当前位置:文档之家› 物理化学思考题及参考答案——傅献彩

物理化学思考题及参考答案——傅献彩

物理化学思考题及参考答案——傅献彩
物理化学思考题及参考答案——傅献彩

物理化学思考题

目录

第一章热力学第一定律 (2)

第二章热力学第二定律 (6)

第三章统计热力学初步 (10)

第四章溶液 (13)

第五章相平衡 (16)

第六章化学平衡 (20)

第七章电解质溶液 (22)

第八章可逆电池的电动势及其应用 (25)

第九章电解与极化作用 (29)

第十章化学动力学基础 (32)

第十一章界面现象 (36)

第十二章胶体分散体系与大分子溶液 (38)

第一章热力学第一定律

1、为什么第一定律数学表示式dU=δQ-δW 中内能前面用微分号d,而热量和功的前面用δ符号?

答:因为内能是状态函数,具有全微分性质。而热量和功不是状态函数,其微小改变值用δ表示。

2、公式H=U+PV中H > U,发生一状态变化后有ΔH =ΔU +Δ(PV),

此时ΔH >ΔU吗?为什么?

答:不一定。因为Δ(PV)可以为零、正数和负数。

3、ΔH = Qp , ΔU = Qv两式的适用条件是什么?

答:ΔH = Qp此式适用条件是:封闭系等压非体积功为零的体系。

ΔU = Qv此式适用条件是:封闭系等容非体积功为零的体系。

(1)状态确定后,状态函数的值即被确定。

答:对。

(2)状态改变后,状态函数值一定要改变。

答:不对。如:理想气体等温膨胀过程,U和H的值就不变化。

(3)有一个状态函数值发生了变化,状态一定要发生变化。

答:对。

4、想气体绝热向真空膨胀,ΔU=0,ΔH=0对吗?

答:对。因理想气体绝热向真空膨胀过程是一等温过程。

5、恒压、无相变的单组分封闭体系的焓值当温度升高时是增加、减少还是不变?

答:增加。

6、当体系将热量传递给环境后,体系的焓值是增加、不变还是不一定改变?

答:不一定改变。

7、等温等压进行的某化学反应,实验测得T1和T2时的热效应分别为Δr H1和Δr H2,用基尔霍夫公式验证时,发现数据不相等。为什么?

解:用基尔霍夫公式计算的Δr H m,1和Δr H m,2是反应物完全变成产物时的值。而Δr H1和Δr H2是该化学反应达到平衡时实验测得的值。

8、“功、热与内能均是能量,所以它们的性质相同”这句话正确否?

答:不正确。虽然功、热与内能都有能量的量纲,但在性质上不同,内能是体系的本身性质,是状态函数。而热与功是体系与环境间交换的能量,是与热力学过程相联系的过程量。功与热是被“交换”或“传递”中的能量,不是体系本身的性质,不是状态函数,与内能性质不同。热与功也有区别,热是微粒无序运动而传递的能量,功是微粒有序运动而传递的能量。

9、为什么本教材中热力学第一定律表达式是:ΔU=Q+W,而有些书中采用ΔU=Q-W,两者是否有矛盾,为什么?

答:因为本教材规定:体系吸热为正,放热为负;体系对外作功,W为负值,环境对体系作功,W为正值,总的来说,体系在过程中得到能量为正,失去能量为负。在这个规定下,要满足能量守衡原理,则必须是体系吸的热加上环境对体系作的功后,才等于体系内能的变化值,所以是ΔU=Q+W。而有些书上,功的符号与上述规定相反,(体系向环境做功,W 为正值,环境向体系做功,W为负值),则就是ΔU=Q-W。

10、一体系由A态到B态,沿途径Ⅰ放热100J,对体系作功50J。问(1)由A态沿途径Ⅱ到B态体系作功80J,其Q值为多少?(2) 如体系由B态沿途径Ⅲ回到A态得50J功,体系吸热环是放热?Q为多少?

答:(1) ΔU A→B=-100+50=-50J Q=ΔU A→B-W=-50-(-80)=30J

(2) ΔU B→A=-ΔU A→B=50J Q=ΔU B→A-W=50-50=0

体系不吸热也放热

11、已知体系的状态方程式F(T,p,V)=0,由U=f(T,V)写出当压力不变时气体的内能对温度的变化率的表达式。

答:d U=(ЭU/ЭT)V d T+(ЭU/ЭV)T d V压力不变时,除以dT:(ЭU/ЭT)p=(ЭU/ЭT)V+(ЭU/ЭV)T(ЭV/ЭT)p

12、为什么无非体积功的等压过程的热,只决定于体系的初、终态?

答:因为无其它功的等压过程中Q p=ΔH,而ΔH 是体系状态函数的改变值,其大小只决定于体系的始终态,所以在无其它功的等压过程Q p大小只决定于初终态。

13、“因ΔH=Q p,所以只有等压过程才有ΔH。”这句话是否正确?

答:不正确。H是状态函数,H=U+pV,凡是体系状态发生变化,不管经过什么过程,体系的焓值都可能变化,即ΔH 有可能不等于零。

14、因为“ΔH=Q p,所以Q p也具有状态函数的性质”对吗?为什么?

答:不对,ΔH=Q p,只说明Q p等于状态函数H的变化值ΔH,仅是数值上相等,并不意味着Q p具有状态函数的性质。ΔH=Q p只能说在恒压而不做非体积功的特定条件下,Q p的数值等于体系状态函数H 的改变,而不能认为Q p也是状态函数。

15、试证明在无非体积功的等容过程中体系的ΔU=Q V。

证明:ΔU=Q+W等容时ΔV=0,又无其它功,W=0 ∴ΔU=Q V 16、为什么对于理想气体,公式ΔU=n C V,m d T可用来计算任一过程的ΔU,并不受定容条件的限制?

答:因为对理想气体,U=f(T),内能仅是温度的函数,从始态出发,不论经什么过程,达到不同的终态,只要始终态温度分别相同,ΔU就一定相同。所以公式ΔU=C V,m d T并不受定容条件的限制。

恒容过程ΔU1= C V,m d T两者终态的温度相同

恒压过程ΔU2=ΔU1+ΔU3∴ΔU3=0 ∴ΔU2=ΔU1=C V,m d p

即1mol理想气体不论什么过程,只要变到相同温度的终态其ΔU总是等于C V,m d T

17、为什么理想气体常数R在数值上等于1mol理想气体升高1K时所作的等压体积功?答:W=-p外ΔV=-p(V2-V1)=-n R(T2-T1) 当n=1mol T2-T1=1K 时W=R

18、体系中有100克N2,完全转化成NH3,如按计量方程式N2+3H2→2NH3,Δξ=?,如按计量方程式 N2+ H2—→NH3,Δξ=?,如反应前体系中N2的物质的量n(N2)=10mol,分别按上述二计量方程式所得的Δξ计算反应后的n'(N2)=?

答:n N2(0)=100/28=3.57mol n N2(ξ)=0

Δξ1=[n N2(ξ)-n N2(0)]/νB=(0-3.57)/(-1)=3.57mol

Δξ2=(0-3.57)/(-1/2)=7.14mol

公式:n B(ξ)=n B(0)+νBΔξn B(0)=10mol

按方程式:N2+3H2→2NH3,n N2(3.57)=10-(-1)33.57=6.43mol

按方程式: N2+ H2→NH3,n'N2(7.14)=10-(-1/2)37.14=6.43mol

两者结果相同。

19、根据Q p,m=Q V,m+∑νB(g)R T,Q p,m一定大于Q V,m吗?为什么?举例说明。

答:Q p,m不一定大于Q V,m,其大小比较取决于∑νB(g) 的符号,若∑νB(g)>0,则Q p,m>Q V,m,但若∑νB(g)<0,Q p,m<Q V,m

例如:H2(g)+ O2(g)—→H2O(l)

ΔH m=Q p=-285.9 kJ2mol-1∑νB(g)=-1.5<0

Q V,m=Q p,m-∑νB(g)R T=-285.83103+1.538.3143298=-282 kJ2mol-1

Q p,m<Q V,m

又例如:Zn(s)+H2SO4(aq)—→ZnSO4(aq)+H2(g)↑

Q p,m=-177.9 kJ2mol-1∑νB(g)=1>0

Q V,m=Q p,m-∑νB(g)R T=-177.9310-3-8.3143298=-180.37 KJ2mol-1

Q p,m>Q V,m

20、“稳定单值的焓值等于零”;“化合物摩尔生成热就是1mol 该物质所具有的焓值”对吗?为什么?

