点不连续及无穷区间上的

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

椭圆中的蝴蝶定理及其应用

2003年北京高考数学卷第18(III)题考查了椭圆内的蝴蝶定理的证明,本文给出了一般圆锥曲线的蝴蝶定理的两种形式,并由它们得到 圆锥曲线的若干性质. 定理1:在圆锥曲线中,过弦AB中点M任作两条弦CD和EF,直线CE与DF 交直线AB于P,Q,则有. 证明:如图1,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(0,t),B(0,-t),知t,-t是的两个根,所以. 若CD,EF有一条斜率不存在,则P,Q与A,B重合,结论成立. 若CD,EF斜率都存在,设C(x1,k1x1), D(x2,k1x2),E(x3,k2x3), F(x4,k2x4),P(0,p),Q(0, q),, ,同理, 所以 将代入(*)得,又得 , , 同理 , ,所以,即 .

注:2003年高考 数学北京卷第18 (III)题,就是定理1中取圆锥曲线为椭圆,AB为平行长轴的弦的特殊情形. 定理2:在圆锥曲线中,过弦AB端点的切线交于点M,过M的直线l∥AB,过M任作两条弦CD和EF,直线CE与DF交直线l于P,Q,则有. 证明:如图2,以M为原点,AB所在的直线为y轴,建立直角坐标系. 设圆锥曲线的方程为(*),设A(),B(),则切线MA的方程是,切线MB的方程是 ,得,所以.(下面与定理1的证明相同,略) 特别的,当弦AB垂直圆锥曲线的对称轴时,点M在圆锥曲线的该对称轴上. 性质1:过点M(m,0)做椭圆、双曲线的弦CD,EF是其焦点轴, 则直线CE、DF的连线交点G在直线l:上.特别的,当M为焦点时,l就是准线.当M为准线与焦点轴所在直线的交点时,l就是过焦点的直线. 证明:如图3,过M做直线AB垂直焦点轴所在的直线,直线CE与DF交直线AB于P,Q,则根据定理1,定理2得.

第五讲 罗尔定理的应用

第五讲 罗尔定理的应用 一、利用罗尔定理、费马定理、零点定理证明方程的根 例1 设01,,,n a a a "为,为满足1200231 n a a a a n + +++=+"的实数,证明方程 20120n n a a x a x a x ++++=" 在(0,1)内至少有一个实根。 例2 设()f x 在[,]a b 上连续,(,)a b 内可导,0b a >>,证明方程 222[()()]()()x f b f a b a f x ′?=? 在(,)a b 内至少存在一个实根。 例3 设,,a b c 为实数,求证方程2x ax bx c e ++=至多有三个实根。 例 4 证明方程2210x x ??=有且仅有三个不同的实根。 二、利用罗尔定理证明含有“中值点”的等式 例5 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点 (,)a b ξ∈,使得()()0f f ξξ′+= 例6 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:对任意的λ,至少存在一点(,)a b ξ∈,使得()()f f ξλξ′= 例7设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点(,)a b ξ∈,使得()()()0f f g ξξξ′′+= 例8设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,()0g x ′≠,证明:至少存在一点(,)a b ξ∈,使得()()()()f g f g ξξξξ′′= 例9设()f x 在[0,1]上连续,(0,1)内可导,且(0)0f =,而当(0,1)x ∈时,()0f x ≠,证明:对任意正整数n ,至少存在一点(0,1)ξ∈,使得 ()(1) ()(1) nf f f f ξξξξ′′?=? 例10 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ?>,()02a b f a f +?? ?

