当前位置:文档之家› 植物基因工程考试总结

植物基因工程考试总结

植物基因工程考试总结
植物基因工程考试总结

1、名词解释部分

GFP:绿色荧光蛋白基因,利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签。

SiRNA:是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。

MAR或SAR:指被限制性内切酶消化后仍与核骨架结合的DNA序列,位于染色体的端粒附近,长度一般为30bp-1000bp,通常富含AT,两个MAR之间的染色质区域可形成大小为5kb-200kb的DNA环,构成独立的表达结构。MAR通过对染色质结构的直接限制而起作用,使转基因不能形成稳定的凝聚染色质结构,保证了转录的正常进行,使RNA酶聚合酶容易接近这种结构,从而提高了转基因的表达效率。BIBAC:双元细菌人工染色体,使大片段外源DNA稳定整合到宿主细胞基因组中。

LHCP a/b or Cab:光诱导型启动子,在叶中具有叶绿体依赖的光诱导增强特性,在根中具有组织特异的沉默子功能.

RNA interference (RNAi):RNA干扰,与靶基因同源的双链RNA诱导的特异转录后基因沉默现象,使用RNAi技术可以特异性剔除或关闭特定基因的表达。

Dicer酶:是RNA酶Ⅲ家族的一个成员。Dicer酶参与RNAi反应,广泛存在于蠕虫,果蝇,真菌,植物及哺乳动物。

RdRP:RNA合成的聚合酶,在RdRP的作用下,进入细胞内的双链RNA通过类似于PCR的反应过程,呈指数级的数量扩增。

CAT:氯霉素乙酰转移酶基因,一种报告基因,是第1个用于检测细胞内转录活性的报告基因。

IPCR:反向PCR,它的目的在于扩增一段已知序列旁侧的DNA。反向PCR可用于研究与已知DNA区段相连接的未知染色体序列,因此又可称为染色体缓移或染色体步移。

RDA:

RT-PCR:逆转录PCR,是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板通过PCR进行DNA扩增。

GUS:β-葡萄糖苷酸酶基因,其反应产物可用多种方法检测出来。因此这个基因被广泛应用于基因调控的研究中。

SSH:抑制性消减杂交,是一种鉴定、分离组织细胞中选择性表达基因的技术,其原理是以抑制性多聚酶链反应(PCR)反应为基础的cDNA 消减杂交技术。

DDRT:传统mRNA差异显示技术,根据绝大多数真核细胞mRNA 3'端具有的多聚腺苷酸尾(polyA)结构,因此可用含dT的寡聚核苷酸为引物将不同的mRNA反转录成cDNA。将差别表达条带中的DNA回收,扩增至所需含量,进行Southernblot或Northernblot或直接测序,从而对差异条带鉴定分析,以便最终获得差异表达的目的基因。

RAD:代表性差示分析,充分发挥了PCR以指数形式扩增双链模板,而以线性形式扩增单链模板的特性,通过消减和富集,使得目的基因片段得到特异性扩增。

RdRP:RNA为模板指导RNA合成的聚合酶,在RdRP 的作用下,进入细胞内的双链RNA通过类似于PCR 的反应过程,呈指数级的数量扩增。

T-DNA标签:以T-DNA为标签,通过农杆菌转化植物,构建突变体库,获得大量具表型的突变体,根据插入片段和插入点的基因组序列和突变性状进行分离检测。是一种高通量的分离和克隆植物功能基因的方法。

NPTⅡ:编码新霉素磷酸转移酶,能赋予细胞抗卡那霉素的能力,这是核基因转化中常用的一种筛选标记。

2、简答部分

1)筛选标记基因与报告基因的比较:

筛选标记基因(Selective Marker genes):它的基因产物能给予植物细胞产生一种抗选择压力,在选择剂存在时,转化细胞生长、发育、分化基本不受影响,而没有转化的细胞不能正常生长。