答:不对。稳定单质的焓值并不等于零。但可以说标准状态下稳定单质的规定焓值等于零,人为规定标准状态下,稳定单质的生成焓,即规定焓为0。化合物的摩尔生成热不是1mol 物质所具有的焓的绝对值,而是相对于生成它的稳定单质的焓的相对值。即是以标准状态下稳定单质生成热为零作基线,得出的相对值。

21、证明由键焓计算反应的ΔH m的公式是:Δr H m=(-∑n i i)(反应物-产物)

答:化合物的Δf H =∑n i(ΔH 原子)-(∑n j j)

而反应热效应Δr H m=∑νB(ΔH m,f )B=∑νB[∑n i(ΔH 原子)-∑(n j j)]B

=∑νB(∑n iΔH 原子)B-∑νB(∑n j j)B

因组成产物与反应物的元素相同,且各种原子的数目也相等,

即∑νB(∑n iΔH 原子)B=0 便有ΔH m=-∑νB(∑n j j)B

=-∑νB(∑n j j)B(反应物)-∑νB(∑n j j)(产物)

若将反应物的计量系数νB考虑为正值,则上式(-∑νB(∑n j j)B(反应物),便成为

∑νB(∑n j j)B(反应物),再将一个B分子中的j键数n j乘上方程式中反应物的计量系数ν,便是该反应方程中反应物总j键数n j,改写为n i,键焓 i,那么,

反应物的总键焓值便为(∑n i i)(反应物)。同理对产物的计量系数考虑为正值,

则为(∑n i i)(产物)。便得:ΔH m=(∑n i i)(反应物)-(∑n i i)(产物)。

22、反应A(g)+2B(g)—→C(g) 的Δr H m(298.2K)>0,则此反应进行时必定吸热,对吗?为什么?

答:不对。只有在等压下,无非体积功时,Q p=ΔH m,ΔH m>0,故Q p>0,体系必定吸热。但在有非体积功,或者非等压条件下,ΔH m≠Q p,ΔH m>0,Q p可以小于0,等于0,不一定吸热。例如,绝热容器中H2与O2燃烧,ΔH m>0,但Q=0,不吸热。

23、“可逆过程一定是循还过程,循还过程一定是可逆过程”这种说法对吗? 为什么? 答:不对。可逆过程不一定为循环过程。因为只要体系由A态在无摩擦等消耗效应存在的情况下,经由一系列无限接近平衡状态到达B态,则由A到B的过程是可逆。显然,如果初态A 与终态 B 是两个不同的状态,则A到B便不是循环过程;如果B态就是A 态则该过程便是可逆循环过程。循环过程不一定是可逆的,由始态A开始,状态经过变化,不论途径可逆与否,只要回到始态A,就是循环过程。只是,由A态开始,在无摩擦等消耗效应存在的情况下,经过由一系列无限接近平衡状态,又回到A态的循环过程才是可逆循环过程。总之可逆过程与循环过程是两个完全不同的概念。

24、气体同一初态(p1,V1)出发分别经等温可逆压缩与绝热可逆压缩,至终态,终态体积都

是V2,哪一个过程所作压缩功大些?为什么?

答:(规定环境做功为正值),绝热可逆压缩功大于等温可逆压缩功。这是因为绝热压缩时,环境所做功全部都变成气体的内能,因而气体的温度升高,故当气体终态体积为V2时,气体的压力比经等温可逆到达V2时气体的压力要高,即绝热可逆压缩时,环境施加的压力大些,因而所做压缩功也多些。

25、从同一初态(p1,V1)分别经可逆的绝热膨胀与不可逆的绝热膨胀至终态体积都是V2

时,气体压力相同吗?为什么?

答:不相同。可逆绝热膨胀由(p1,V1)到V2体系付出的功大于不可逆绝热膨胀由(p1,V1)到V2所付出的功。而两过程的Q都等于零,因而前一过程中体系内能

降低得更多,相应终态气体的温度也低些。所以可逆绝热膨胀比不可逆绝热膨胀到

终态V2时气体的压力低些。

第二章 热力学第二定律

1、有人说,根据热力学第二定律可以断定下两句话是正确的

Ⅰ、从单一热源吸热不可能完全变成功,

Ⅱ、热量从低温物体向高温物体扩散是不可能的。

你对上两句话是如何理解的。

答:这两句话是不正确的。热力学第二定律的正确说法是:在不引起其它变化的条件下,从单一热源吸热不可能完全变成功。及在不引起其它变化的条件下,热量从低温物体向高温物体扩散是不可能的。

2、计算绝热不可逆过程的ΔS 时,能否设计一个始终态相同的绝热可逆过程去计算,为什么?

答:不能。因为从ΔS≥0判据式的条件是绝热过程和孤立体系,可以看出,从同一始态出发,绝热可逆过程和绝热不可逆过程达不到同一终态。

3、理想气体等温过程的ΔG=ΔF ,此结论对否?为什么?

答:对。∵ΔG=ΔH-Δ(TS)、ΔF=ΔU-Δ(TS),而理想气体等温过程的ΔH=0,ΔU=0。

4、100℃、1P ?水向真空中蒸发为100℃、1P ?水蒸气,经计算此相变过程的ΔG=0,说明此相

变过程是可逆的,此结论对吗?为什么?

答:不对。因为100℃、1P ?水向真空中蒸发为100℃、1P ?水蒸气不是等温等压过程,因

此不能用ΔG 做判据。

5、理想气体绝热向真空膨胀Q=0,ΔS=0,此结论对吗?为什么?

答:不对。因理想气体绝热向真空膨胀是一不可逆过程,所以ΔS≠0。

6、下列两种说法是否正确,说明原因。

(1)不可逆过程一定是自发过程。

(2)自发过程一定是不可逆过程。

答(1)不对,如:气体的不可逆压缩过程是非自发过程。

(2)对。

7、理想气体在等温条件下,经恒外压压缩至稳定,此变化过程中

ΔS 体<0,ΔS 环>0,此结论对否?为什么?

答:对。因此过程ΔS 体<0,又因此过程是不可逆过程,ΔS 孤立>0,

所以ΔS 环>0。

8、理想气体在绝热条件下,经恒外压压缩至稳定,此变化过程中

ΔS 体>0、ΔS 体=0还是不确定,为什么?

答:ΔS 体>0。因为此过程是绝热不可逆过程。

9、(1)等温等压的可逆相变过程中,体系的熵变ΔS=T H

(2)体系经历一自发过程总有ΔS>0,

上两种表述正确吗?为什么?

答:不正确。对于(1)缺少非体积功等于零的条件。对于(2)应该是绝热体系或者是

孤立体系经历一自发过程总有ΔS>0。

10、(1)因为可逆热机的效率最高,可逆热机的效率可以大于等于1吗?

答:不能。如果ηR >1,则违背热力学第一定律。如果ηR =1,则违背热力学第二定律。

(2)可逆热机的效率最高,在其它条件相同的情况下,可逆热机带动的机车速度最快吗?

答:不对,热力学不讨论速度问题。可逆过程的特点之一就是变化过程无限缓慢,因此在其它条件相同的情况下,可逆热机带动的机车速度最慢。但它所带动的机车所运行的距离应是最长的。

11、“对于绝热过程有ΔS≥0,那末由A态出发经过可逆与不可逆过程都到达B态,这样同一状态B就有两个不同的熵值,熵就不是状态函数了”。显然,这一结论是错误的,错在何处?请用理想气体绝热膨胀过程阐述之。

答:绝热可逆过程中ΔS值一定等于零,因此该过程中Q R=0,体系与环境无热交换;而绝热不可逆过程中,Q Ir=0,而ΔS一定大于零.另外,从同一始态出发经绝热可逆过程与绝热不可逆过程达到的终态是不同。现以理想气体从同一始态出发,分别经过绝热可逆膨胀和绝热不可逆膨胀达到相同的压力,绝热可逆膨胀过程向外做的功的绝对值比绝热不可逆过程膨胀向外做的功的绝对值要大些,内能降低得也多些,故绝热可逆过程终态温度低于绝热不可逆过程终态温度,相同的终态压力时,终态体积是经绝热可逆过程的小,经绝热不可逆过程的大,两者是不同的终态。

12、263K 的过冷水结成263K 的冰,ΔS<0,与熵增加原理相矛盾吗?为什么?

答:并不矛盾,熵增加原理适用条件是孤立体系或绝热体系,而上述过程并不具备这个特定条件,体系与环境间有热交换,不是孤立体系或绝热体系,ΔS 可以小于零。而总熵会大于零的。

13、“p 、298K过冷的水蒸气变成298K 的水所放的热Q p,Q p=ΔH,而ΔH只决定于初、终态而与等压过程的可逆与否无关,因而便可用该相变过程的热Q p,根据ΔS=Q p/T (T 为298 K)来计算体系的熵变”这种看法是否正确?为什么?