蝴蝶定理的证明及推广

一 蝴蝶定理的证明 (一)运用简单的初中高中几何知识的巧妙证明 蝴蝶定理经常在初中和高中的试卷中出现,于是涌现了很多利用中学简单几何 方法完成蝴蝶定理的方法。 1 带有辅助线的常见蝴蝶定理证明 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而M U A M V ?? , AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。[1] 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 M B F E D M ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 F M E A N B 1M E A N B F ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到

(完整word版)蝴蝶定理的八种证明及三种推广.docx

蝴蝶定理的证明 定理: 设 M 为圆内 弦 PQ 的中点,过 M 作弦 AB 和 CD 。设 AD 和 BC 各相交 PQ 于点 E 和 F , 则 M 是 EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的 帮助下,翩翩起舞! 证法 1 如图 2 ,作 OU AD , OV BC U ,V 分别为 AD 、 BC 的中点,且由于 ,则垂足 EUO EMO 90 FVOFMO 90 得 M 、 E 、U 、O 共圆; M 、F 、V 、 O 共圆。 则 AUM= EOM , MOFMVC 又 MAD MCB , U 、V 为 AD 、BC 的中点,从而 MUA MVC , AUM MVC 则 EOM MOF ,于是 ME=MF 。 证法 2 过 D 作关于直线 OM 的对称点 D' ,如图 3 所示,则 FMD' EMD ,MD=MD' 1 A ○ C 联结 D'M 交圆 O 于 C',则 C 与 C'关于 OM 对称,即 P E FQ U M PC' CQ 。又 V D O 1 1 1 CFP= ( QB+PC )= (QB+CC'+CQ )= BC'= BD'C' 2 2 2 故 M 、F 、 B 、 D' 四点共圆,即 MBF MD'F 而 MBF EDM 2 ○ B 图 2 C' C A 由 1 、 2 知, DME D'MF , 故 ME=MF 。 ○ ○ P E F Q M 证法 3 如图 4,设直线 DA 与 BC 交于点 N 。对 NEF 及截线 AMB , NEF 及截 线 CMD 分别应用梅涅劳斯定理,有 FM EA NB 1 , FM ED NC 1 ME AN BF ME DN CF 由上述两式相乘,并注意到 NA ND NC NB O B D D' 图 3 N 得 FM 2 AN ND BF CF BF CF ME 2 AE ED BN CN AE ED A C P E F Q PM +MF MQ - MF PM 2 MF 2 PM - ME MQ+ME PM 2 ME 2 M D O B 化简上式后得 ME=MF 。[2] 图 4 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。

小学几何之蝴蝶定理大全精编版

小学几何之蝴蝶定理大全 一、 基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 S 1 : S 2 = a : b 定理2:等分点结论( 鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 20 3 4153= ? 定理3:任意四边形中的比例关系( 蝴蝶定理) 1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4 上、下部分的面积之积等于左、右部分的面积之积 2)AO ∶OC = (S 1+S 2)∶(S 4+S 3) 梯形中的比例关系( 梯形蝴蝶定理) 1)S 1∶S 3 =a 2∶b 2 上、下部分的面积比等于上、下边的平方比 2)左、右部分的面积相等 3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab 4)S 的对应份数为(a+b )2

定理4:相似三角形性质 1) H h C c B b A a = = = 2)S1∶S2 = a2 ∶A2 定理5:燕尾定理 S△ABG ∶S△AGC = S△BGE ∶S△GEC = BE∶EC S△BGA ∶S△BGC = S△AGF ∶S△GFC = AF∶FC S△AGC ∶S△BCG = S△ADG ∶S△DGB = AD∶DB 二、例题分析 例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC的面积是多少平方厘米?

C F E A C B E F D A 例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1 4 CF CA =,求三角形DEF 的面积. 例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=1 3 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 例4、例1 如图,ABCD 是直角梯形,求阴影部分的面积和。(单位:厘米) 例5、两条对角线把梯形ABCD 分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米) 例6、如下图,图中BO=2DO ,阴影部分的面积是4平方厘米,求梯形ABCD 的面积是多少平