报告基因(reporter genes):是一种编码可被检测的蛋白质或酶的基因,其表达产物非常容易被鉴定。把

它的编码序列和基因表达调节序列相融合形成嵌合基因,或与其它目的基因相融合,在调控序列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到转化体。它的基因产物能使植物细胞带上一种标记,起报告和识别作用。

报告基因,必须具备几个条件:

(1)已被克隆和全序列已测定;

(2)表达产物在受体细胞中不存在,即无背景,在被转染的细胞中无相似的内源性表达产物;

(3)其表达产物能进行定量测定。

2)一元载体和二元载体系统的比较:

双元载体(binary vecter)系统是指由两个分别含TDNA和Vir区的相容性突变Ti质粒构成的双质粒系统,又因为其T-DNA与Vir基因在两个独立的质粒上,通过反式激活T-DNA转移,故称之为反式载体(trans vecter). (1)一元载体系统由两个质粒重组而成,分子量大,需要整合;二元载体不需要整合过程,

(2)Mini T-DNA具有大肠杆菌复制位子,可在大肠杆菌内复制,拷贝数高,10-100倍,本身小,便于操作。

(3)一元载体构建时操作比较困难;二元载体系统操作简单。

(4)Mini-Ti质粒小,所以进入农杆菌容易,转化率高。

(5)一元载体构建好后,稳定性好;二元载体稳定性差,易丢失。

(6)二元载体系统工作效率高,转化效率高。

3)基因图谱与物理图谱的比较:

基因图谱(genetic map):用以表示基因在一个DNA分子(染色体或质粒)上相对位置、连锁关系或物理组成(序列)的图示。

物理图谱:是把Ti质粒,用限制性内切酶处理以后,经琼脂糖凝胶电泳作片段分离,就能得出有20多条大小不同的DNA酶切片段。然后这些片段进行比较分析、测定顺序,再排列成完整的物理图,也即不同酶切片段的相对位置。物理图谱是制作Ti质粒基因图的基础。

4)顺式作用元件与反式作用因子:

顺式作用元件:是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。主要组成:启动子,增强子,沉默子

反式作用因子:指由不同的染色体上基因编码的、直接或间接识别或结合各种顺式作用元件并参与调控基因转录效率的结合蛋白。也称为转录因子。反式作用因子有两个重要的功能结构域:DNA结合结构域和转录活化结构域,它们是其发挥转录调控功能的必需结构。

顺式作用元件(cis-actingelement)存在于基因旁侧序列中能影响基因表达的序列,它们的作用是参与基因表达的调控,本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。转录因子的作用机制有3种:转录因子结合RNA聚合酶II形成起始复合物,并与启动子的TA TA框元件结合启动转录过程;转录因子可以使DNA形成环状,将远处的顺式作用元件拉到起始部位;多个转录因子的组合效应决定了转录起始的速率。

5)启动子:确保转录精确而有效地起始的DNA序列,主要包括:TATA box –25~-35 (负责转录起始的精确性),CAAT box和GC box –80~-110 ( 控制转录起始频率)

增强子:增强基因启动子工作效率的顺式作用序列,能够在相对于启动子的任何方向和任何位置(上游或下游)上都发挥作用。其功能是通过结合特定的转录因子或影响DNA的构象而实现的。增强子作用的三个特点:1.它与启动子的相对位置和取向无关,具有远程效应

2.需要特定的蛋白质因子的参与

3.有些(如SV40的增强子)能在几乎所有类型细胞中发挥

作用,而大多数具有相对的组织特异性

增强子和启动子均为表达调控的瞬时作用元件,启动子是转录起始位点上游与RNA聚合酶结合的一段DNA序列,增强子是通过启动子来增加转录的,他的位置不固定可以在启动子下游或上游。

6)酵母双杂交系统:是将待研究的两种蛋白质的基因分别克隆到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构域基因和GAL4激活结构域基因,构建成融合表达载体,从表达产物分析两种蛋白质