答:不正确,ΔS只能等于可逆过程的热温商之和,就是说可以通过可逆过程的热温商

来计算熵变ΔS,而题述过程为不可逆恒温过程,故ΔS≠Q p/T,不可用热温商来计算体系的ΔS。

14、如有一化学反应其等压热效应ΔH<0,则该反应发生时一定放热,且ΔS<0,对吗?为什么?

答:不对。因为化学反应的热效应ΔH是指在等温等压、无非体积功条件下,这时Q p=ΔH,当ΔH<0,Q p<0,反应发生时放热。如果反应不是在等温等压、无非体积功的条件下,Q ≠ΔH,ΔH<0,也不一定放热。例如:绝热容器中H2与O2燃烧反应,反应的等压热效应ΔH<0,但该条件下Q=0,不放热,也不吸热。再如等温等压下在可逆电池发生的反应,虽然ΔH<0,但Q可能大于零。即使是放热反应,ΔS也不一定小于零,例如:浓H2SO4溶于水,放热,但ΔS>0。

15、根据S=lnΩ,而Ω是微粒在空间与能量分布上混乱程度的量度,试判断下述等温等压过程的ΔS是大于零? 小于零? 还是等于零?

(1) NH4NO3(s)溶于水;答:ΔS>0

(2) Ag+(aq)+2NH3(g)—→Ag(NH3)2+;答:ΔS<0

(3)2KClO3(s)—→KCl(s)+3O2(g);答:ΔS>0

(4)Zn(s)+H2SO4(aq)—→ZnSO4(aq)+H2(g) 答:ΔS>0

16、物质的标准熵S (298K)值就是该状态下熵的绝对值吗?

答:不对。物质的标准熵S ,298是以绝对零度0K 时完美晶体的熵值规定为零作为

基点,计算出在标准压力p 的298K 与0 K 的熵值之差,因此,S (298K)是指标准压力p 下、298K 的熵值相对于0K 时熵值的相对值,不是绝对值。

17、(2-29)式与(2-32)式在意义上有何不同? 为什么用(2-32)式判定过程的自发性时不需

加上无非体积功的条件呢?

答:(2-29)式即dG T,p,W'=0≤0;(2-32)式即ΔG T,p≤0。(2-29)式是等温等压无非体积功过程

的自发方向判据,它表明了在该条件下实际过程沿体系吉布斯自由能降低方向进行,当体系的自由能不再改变时便达到平衡态,而吉布斯自由能增大过程是不可能发生的。(2-32)式的“<”表示自发性,而“=”表示平衡态,在等温等压下不论体系是否作非体积功,自发过程总是沿吉布斯自由能降低方向进行,直到G 值不变达到平衡态。如果W'≠0,环境做W' 功,则ΔG T,p>0,不合条件;体系做W'功(W'绝对值小于ΔG绝对值),发生自发过程时,ΔG T,p<0;如果W'=0,ΔG T,p>0的过程不能发生,体系只能发生自发过程ΔG ≤0,由此可见,不论体系是否作非体积功,(2-32)式都是等温等压下自发过程方向与限度的判据。

18、“ΔG T,p,W'=0≤0 说明ΔG<0 的过程只能在T,p一定,且W'=0 的条件下才能发生”,这种说法对吗? 为什么?

答:不对。ΔG T,p,W'=0<0,说明在T,p一定时,无非体积功的条件下ΔG<0的过程可以自发进行,但该过程并非只有在W'=0条件下发生,有非体积功W' 时,只要所作非体积功的绝对值小于吉布斯自由能的降低值条件下也能发生。

19、关于公式ΔG T,p=W R'的下列说法是否正确?为什么?

(1) “体系从A 态到B 态不论进行什么过程ΔG 值为定值且一定等于W'”;

(2) “等温等压下只有体系对外做非体积功时G 才降低”;

(3) “G就是体系中能做非体积功的那一部分能量”。

答:(1)不对,只有在T,p一定的可逆过程中,体系的ΔG T,p才等于W R';在其它条

件下,不可逆过程中ΔG T,p不等于W R'。

(2) 不对,体系的吉布斯自由能是状态函数,假如G B<G A,则由A至B的等温等压过程是自发的,但不论在实际过程中体系是否对外作非体积功,体系自由能都是降低的。

(3) 不对,只有在等温等压条件下,吉布斯自由能的降低值才是作非体积功的能值。

20、为什么等温等压下化学反应的自发性不能用ΔH作判据;但有些情况下用ΔH作判据,又能得到正确的结论?

答:等温等压下化学反应自发性的判据是用ΔG,而不是用ΔH,但由于有ΔG=ΔH-

TΔS的关系,因此对|ΔH|>|TΔS|的反应,用ΔH作判据所得到的结论与用ΔG 判据是一致的,在这种条件下可以用ΔH 作为判据;另外,对于ΔH>0,ΔS<0或ΔH <0,ΔS>0的反应,用ΔH判据与ΔG 判据也是一致的,因此也可用ΔH来作为判据。

21、对于ΔH>0,ΔS>0而在常温下不能自发进行的反应改变温度能否使反应自发进行?为什么?

答:能够。依据ΔG=ΔH-TΔS公式,TΔS 随温度的升高而增大,提高反应温度使TΔS>ΔH,从而ΔG<0,反应就能自发进行了。

22、一般固体分解产生气体时,常常大量吸热,试比较这类固体在低温与高温下的稳定性。答:固体分解产生气体的反应吸热,ΔH>0,由于产生气体,ΔS>0,随着温度升高,

TΔS 增加,ΔG=ΔH-TΔS,随温度升高,反应的ΔG 降低,所以高温下固体的热温定性较差。

23、为什么ΔU =∫T dS-∫p d V适用于单组分均相封闭体系的任何过程? 这是否意味着对这种简单的热力学体系的任何过程∫T dS及∫p d V都分别代表热与功呢?

答:对d U=T dS-p d V公式,对一定量单组分均相物系,只要初、终态相同,不论过程可逆与否都能适用,这因为单组分均相物系不会发生化学变化和相变化,只是p,V,T的变化,同时由于上式中,U、S、V是状态函数,其变化值与过程无关,因此该式适用于任何过程,但是只有在可逆过程中∫T dS 才是体系所吸的热。而-p d V才是物系所作的体积功。

24、根据δQ=d U+p d V及d U=( U/ V)T d V+( U/ T)V d T用全微分判别式证明Q 不是状态函数。

答:全微分的一个重要性质是二阶微商与其求导的次序无关(即尤拉关系式)。

d U代入δQ,并把( U/ T)V=T( p/ T)V-p代入,

δQ=(ЭU/ЭT)V d T+[(ЭU/ЭV)T+p]d V中,那么:

[ (ЭU/ЭT)V/ЭV]T≠[ (ЭU/ЭV)T/ЭT]V+(Эp/ЭT)V

所以Q不具有全微分性质。

25、分别讨论定压下升高温度及定温下增大压力时以下过程的ΔG值如何变化?

(1) 沸点下液体气化为蒸气;

(2) 凝固点下液体凝为固体(如V m(l)>V m(s))。

答:依据(ЭΔG/ЭT)p=-ΔS,由ΔS值即可判定在定压下ΔG 对T的变化率的。

当ΔS>0 时,则(ЭΔG/ЭT)p<0,随温度升高,ΔG 值减小。当ΔS<0时,则(ЭΔG/ЭT)p>0,随温度升高,ΔG值增大;依据(ЭΔG/Эp)T=ΔV,由ΔV值可判定在定温下,ΔG 对压力p的变化率。当ΔV>0 时,则(ЭΔG/Эp)T>0,定温下,随压力增大,ΔG增加。

(1)在沸点下液体气化为蒸气,ΔS>0,恒压下升高温度气化ΔG减小,蒸发更易进行;而ΔV>0,定温下增加压力,ΔG增大,蒸发不易进行。

(2)液体凝固成固体,由于V m(l) > V m(s),ΔV < 0,定温下加压凝固过程ΔG 降低,凝固更易进行。而ΔS<0,定压下升温,ΔG增大,凝固不易进行。

第三章统计热力学基础

1. 宏观状态确定的粒子体系,下边哪种说法是正确的?

a.微观状态总数Ω有确定值;

b.只有一种确定的微观状态;

c.只有一种确定的分布。

答:(a)正确。因S=lnΩ,当体系的宏观状态一经确定,就具有一定的熵值,从而就有一定的Ω值。

2. 下边关于分布的说法,哪一种是正确的?

a. 一种分布就是一种微观状态,而且只是一种微观状态;

b. 一种分布就是其中具有能量为 1的有一组粒子n1具有能量为 2的有一组粒

子n2…,具有能量为 i的有一组粒子n i;

c. 具有各种能量的各组分子,其中一组表示一种分布;

d. 各种分布具有相同的出现几率。

答:(b)正确。因为符合分布的定义。

3. 麦克斯维--玻尔兹曼统计只能应用于独立粒子体系,下面的叙述,哪一个不是

这一统计的特点?