罗尔中值定理的一些新证法_英文_

R eceived d ate :2006207217 第24卷第4期 大 学 数 学Vol.24,№.42008年8月COLL EGE MA T H EMA TICS Aug.2008 So me New Ways to Prove Rolle ’s Theorem YA O J i n g 2s un (Dept.of Math.,Anhui Normal University ,Wuhu 241000,China ) Abstract :We give three new methods proving Rolle ’s Theorem.The second simple way is only dependent on the well 2known Heine 2Borel Covering Theorem.This implies that Rolle ’s Theorem is the direct consequence of completeness of real numbers. K ey w ords :Rolle ’s theorem ;completeness of real numbers ;f ull cover ;Heine Borel covering theorem ; δ2fine tagged partition C LC Number :O171 Document Code :C Article I D :167221454(2008)0420131203 The st udy on Rolle ’s Theorem as well as ot her mean value t heorems of differentials is a very att ractive issue and it was also involved in calculus reform in U SA.Many scholars have done a great deal of work during t he past decade [1-3].We know t hat if Rolle ’s Theorem is proved ,it can be used to p rove Lagrange Mean Value Theorem and Cauchy Mean Value Theorem so long as a corresponding auxiliary f unction is const ructed.Therefore ,it is better to say Rolle ’s Theorem is t he essence and basis of t he next two t heorems t han to say t he conclusions of t he next two t heorems seem to have wider applicability t han t hat of Rolle ’s Theorem.To make t hings simpler ,people lay emp hasis on discussing t he ways to p rove Rolle ’s Theorem.The articles of professor Xu Ji 2hong [4]and t he aut hor [5]respectively give a new way to p rove Rolle ’s Theorem.In t he paper ,we shall give some met hods p roving Rolle ’s Theorem by some forms of completeness of real numbers. Def inition 1 A collection C of clo sed subintervals of [a ,b]is a f ull cover of [a ,b]if to each x ∈[a ,b]t here corresponds a number δ(x )>0such t hat every closed subinterval of [a ,b ]t hat contains x and has lengt h less t hat δ(x )belongs to C [6]. Lemm a 1 If C is a f ull cover of [a ,b],t hen C contains a partition of [a ,b],i.e.,t here exist a =x 0,x 1,…,x n =b such t hat x k -1

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

小学的奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积 是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平 方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =? 任意四边形、梯形与相似模型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???) 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形BCD 的 面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已 知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3ABD BCD S S ??=, ∴1 3AH CG =, ∴1 3AOD DOC S S ??=, ∴1 3 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、 4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

蝴蝶定理的证明

图 5 蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。 [2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 证法 4 (Steven 给出)如图5,并令 图 2 图 3 图 4

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

闭区间套定理的证明、推广及应用

重庆三峡学院数学分析课程论文 闭区间套定理的证明、推广及应用 院系数学与统计学院 专业数学与应用数学(师范) 姓名姜清亭 年级 2009级 学号 200906034129 指导教师刘学飞 2011年5月

闭区间套定理的证明、推广及应用 姜清亭 (重庆三峡学院 数学与统计学院 09级数本(1)班) 摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。同时得到与之相应的若干定理,并使闭区间套定理得到推广。其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。 关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明 1 空间上的区间套定理 定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若 1 [][][]1122,,....,....n n a b a b a b ??? 2 lim()0 n n n b a →∞ -= 则存在唯一数属于l 。。所有的闭区间(即 []1 ,n n n a b l ∞ == ) ,且lim lim n n n n a b l →∞ →∞ == 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a , 1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞ =l .由条件2 有 ()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞ →∞ →∞ →∞ =-+=-+=+=于是,lim lim n n n n a b l →∞ →∞ ==, 对任意取定的,n k N k +∈? ,有k n n k a a b b ≤≤ ,从而,lim lim k n n k n n a a l b b →∞ →∞ ≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间. 证明l 唯一性.假设还有一个' l 也属于所有的闭区间,从而 '',,,,n n n n n N l l a b l l b a +???∈∈-≤-?? 有有有条件2),有'l l =即l 是唯一的. 2 闭区间套定理的推广 定理2 (开区间套定理)若开区间列{() ,n n a b },若 1 [][][]1122,,....,....n n a b a b a b ??? 2 )(lim n n n a b -∞ →= n n a b 2lim -∞→=0 对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有

小学几何之蝴蝶定理大全

小学几何之蝴蝶定理大全 一、基本知识点 定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。 定理2:等分点结论(鸟头定理) 如图,三角形△AED 的面积占三角形△ABC 的面积的 3 1 3 5 4 20 定理3:任意四边形中的比例关系(蝴蝶定理) 1)S1∶S2 =S4∶S3 或S1×S3 = S 2× S4 上、下部分的面积之积等于左、右部分的面积之 积 2 )AO∶OC = (S1+S2)∶(S4+S3) 梯形中的比例关系(梯形蝴蝶定 理) 1)S1∶S3 =a2∶b2 上、下部分的面积比等于上、下边 的 平方比 2)左、右部分的面积相 等 3)S1∶S3∶S2∶S4 =a 2∶b2 ab∶ab S1 : S2 = a : b 4)S 的对应份数为(a+b)2