a. 宏观状态参量N、U、V为定值的封闭体系;

b. 体系由独立可别粒子组成U=∑i n i i;

c. 各能级的各量子状态中分配的粒子数,受包里不相容原理的限制;

d. 一可实现的微观状态,以相同的几率出现。

答:(c)不符合麦--玻统计,受保里不相容原理限制,该体系需应用量子统计。

4. 使用麦克斯维-玻尔兹曼分布定律,要求粒子N 很大。这是因为在推出该定律时,

a. 应用拉氏未定乘因子法;

b. 应用了斯特令近似公式;

c. 忽略了粒子之间的相互作用;

d. 假定了粒子是可别的。

答:(b)正确,由于应用了斯特令公式,故其粒子数N 必须很大。

5. 对于一个独立粒子体系,低能级上分配的粒子数目可以小于高能级上的粒子数吗?答:可以。依M--B 分布定律L,K 两个能级的粒子数之比为:

n L/n =(g L/g )EX p[-( L- )/K T]

上式中L 为高能级,由于εL>ε ,上式中右边指数式小于1,但随着T增大时便逐渐接近于1,当g L/g >1 时,便可能出现n L>n 。

6. 写出物质的量为1摩尔时的粒子体系的熵、内能、焓、亥姆霍兹自由能及吉布

斯自由能等热力学函数的统计热力学表达式。

答:S m(可别)=NKlnq+U/T=Rlnq+R T(Эlnq/ЭT)V

S m(不可别)=NKln(qe/N)+U/T=Rln(qe/N A)+R T(Эlnq/ЭT)V

U m(可别)=U m(不可别)=R T2(Эlnq/ЭT)V

H m(可别)=H m(不可别)=R T[T(Эlnq/ЭT)V+V(Эlnq/ЭV)T]

A m(可别)=-R T lnq

A m(不可别)=-R T ln(qe/N)

G m(可别)=-R T[lnq-V(Эlnq/ЭV)T]

G m(不可别)=-R T[ln(qe/N)-V(Эlnq/ЭV)T]

7. 若规定最低能级能量为 0,则体系0K 时的内能为U0=N 0。若规定 0=0,则

U0=N0=0。如何理解体系内能的意义?

答:因U=NK T2( lnq/ T)V则U 0=NK T2( lnq 0/ T)V

U0=NK T2( lnq0/ T)V

∵q 0=q0EX p(- 0/K T) ∴U 0=U0+NE0

所以选取 0为最低能级的能量值,体系的内能比选取零作最低能级的能量值多

N 0。因体系在0K 时的内能为一定的,基准值既选取U 0,也可选取U0,两者相差Nε0。

8. 从配分函数的意义,思考平动、转动及振动配分函数分别与温度的关系。

答:因q(平动)=(2πmK T)3/2V/h3

若为固体或液体则q(平动)∝T3/2;若为气体,代入V=NK T/p,

∴q(平动)∝T5/2,

因q(转动)=3π2IK T/ζh ∴q(转动)∝T

因q(振动)=∑i N[1-exp(-hν/k T)] 其中,线型分子N=3n-5 ;

非线型分子N=3n-6,可见q(振动)与T无简单关系。

9. 为什么非线型多原子分子,振动模式为3n-6,而线型分子则为3n-5(n 是分子中

的原子数)?

答:对于一个由五个原子组成的分子,若要确定全部粒子的瞬时位置,需要3n个坐标,其中三个坐标为质心坐标,即整个分子的平动自由度;对于线型分子要用两个坐标为规定了分子相对于某一固定的坐标,即该线型分子的转动自由度,故其余的3n-5 个坐标确定原子间的相对位置,即有3n-5 个转动自由度。对于非线型分子,则要三个坐标确定其空间取向,即3个转动自由度,其振动自由度为3n-3-3=3n-6。

10. 解释单原子分子理想气体C V,m= R;双原子分子理想气体在通常温度下C V,m=2.5R,温度高时可能等于3.5R。

答:对单原子分子:q=q0(电子)q(平动)=q0(电子)(2πmK T)3/2V/h3

C V,m=(ЭU m/ЭT)V

∵U m=R T2[[ lng0(电子)(2πmK T)3/2V/h3]/ T]V=3R T/2

平动自由度有3个自由度,每个自由度对U m贡献R T/2,

而C V,m=(ЭU m/ЭT)V=3R/2。每个自由度对C V,m贡献R/2。

对于双原子分子:

q=q0 (电子)2{(2πmK T)3/2V/h3}{8π2IK T/(ζh2)}[1-exp(-hν/k T]-1

代入,U m=R T{2.5+(hν/k T)/[exp(hν/k T)-1]}

室温下,exp(hν/k T)-1≈exp(hν/k T),U m=R T[2.5+(hν/k T)/exp(hν/k T)]

C m,V=( U m/ T)V=5R/2+R(hν/k T)2exp(hν/k T) ,∵hν/k>>T,

C V,m=5R/2,即三个平动二个转动自由度中的每一运动自由度对C m,V为R/2,

高温下,∵hν/k T<<T,U m=7R T/2 便有C V,m=7R/2

即总共有三个平动,二个转动,一个振动自由度,每个振动自由度贡献为C V,m=R。

11. 思考一物质自固态到液态到气态其熵值变化的情况。

答:可以由两方面进行考虑

(a) 对同一物质Ω(固) <Ω(液)<Ω(气),而S=KlnΩ

所以S(固) <S(液) <S(气)

(b) 因S=NKlnq+U/T对同一物质有,U(固)<U(液)<U(气)

q(固) <q(液)<q(气),所以S(固) <S(液) <S(气)

12. 比较同一气体的C m、c(平) 及√c2(平) 的大小。

答:C m=(2K T/m)1/2 ,c(平)=(8K T/mπ)1/2,

√c2(平)=(3K T/m)1/2

∴C m<c(平)<[c2(平)]1/2

13. 一方形箱体积为V,其中有n 个质量为m 的理想气体分子。它们从各个方向碰

撞器壁而产生压力。在x 方向上因碰撞而产生的压力应为以下何式?

a. p=2mnv2x/V;

b. p=2mnc(平)/V;

c. 2mnv x2(平)/V

d. 2mnc2(平)/V

答:(c)是正确的。

14. 常温常压下,气体分子的ζ≈10-10m,n≈1024m-3,c≈102m2s-1。请估算Z A、Z AA 及平均自由程的数量级。

解:Z A=πnζ2c=3.14310243(10-10)23102≈106s-1

Z AA=(√2)πζ2n2c/2=(√2)π3(10-10)23(1024)23102/2 ≈1030 m-32s-1

L=(√2)πn AζA2/2=c/Z A=10-2/106=10-4 m

15. 为什么得到(6-136)式即Z AA的计算式时除以2,而得到(6-138)式即Z AB的计

算时不除以2?

答:(6-136) 式是同种分子A 之间的碰撞频率计算公式,因每个A 分子在撞与被撞二

种情况下重复算一次,故要除以2,而Z AB为两种不同分子间的碰撞,计算A 分子

碰撞B 分子,或B分子碰撞A分子,未重复计算,故不要除以2。

第 四 章 溶 液

1、理想溶液有何特点?

答:在全部浓度范围内,各组分都严格遵拉乌尔定律;对理想溶液遵拉乌尔定律和亨利

定律等同;理想溶液中组分B 的化学势的表达式为:

()+=*P T B B ,μμRTlnX B ;当各组分混合构成理想溶液时,

△ △ mix V=0, △mix U=0, △mix H=0。

2、何为正偏差溶液?何为负偏差溶液?

答:形成溶液时,不同分子间的引力弱于同类分子间的引力,使得分子逸出的倾向增加,

实际蒸汽压比用拉乌尔定律计算的结果要大。△H >0,△V >0。此称正偏差溶液。负偏差溶液情况则正相反。

3、固体糖可顺利溶解在水中,请说明固体糖的化学势与糖水中的化学

势比较,高低如何?

答:高。

4、重结晶制取纯盐的过程中,析出NaCl 固体的化学势与母液中NaCl 的化学势比较,高低如何?

答:相等。

5、马拉松运动员沿途准备的饮料应该是那一种

A 白开水

B 含适量的维生素的等渗饮料

C 20%葡萄糖饮料

D 高脂肪、高蛋白、高能量饮料

答:B

6、298K ,0.01m 糖水的渗透压为Л1, 0.01m 食盐水的渗透压为Л2,则Л1与Л2的关系如何? 答:Л1<Л2

7、恒压下,将分子量为50的二元电解质5克溶于250克水中,测得凝固点为-0.744℃,该电解质在水中的解离度是多少?(水的冰点降低常数k f =1.86)

A 100%

B 76%

C 27%

D 0

答: D

8、0.450克化合物溶于30克水中,(水的冰点降低常数k f =1.86),凝固点降低了0.150℃,该化合物的分子量是多少?

答:ΔT=k f m B 解得M=186

9、在一恒温抽空得玻璃罩中,封入两杯液面相同的糖水(A )和纯水(B),经历若干时间后,两杯液面的高度将如何变化?

答:(A )杯高于(B)杯

10、在温度T 时纯液体A 的饱和蒸汽压为*A P ,化学势为*A μ,并且已知在θP 压力下的凝固

点为*f T ,当A 中溶入少量与A 不形成固态溶液的溶质而形成稀溶液时,上述三个分别为A P ,A μ,f T ,则下述结论何者正确?

(A) *A P <A P *A μ<A μ *

f T <f T

(B)

*

A

P>

A

P*

A

μ<

A

μ*f T<f T

(C)

*

A

P<

A

P*

A

μ<

A

μ*f T>f T

(D)

*

A

P>

A

P*

A

μ>

A

μ*f T>f T

答:(D)

11、关于偏摩尔量,下面叙述不正确的是

(A)偏摩尔量的数值可以是正数、负数和零。

(B)溶液中每一种广度性质都有偏摩尔量,而且都不等于其摩尔量。

(C)除偏摩尔吉布斯自由能外,其它偏摩尔量都不等于化学势。

(D)溶液中各组分的偏摩尔量之间符合吉布斯——杜亥姆关系式。

答:(B)

12、两只烧杯中各有1kg水,向A杯加入0.01mol蔗糖,向B杯内溶入0.01molNaCl,两只烧杯按同样速度冷却降温,则哪只烧杯先结冰?

答:A杯先结冰。

13、在溶剂中一旦加入溶质就能使溶液的蒸气压降低,沸点升高,冰点降低并且具有渗透压。这句话是否准确?为什么?

答:不一定准确。如果加入的溶质是挥发性的,并且挥发性比溶剂大,则溶液的蒸气压增加,沸点下降;如果溶质是非挥发性的,或者溶质的挥发性小于溶剂,则题述结果正确。

14、如果在水中加入少量的乙醇,则四个依数性将发生怎样的变化,为什么有这样的变化?如果加NaCl、CaCl2则又怎样?

答:水中加入乙醇后,溶液蒸气压上升,沸点下降。冰点仍是下降,渗透压仍存在。这是由于乙醇是挥发性的,并且挥发性又很大。但乙醇水溶液凝固时,析出的固态仍是纯冰。如果溶入NaCl,由于每个分子完全电离成二个粒子,则蒸气压降低,沸点升高,所呈依述性数值加倍,如溶入CaCl2,则近似增加三倍。

15、某一定浓度的稀溶液,它的四个依数性间存在着怎样的简单定量关系?

答:ΔT b/K b=ΔT f/K f=πV A/(R T M A)=(m p A*/p A)/M A。

16、运用公式(3-40)时,从溶液中析出的固体是否必须是固态纯溶剂,为什么?

答:(3-40)式为:ΔT f=K f m B,条件是必须固态纯溶剂,因推导该式的基础是溶液中溶剂A 的化学势与固态纯溶剂的化学势相等。

17、你怎样从微观上理解只有理想混合物中的每一种组分才能在全组成范围内服从拉乌尔定律。

答:因为理想混合物中每一种组分粒子与其周围异种组分粒子之间的相互作用,等同于该组分处于纯态的情况(即等于同种粒子之间的相互作用),因此理想混合物在全组成范围内服从拉乌尔定律。

18、溶液中的组分与混合物中的组分有何区别?

答:溶液可以是气体、固体溶于液体形成的,气体、固体称为溶质,液体称为溶剂,而混合物中必须是两种液体混合而得的。用热力学处理时,混合物中任一组分化学势公式都服从或近似服从拉乌尔定律,而溶液中的溶剂按拉乌尔定律处理,溶质按亨利定律处理,因此两者运用不同的处理过程。

19、理想气体与理想液态(或固态)混合物的微观粒子间的相互作用有何区别?

答:理想气体的分子间不存在相互作用,而理想混合物的粒子间存在相互作用,不过是同种粒子还是异种粒子之间的作用力一样大。

20、“理想稀溶液与理想混合物属于一个概念”,这句话你以为如何?

答:理想稀溶液中溶质完善地服从亨利定律,溶剂服从拉乌尔定律,两者的标准态具有不同的含义。而理想混合物中任一组分服从拉乌尔定律,任一组分的标准态具有相同的含义。因此两者不属于同一概念。

21、你能说清楚(3-17)式中每一项的物理意义吗?

答:(3-17)式:μA(l,T,p)=μ*A(l,T,p)+R T lnx A≈μA(l,T)+R T lnx A

μA(l,T,p) 是液态溶液中组分A 在T温度,压力p时的化学势,μ*A(l,T,p)是液态纯A 在温度T,压力p时的化学势,μA(l,T)是A在温度T,标准压力p时的标准态化学势。由于压力对液态化学势影响很小,μ*(l,T,p)近似等于μ(l,T)。R T lnX A是溶液中组分A 较纯A 的化学势的下降值。

22、理想混合物与非理想混合物在微观结构与宏观性质上有何不同?

答:理想混合物的微观结构特征是同种粒子或异种粒子之间作用力相等,而非理想混合物便不具理想混合物的微观特征是同种粒子或异种粒子之间作用力不相等。理想混合物的宏观特征为ΔV(混合)=0,ΔU(混合)=0,ΔH(混合)=0,ΔC p(混合)=0,非理想混合物不具有上述几个特征。

23、试比较组分B 的化学势在理想混合物与非理想混合物的公式中有何同异?

答:在理想混合物中为μB(T)=μB(T)+R T lnX B

在非理想混合物中μB(T)=μB(T)+R T lna B

相同点:(1)数学形式相同;(2)标准态相同;不同点:理想混合物中直接引用浓度xB 而非理想混合物须引用活度aB,活度aB=γB X B,γB为活度系数。

24、下列三个式子在一般压力下是否都正确,为什么?

μB (s,T)≈μB*(s,T,p)

μB (l,T)≈μB*(l,T,p)

μB (g,T)≈μB*(g,T,p)

答:前两者比较正确,因这二者的μB与μB之差为Δμ=V S(p -p)或Δμ=V L(p -p),该值与μ B相比较甚小可忽略不计,故这两式成立,第三式Δμ=

V g(p -p),因V g较V S或V l相差甚大,Δμ不能忽略不计,故第三式不能成立。

第五章相平衡

1、组分数与物种数有何区别?

答:在相平衡中,组分数K指“独立组分”,能够说明在各相中分布情况的最小数目的独立物质为独立组分。而物种数S是指平衡时体系中存在的物种的数目。

2、说明在常温下,考虑电离和不考虑电离时,K和S的区别

答:考虑电离:H2O=H++OH-,S=3,K=S-R-R/=3-1-1=1

不考虑电离,S=1,K=1

3、AlCl3溶于水中,形成不饱和溶液,该盐不发生水解和发生水解时,体系的组分数各是多少?

答:不发生水解,K=2

发生水解,生成氢氧化物沉淀,K=3

4、压力升高时,单组分体系的熔点将如何变化?

A 升高

B 降低

C 不变

D 不一定

答:D, (根据克拉贝龙方程讨论)

5、压力升高时,单组分体系的沸点将如何变化?

A 升高

B 降低

C 不变

D 不一定

答:A (根据克—克方程进行讨论)

6、水蒸气蒸馏的必要条件是什么?

答;两种液体基本不互溶。

7、二组分低共熔混合物是几相?在二组分体系的T—X图中,低共熔点时,自由度是几?答:二相;f=0

8、H2SO4与H2O2可形成三种水合物,在1P 下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有几种?

答:有一种。

9、A和B两组分可形成固熔体,在A中加入B,可使A的熔点升高。则B在此固熔体中的含量与B在液相中的含量的关系如何?

答:B在固熔体中的含量大于B在液相中的含量。

10、完全互溶的二组分溶液,在X B=0.6处,平衡蒸汽压有最高植。那么组成为X B=0.4的溶液在气--液平衡时,X B(g),X B(l),X B(总)的大小顺序如何?将X B=0.4的溶液进行精馏,塔顶将得到什么?

答:X B(g)>X B(总)>X B(l) ;塔顶得到的是X B=0.6的恒怫混合物。

11、对于纯水,当水气、水与冰三相共存时,其自由度为多少?你是怎样理解的?