定理 4:相似三角形性质 2) S 1 ∶S 2 = a 2 ∶A 2 定理 5:燕尾定理 S △ ABG ∶ S △AGC = S △ BGE ∶ S △GEC = BE ∶ EC S △ BGA ∶ S △BGC = S △ AGF ∶ S △GFC = AF ∶ FC S △ AGC ∶ S △BCG = S △ ADG ∶ S △DGB = AD ∶ DB 二、 例题分析 例 1、如图, AD DB , AE EF FC ,已知阴影部分面积为 5 平方厘米, 多少平方厘米? 1) BCH ABC 的面积是

例2、有一个三角形ABC 的面积为1,如图,且AD 1 AB,2 1 ABC中,,D为BC的中点, E 为AB上的一点,且BE= AB,已知四 边3 形EDCA的面积是35 ,求三角形ABC的面积. 例4、例 1 如图,ABCD 是直角梯形,求阴影部分的面积和。(单位:厘米) 例5、两条对角线把梯形ABCD分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米) 例6、如下图,图中BO=2DO,阴影部分的面积是 4 平方厘米,求梯形ABCD的面积是多少平 B 三角形DEF 的面积. BE 1BC , 3 1 CF CA ,求 4 例3、如图,在三角形

中值定理证明题

中值定理证明题 1. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。辅助函数可如下得到 0)()(0)()()()(=-+→=-+→=+x f x a f f a f f a f ξξξξ 【证明】令)()()(x f x a f x G -+=,],0[a x ∈.)(x G 在[0,a]上连续,且 )()0()()2()(a f f a f a f a G -=-= )0()()0(f a f G -= 当)0()(f a f =时,取0=ξ,即有)()(ξξf a f =+; 当)0()(f a f =时,0)()0(

蝴蝶定理

一、蝴蝶定理的发展历程简介:。 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 如图,过圆中弦AB的中点作M引任意两弦CD和EF,连结CF和ED,分别交AB于P、Q,则PM=QM 由于此图形似只蝴蝶飞舞,故此定理因此而得名:蝴蝶定理。此定理早在1815年在英国杂志《男士日记》上见刊,征求证明,有意思的是,迟到1972年以前,人们的证明都并非初等,且十分繁琐。然近些年来,证明者不乏其人,使得这只翩翩起舞的蝴蝶栖止不定,变化多端。笔者结合自己的证明和收集别人的研究,整理证法十种,以飨读者。 证法1 (证∠POM=∠QOM) 作CF、DE的弦心距OG、OH,连OM,则OM⊥AB且OGPM四点共圆。 ∴∠POM=∠PGM…①。同理,∠QOM=∠QHM…② ∵△MFC∽MDE,∴MF﹕FC=MD﹕DE ∴MF﹕2FG=MD﹕2DH,∴MF﹕FG=MD﹕DH ∠F=∠D ∴△MFG∽△MDH,∴∠MGF=∠MHD…③

由①②③得:∠POM=∠QOM ∴PM=QM 证法2 (作△PMD′≌△QM D) 作C关于直线OM的对称点C'连C'M交⊙O于D',则AC弧=BC'弧,MD'=MD,∠PMD'=∠QMD ∠CPM=0.5AF弧+0.5BC'C弧=0.5AF弧+0.5AC弧+0.5CC'弧=0.5FCC'弧=∠FD'M 从而PFD’M四点共圆。 ∴∠PD’M=∠PFM=∠D ∴在△PD’M与△QDM中 ∠PD’M=∠D MD’=MD ∠PMD’=∠QMD ∴△PMD’≌△QMD ∴PM=QM 证法3 (利用梅氏定理) 延长CF、ED相交于G点。

相关主题
文本预览
相关文档 最新文档