答:根据相律,水纯物质,c=1,T=273.16K,p=611p a,温度压力确定,其自由度

f=1-3+2=0,说明该体系的组成、温度与压力均不能任意改变。

12、在图5-6 中,若体系从a 点移动到c 点,体系的状态将发生怎样的变化;如果从d 点移动到a 点,则又将发生怎样的变化?

答:体系由状态a 点开始,经恒温压缩到达C T时,开始液化,这时T、p均保持不变,直到蒸气全部变成液体后,压力才继续增加到达c点状态。体系从d 点状态,经等压升温,到达C T线时,开始汽化,这时T、R均不变,直到液态水全部变成水汽后,才升温到a

点状态。

7. 在图5-8(b) 中,若体系从a 点移动到d 点:(a) 缓慢改变;(b) 快速改变,

体系的状态将发生怎样的改变?

答:从a→d 的缓慢变化过程,液态硫在恒压下降低温度,到达EC线上b'点时,冷凝

成单斜硫,b'→c' 为单斜硫恒压降温过程,到达EB线上c点时,单斜硫转变为斜方硫,此后c→d 为斜方硫的恒压降温压过程。从a→d 的快速改变过程,液态硫恒压降温到b'点,来不及转变成单斜硫,温度很快降到EG线上 b 点时,开始凝结成斜方硫,b→d为斜方硫恒压降温过程。

13、由水气变成液态水是否一定要经过两相平衡态,是否还有其它途径。

答:不一定要经过两相平衡。从水的相图上可知,将水汽先升温,使温度超过647.2K,

后再加压,使压力超过2.23107p a,然后再先降温后降压,便可不经过气液两相平衡态,使水汽转变成液态水。

14、根据硫的相图,请考虑下述诸问题:

(a) 为什么硫存在四个三相点?

(b) 将室温下的斜方硫投入373.2K 的沸水中,便迅速取出来与在沸水中放置一段较长

的时间再取出来,二者的状态可能有何差别?

(c) 将388K 的熔融硫倒入373K 的沸水中放置一段时间,硫将成什么状态?

(d) 将高温硫蒸气分别通入373K 的沸水中与298K 的水中,所形成的硫各是什么状

态?

(e) 将单斜硫迅速冷却至室温,其状态是稳定态还是介稳状态?久置后又将怎样?

答:(a) 因为硫具有单斜与斜方两种晶相,一种气相与一种液相共四相,所以具有四个三相点。

(b) 放入373.2K 沸水中迅速取出来,不及进行晶形转变,仍为斜方硫,在沸水中久

放后便转变为单斜硫。

(c) 硫成为单斜硫。

(d) 通入沸水中为单斜硫,通入298K 水中为斜方硫。

(e) 迅速冷却仍为单斜硫,它是介稳状态,久置后转变为斜方硫。

15、为什么具有40%Cd 的Bi-Cd 体系,其步冷曲线的形状与纯Bi 及纯Cd 的相同? 答:因将该体系冷却到413K 时,便有固相出现,但析出的固体成份与液相成份相同,液相组成不变,f=0,温度不变,步冷曲线出现平台,直至全部凝固后温度才下降,所以步冷曲线形状与纯Bi 或纯Cd 相同。

16、怎样可从含Cd 80%的Bi-Cd 混合物中分离出Cd 来,能否全部分离出来?

答:先将体系加热熔化(温度起过563K ),再使其缓慢冷却,(搅拌使液相组成均匀),当

体系冷却到BC线处,便有纯Cd 析出,继续冷却,Cd 不断析出,使温度不低于413K时,便可分离出纯固态Cd,但不能把体系中Cd 全部分离出来,因为温度降到413K

时,除了Cd 析出外,Bi 也析出,也可认为Cd 与Bi 形成低共熔混合物(含Cd40%)析出,用杠杆规则计算可知最多能有66.7%的Cd 可以分离出来。

17、有人说三组分体系的实际相图中,其状态点的自由度均是条件自由度,你认为对否?

为什么?

答:对的。因为三组分体系中,C=3,f=5-φ,当fmin=0时,φ=5,即最多可

以存在五相平衡。而当φmin=1时,f=4,就是说三组分体系中最多可以有4个独

立变量,要用四维坐标才能完整地表示其相图,而四维相图无法画出,实际相图最多是三维坐标立体相图,或者二维坐标平面相图,因此通常把压力恒定,或温度、压力均恒定,这时的自由度就是条件自由度。

18、如图5-35 所示的体系,当温度下降时,对大多数体系的二块半园形部分互溶区域逐

渐扩大,直至最后能联成带状,请分析这时相图中各块面积的状态。

答:A与B,A与C是部分互溶,B与C是完全互溶,当温度下降后形成abcd带状(见相图),这时相图上,面积Abd是α相(单相区),面积BaCc为β相(单相区),面积abcd为α与β二相平衡区,如果体系的组成以O点表示,M点表示

α相组成,N点表示β相组成。

图5-35 图5-36

19、如图5-36 中三块部分互溶区域,当体系的温度下降时,三块半园形面积会逐渐扩大直到相互交盖,在图中央会出现一个三角形,试分析体系在这三角形中的状态。

答:图中央出现三角形A'B'C',在三角形A'B'C' 中任意一点,存在三个相平衡,三相的组成:α相组分以A' 点表示;β相的组分以B' 点表示;γ相的组分以C' 点表示。20、在三角形坐标图上,有一由顶点至对边任一点的联线,如图5-37 中的Cf 线,试用几何法证明在该线上任一点,A 与B 的组成比为一定值。

答:Cf 线上任意一点p,根据三组分体系三角形坐标表示法特点,p点的组成A/B=Cb/Ac=ap/bp,在AB二组分体系中,f点物系中A/B=Bf/Af,要证明三组分中任一点物系中组分A与B的合量之比为一定值,能证明ap/bp=Bf/Af 即可。

根据,在ΔCfB 中,ap∠Bf,ap/Bf=Cp/Cf;

ΔCAf 中b'p∠Af,b'p/Af=Cp/Cf;则ap/Bf=b'p/Af

∵∟pbb'=∟pb'b'=60°,bp=b'p

∴ap/Bf =bp/Af 即ap/bp=Bf/Af

三组分体系中任一点物系止,组分A与B的合量之比为定值。(证毕)

第六章 化 学 平 衡

1、化学反应的摩尔吉布斯自由能的改变值Δr G m ,这个量中摩尔的含义是指有1摩尔给定反应物完全反应了,或是生成了1摩尔某产物。这句话对吗?

答:不对 Δr G m 是指反应进度,mol 1=ξ时,反应的吉布斯自由能的改变值,单位是J.mol -1。

2、反应进度mol 1=ξ是什么意思?

答:它表示反应物按所给反应式的分数比例进行了一个单位的反应,即按反应方程式的书写形式反应物完全反应掉,全部生成了产物。

3、r

θm G 就是标准状态下的Δr G m ,这句话对吗? 答:不对。Δr θ

m G 是化学反应进度mol 1=ξ时的标准摩尔吉布斯自由能的改变值。不能简单地把它看作是标准状态下的Δr G m 。Δr θm G (T )对给定的化学反应只是温度的函数,与反应进度无关,而Δr G m 与反应进度有关。

4、标准平衡常数(热力学平衡常数)与非标准平衡常数有什么不同?

答:标准平衡常数可以用Δr θm G 直接进行计算。而非标准平衡常数不可以。 标准平衡常数无量纲,非标准平衡常数可以有量纲。

5、在什么情况下,可以用Δr θm G 判断反应方向?

答:Δr θm G 的绝对值很大时,可以近似地用Δr θm G 作判据。Δr θm G >40KJ.mol -1时的反应,

一般不能自发进行,Δr θm G <0的反应通常能在一定程度上自发进行。

6、因为Δr θm G =-RTlnK θp ,而K θ

p 是由平衡时组成表示的,所以Δr θm G 表示平衡时产物吉布斯自由能与产物吉布斯自由能之差。此种表述对否?

答:不对。Δr θm G 是反应进度m ol 1=ξ时的标准摩尔吉布斯自由能的改变值。平衡时,

mol 1≠ξ。

7、某理想气体反应N 2>O 5(g)=N 2O 4(g)+1/2O 2,r ?θm H >0,ΔC p <0,试问增加N 2O 4平衡产率的

条件是什么?

(A) 降低温度 (B )提高温度 (C)提高压力 (D)等温等容加入惰性气体

答:(B)

9、在等温等容条件下,有下列理想气体反应达平衡:A(g)+B(g)=C(g),加入一定量惰性气体,平衡将如何移动?

(A) (A)向右移动 (B)向左移动 (C)不移动 (D)无法确定

答:(C)

10、在等温等压下,当反应的Δr θm G =5KJ.mol -1时,该反应能否进行?

物理化学经典习题(配南大傅献彩)

物理化学经典习题 一、填空题 1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。 2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。 3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。其胶团结构式为 。注明紧密层、扩散层、胶核、胶粒、胶团。 4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。 5. 反应 A ?→?1k B (Ⅰ) ; A ?→?2 k D (Ⅱ)。已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。 6.等温等压(298K 及p ?)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。

7.若稀溶液表面张力γ与溶质浓度c的关系为γ0–γ =A + B ln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。 1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) + 2 (?r G m–?r F m)/ J·mol-1为。 二、问答题 1.为什么热和功的转化是不可逆的? 1O2(g) ═ H2O(g),2.在绝热钢筒中进行一化学反应:H2(g) + 2 在反应自发进行。问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,?U,?H,?S和?F。 3.对单组分体系相变,将克拉贝龙方程演化为克-克方程的条件是什么? 4.为什么有的化学反应速率具有负温度系数,即温度升高反应速率反而下降? 5.为什么说,热化学实验数据是计算化学平衡常数的主要基础? 三、计算题 1.苯在正常沸点353K下的?vap H m?= 30.77 kJ·mol-1,今将353K及p?下的1molC6H6(l)向真空等温蒸发为同温同压下的苯蒸气(设为理想气体)。

物理化学-傅献彩-上册习题答案

第二章热力学第一定律 思考题.:1. 一封闭系统,当始终态确定后:(a)当经历一个绝热过程,则功为定值;(b)若经历一个等容过程,则Q有定值:(c)若经历一个等温过程,则热力学能有定值:(d)若经历一个多方过程,则热和功的和有定值。 解释:始终态确定时,则状态函数的变化值可以确定,非状态函数则不是确定的。但是热力学能U和焓没有绝对值,只有相对值,比较的主要是变化量。 2. 从同一始态A出发,经历三种不同途径到达不同的终态: (1)经等温可逆过程从A→B;(2)经绝热可逆过程从A→C;(3)经绝热不可逆过程从A→D。试问: (a)若使终态的体积相同,D点应位于BC虚线的什么位置,为什么? (b)若使终态的压力相同,D点应位于BC虚线的什么位置,为什么,参见图 解释:从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的终态体积V2或相同的终态压力p2时,绝热可逆过程比绝热不可逆过程作功大,又因为W(绝热)=C V(T2-T1),所以T2(绝热不可逆)大于T2(绝热可逆),在V2相同时,p=nRT/V,则p2(绝热不可逆)大于p2(绝热可逆)。在终态p2相同时,V =nRT/p ,V2(绝热不可逆)大于V2(绝热可逆)。 不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T2(等温可逆)大于T2(绝热不可逆);在V2相同时,p2(等温可逆)大于p2(绝热不可逆)。在p2相同时,V2(等温可逆)大于V2(绝热不可逆)。 综上所述,从同一始态出发经三种不同过程, 当V2相同时,D点在B、C之间,p2(等温可逆)>p2(绝热不可逆)>p2(绝热可逆)当p2相同时,D点在B、C之间,V2(等温可逆)>V2(绝热不可逆)>V2(绝热可逆)。 总结可知:主要切入点在温度T上,绝热不可逆做功最小。 补充思考题C p,m是否恒大于C v,m?有一个化学反应,所有的气体都可以作为理想气体处理,若反应的△C p,m>0,则反应的△C v,m也一定大于零吗? 解释:(1)C p,m不一定恒大于C v,m。气体的C p,m和C v,m的关系为: 上式的物理意义如下: 恒容时体系的体积不变,而恒压时体系的体积随温度的升高要发生变化。

傅献彩物理化学选择题———第八章 可逆电池的电动势及其应用 物化试卷(二)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一) 第二章热力学第二定律物化试卷(二) 第三章统计热力学基础 第四章溶液物化试卷(一) 第四章溶液物化试卷(二) 第五章相平衡物化试卷(一) 第五章相平衡物化试卷(二) 第六章化学平衡物化试卷(一) 第六章化学平衡物化试卷(二) 第七章电解质溶液物化试卷(一) 第七章电解质溶液物化试卷(二) 第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用 第十章化学动力学基础(一)物化试卷(一) 第十章化学动力学基础(一)物化试卷(二) 第十一章化学动力学基础(二) 物化试卷(一) 第十一章化学动力学基础(二) 物化试卷(二) 第十二章界面现象物化试卷(一) 第十二章界面现象物化试卷(二) 第十三章胶体与大分子溶液物化试卷(一) 第十三章胶体与大分子溶液物化试卷(二) 参考答案

1. 某一反应,当反应物和产物的活度都等于1 时,要使该反应能在电池内自发进行,则: ( ) (A) E 为负(B) Eθ为负(C) E 为零(D) 上述都不是 2. 298 K 时,φθ(Au+/Au) = 1.68 V,φθ(Au3+/Au) = 1.50 V,φθ(Fe3+/Fe2+) = 0.77 V 则反应2Fe2++Au3+=2Fe3++Au+的平衡常数Kθ值为:( ) (A) 4.33×1021(B) 2.29×10-22 (C) 6.61×1010(D) 7.65×10-23 3. 25℃时,电池反应 Ag +1/2Hg2Cl2= AgCl + Hg 的电池电动势为0.0193V,反应时所对应的Δr S m为32.9 J/(K·mol),则电池电动势的温度系数(αE/αT) 为:( ) (A) 1.70×10-4 V/K (B) 1.10×10-6 V/K (C) 0.101 V/K (D) 3.40×10-4 V/K 4. 已知298.15 K 及101325 Pa 压力下,反应 A(s) + 2BD(aq) = AD2(aq) + B2(g) 在电池中可逆地进行,完成一个单位的反应时,系统做电功150 kJ ,放热80 kJ,该反应的摩尔等压反应热为: ( ) (A) -80 kJ/mol (B) -230 kJ/mol (C) -232.5 kJ/mol (D) -277.5 kJ/mol 5. 某电池在298 K、pθ下可逆放电时,放出 100 J 的热量,则该电池反应的焓变值Δ H m为:( ) r (A) 100J (B) >100J (C) <-100J (D) -100J 6. 298 K时,反应为Zn(s)+Fe2+(aq)=Zn2+(aq)+Fe(s) 的电池的Eθ为0.323 V,则其平衡常数 Kθ为:( )

傅献彩五版物理化学思考题

第二章 热力学第二定律 1. 什么是自发过程?实际过程一定是自发过程? 答:体系不需要外界对其作非体积功就可能发生的过程叫自发性过程,或者体系在理论 上或实际上能向外界做非体积功的过程叫自发过程。实际过程不一定是自发性过程, 如电解水就是不具有自发性的过程。 2. 为什么热力学第二定律也可表达为:“一切实际过程都是热力学不可逆的”? 答:热力学第二定律的经典表述法,实际上涉及的是热与功转化的实际过程的不可逆性。 导使过程的不可逆性都相互关联,如果功与热的转化过程是可逆的,那么所有的实 际过程发生后都不会留下痕迹,那也成为可逆的了,这样便推翻了热力学第二定律, 也否定了热功转化的不可逆性,则“实际过程都是不可逆的”也不成立。因而可用“ 一切实际过程都是不可逆的”来表述热力学第二定律。 3. 可逆过程的热温商与熵变是否相等,为什么? 不可过程的热温商与熵变是否相等? 答:可逆过程的热温商即等于熵变。即ΔS =Q R /T (或ΔS =∫δQ R /T )。不可逆过程热温 商与熵变不等,其原因在于可逆过程的 Q R 大于 Q Ir ,问题实质是不可逆过程熵变 由两部分来源,一个是热温商,另一个是内摩擦等不可逆因素造成的。因此,不可逆 过程熵变大于热温商。由于熵是状态函数,熵变不论过程可逆与否,一旦始终态确定, 则ΔS 值是一定的。 4. 为什么说(2-11)式是过程方向的共同判据? 为什么说它也是过程不可逆程度的判据? 答:(2-11)式为:ΔS A →B -∑A δQ /T ≥0,由于实际过程是不可逆的,该式指出了实 际过程只能沿 ΔS A →B -∑A δQ /T 大于零的方向进行;而 ΔS A →B -∑A B δQ /T 小于零 的过程是不可能发生的。因而(2-11)式可作为过程方向的共同判据。但不是自发过程方 向的判据.(ΔS-∑δQ /T ) 的差值越大则实际过程的不可逆程度越大,因此又是不可逆 程度的判据。 5. 以下这些说法的错误在哪里? 为什么会产生这样的错误?写出正确的说法。 B (1)因为ΔS =| δQ R /T ,所以只有可逆过程才有熵变;而ΔS >∑δQ Ir /T ,所以不可 A 逆过程只有热温商,但是没有熵变。 (2) 因为ΔS >∑δQ Ir /T ,所以体系由初态 A 经不同的不可逆过程到达终态 B ,其熵 的变值各不相同。 B (3) 因为ΔS =|δQ R /T ,所以只要初、终态一定,过程的热温商的值就是一定的, A 因而 ΔS 是一定的。 答:(1) 熵是状态函数,ΔS =S B -S A 即体系由 A 态到 B 态其变化值 ΔS 是一定的,与 过程的可逆与否无关;而热温商是过程量,由A 态到B 态过程的不可逆程度不同,则 其热温商值也不相同。产生上述错误的原因在于对熵的状态函数性质不理解,把熵变与 B 热温商这两个本质不同的概念混为一谈。ΔS =| δQ R /T ,只说明两个物理量值上相 A 等,并不是概念上等同。 (2) 因为熵是状态函数不论过程可逆与否,其ΔS =S B -S A ,只要始终态一定,其值一定, 其改变值与过程无关。错误原因在于没掌握好状态函数的概念。 (3) 错误在于将过程量热温商与状态函数改变量混为一谈,始终态一定,热温商可以是 许多数值。正确的说法是:只要始、终态一定,其ΔS 改变值就一定,热温商的却随 过程的不可逆程度不同而不同,而其中可逆过程的热温商数量等于熵变ΔS 。 6.“对于绝热过程有ΔS ≥0,那末由A 态出发经过可逆与不可逆过程都到达B 态,这样同 一状态B 就有两个不同的熵值,熵就不是状态函数了”。显然,这一结论是错误的, 错在何处?请用理想气体绝热膨胀过程阐述之。 答:绝热可逆过程中ΔS值一定等于零,因此该过程中Q R =0,体系与环境无热交换; 而绝热不可逆过程中,Q Ir =0,而ΔS一定大于零.另外,从同一始态出发经绝热 可逆过程与绝热不可逆过程达到的终态是不同。现以理想气体从同一始态出发,分别 经过绝热可逆膨胀和绝热不可逆膨胀达到相同的压力,绝热可逆膨胀过程向外做的功 的绝对值比绝热不可逆过程膨胀向外做的功的绝对值要大些,内能降低得也多些,故 绝热可逆过程终态温度低于绝热不可逆过程终态温度,相同的终态压力时,终态体积

南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测 量?如何用Nernst方程计算电极的还原电势?

物理化学傅献彩上册习题答案

第二章 热力学第一定律 思考题.:1. 一封闭系统,当始终态确定后:(a )当经历一个绝热过程,则功为定值;(b )若经历一个等容过程,则Q 有定值:(c )若经历一个等温过程,则热力学能有定值:(d )若经历一个多方过程,则热和功的和有定值。 解释:始终态确定时,则状态函数的变化值可以确定,非状态函数则不是确定的。但是热力学能U 和焓没有绝对值,只有相对值,比较的主要是变化量。 2. 从同一始态A 出发,经历三种不同途径到达不同的终态: (1)经等温可逆过程从A →B ;(2)经绝热可逆过程从A →C ;(3)经绝热不可逆过程从A →D 。 试问: (a )若使终态的体积相同,D 点应位于BC 虚线的什么位置,为什么? (b )若使终态的压力相同,D 点应位于BC 虚线的什么位置,为什么,参见图 12p p (a) (b) 图 2.16 解释: 从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的 终态体积V 2或相同的终态压力p 2时,绝热可逆过程比绝热不可逆过程作功大,又因为W (绝热)=C V (T 2-T 1),所以T 2(绝热不可逆)大于T 2(绝热可逆),在V 2相同时,p=nRT/V,则p 2(绝热不可逆)大于 p 2(绝热可逆)。在终态p 2相同时,V =nRT/p ,V 2(绝热不可逆)大于 V 2(绝热可逆)。 不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T 2(等温可逆)大于T 2(绝热不可逆);在V 2相同时, p 2(等温可逆)大于 p 2(绝热不可逆)。在p 2相同时,V 2(等温可逆)大于 V 2(绝热不可逆)。 综上所述,从同一始态出发经三种不同过程, 当V 2相同时,D 点在B 、C 之间,p 2(等温可逆)>p 2(绝热不可逆)> p 2(绝热可逆)当p 2相同时,D 点在B 、C 之间,V 2(等温可逆)> V 2(绝热不可逆)>V 2(绝热可逆)。 总结可知:主要切入点在温度T 上,绝热不可逆做功最小。

傅献彩五版物理化学思考题

第二章热力学第二定律1. 什么是自发过程?实际过程一定是自发过程? 答:体系不需要外界对其作非体积功就可能发生的过程叫自发性过程,或者体系在理论上或实际上能向外界做非体积功的过程叫自发过程。实际过程不一定是自发性过程, 如电解水就是不具有自发性的过程。 2. 为什么热力学第二定律也可表达为:“一切实际过程都是热力学不可逆的”? 答:热力学第二定律的经典表述法,实际上涉及的是热与功转化的实际过程的不可逆性。 导使过程的不可逆性都相互关联,如果功与热的转化过程是可逆的,那么所有的实 际过程发生后都不会留下痕迹,那也成为可逆的了,这样便推翻了热力学第二定律, 也否定了热功转化的不可逆性,则“实际过程都是不可逆的”也不成立。因而可用“ 一切实际过程都是不可逆的”来表述热力学第二定律。 3. 可逆过程的热温商与熵变是否相等,为什么不可过程的热温商与熵变是否相等? 答:可逆过程的热温商即等于熵变。即ΔS=Q R/T (或ΔS=∫δQ R/T)。不可逆过程热温商与熵变不等,其原因在于可逆过程的Q R大于Q Ir,问题实质是不可逆过程熵变 由两部分来源,一个是热温商,另一个是内摩擦等不可逆因素造成的。因此,不可逆 过程熵变大于热温商。由于熵是状态函数,熵变不论过程可逆与否,一旦始终态确定, 则ΔS 值是一定的。 4. 为什么说(2-11)式是过程方向的共同判据为什么说它也是过程不可逆程度的判据 答:(2-11)式为:ΔS A→B-∑AδQ/T≥0,由于实际过程是不可逆的,该式指出了实 际过程只能沿ΔS A→B-∑AδQ/T大于零的方向进行;而ΔS A→B-∑A BδQ/T小于零 的过程是不可能发生的。因而(2-11)式可作为过程方向的共同判据。但不是自发过程方 向的判据.(ΔS-∑δQ/T) 的差值越大则实际过程的不可逆程度越大,因此又是不可逆 程度的判据。 5. 以下这些说法的错误在哪里?为什么会产生这样的错误?写出正确的说法。 B (1)因为ΔS=|δQ R/T,所以只有可逆过程才有熵变;而ΔS>∑δQ Ir/T,所以不可 A 逆过程只有热温商,但是没有熵变。 (2) 因为ΔS>∑δQ Ir/T,所以体系由初态A 经不同的不可逆过程到达终态B,其熵 的变值各不相同。 B (3) 因为ΔS=|δQ R/T,所以只要初、终态一定,过程的热温商的值就是一定的, A 因而ΔS 是一定的。 答:(1) 熵是状态函数,ΔS=S B-S A即体系由A 态到B 态其变化值ΔS是一定的,与过程的可逆与否无关;而热温商是过程量,由A态到B态过程的不可逆程度不同,则 其热温商值也不相同。产生上述错误的原因在于对熵的状态函数性质不理解,把熵变与 B 热温商这两个本质不同的概念混为一谈。ΔS=|δQ R/T,只说明两个物理量值上相 A 等,并不是概念上等同。 (2) 因为熵是状态函数不论过程可逆与否,其ΔS=S B-S A,只要始终态一定,其值一定, 其改变值与过程无关。错误原因在于没掌握好状态函数的概念。 (3) 错误在于将过程量热温商与状态函数改变量混为一谈,始终态一定,热温商可以是 许多数值。正确的说法是:只要始、终态一定,其ΔS 改变值就一定,热温商的却随 过程的不可逆程度不同而不同,而其中可逆过程的热温商数量等于熵变ΔS。 6.“对于绝热过程有ΔS≥0,那末由A态出发经过可逆与不可逆过程都到达B态,这样同 一状态B就有两个不同的熵值,熵就不是状态函数了”。显然,这一结论是错误的, 错在何处?请用理想气体绝热膨胀过程阐述之。 答:绝热可逆过程中ΔS值一定等于零,因此该过程中Q R=0,体系与环境无热交换; 而绝热不可逆过程中,Q Ir=0,而ΔS一定大于零.另外,从同一始态出发经绝热

相关主题
文本预览
相关文档 最新文档