相互作用的系统。

Ac-Ds双系统法:该方法利用Ds转座子在Ac转座子的编码的转位酶作用下插入到某个基因中导致其功能失活,得到稳定的形态变异植株后,用IPCR方法扩增与Ds相邻的植物DNA片段并用之扩增相应的基因。酵母双杂交系统可以根据兴趣蛋白的基因序列即可筛选与其作用的目的蛋白,也可以直接获得目的蛋白的基因序列,从而可以初步判断目的蛋白的结构和功能。还可以检测两种蛋白质的瞬时作用。Ac-Ds系统则可以根据表型的突变来寻找相应的目的基因,不需要知道目标基因结构信息。

7)基因组文库:用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。

CDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。

cDNA文库具有组织细胞特异性,cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA。

3、论述题:

1、植物原生质体转化系统的方法,优缺点和局限性。

2、外源基因在转基因植物细胞内的表达调控

3、根据功能蛋白分离目的基因的技术路线

步骤:

一、分离纯化功能蛋白

1首先从组织或细胞中把蛋白质溶解出来,与杂蛋白分离后根据蛋白质的分子量大小、溶解度、电荷、吸附性质、对配体分子的生物学亲和力等进一步分离纯化。方法有透析、密度梯度离心、凝胶过滤、等电点沉淀、盐溶盐析、等电聚焦电泳(IEF)、SDS—PAGF、离子交换层析、吸附层析、亲和层析等。

二、氨基酸序列分析

策略为:1测定多肽链的数目

2多肽链、或亚基的拆分

3肽链氨基酸组分测定

4多肽链的部分断裂(Edman化学降解法、酶裂解法)和肽段的分离

5肽段氨基酸序列测定(Edman化学降解法、酶解法、质谱法、氨基酸自动测序仪测序法)

6肽段在多肽中次序的决定

一般用两种以上方法断裂多肽,做成两套或几套肽段,这两套或几套肽段的切口是彼此错位的

7二硫键位置的确定

三、基因分离

方法有:

1根据已知氨基酸序列设计简并性PCR引物从植物基因组中克隆出目的基因2根据氨基酸序列设计

寡聚核苷酸探针筛选基因组或cDNA文库

3免疫学法筛选表达文库

a根据已纯化蛋白制备相应的抗体

b构建表达型基因文库或cDNA文库

c利用抗体筛选表达文库找出阳性克隆

4、根据mRNA分离目的基因

1 mRNA differential display PCR (DDRT PCR ):mRNA 差式显示

原理:通过反转录与PCR扩增mRNA中特定的一小部分。用DNA序列分析胶同步分离显示扩增产物以进行比较。首先以3端锚定引物(5-TMN- 其中T为10-20个,M为A/C/G,N为A/T/C/G)进行逆转录,之后以单链cDNA为模板进行PCR,3端引物即为上述锚定引物,5端引物为10-13bt的随机引物,5端引物较短,特异性较低,能以相对较高的机率与cDNA 5端结合,从而保证每一对引物都能扩增出适当数量的DNA片段(约50-150条)。通过12个3端引物和25个5端引物的不同组合,可在95%的情况下分析15000个不同的基因,基本包括单个细胞所能表达的全部基因数。在细胞A中特异表达的基因,若引物合适就可能在A的PCR产物中出现而不在B的PCR产物中出现。用DNA变性测序胶分离扩增产物,X光片曝光后即可检测到差别条带,回收分析差别条带后即可以该片段做探针筛选全长cDNA 或DNA文库得到全长目的基因。

2 cDNA representational difference analysis cDNA RDA

cDNA代表群差别分析

原理:将减法杂交和PCR扩增相结合,通过引物序列的选择使得只有特异存在于检测组中的序列能够被指数扩增,从而达到对其进行富集的目的。

RDA是近几年发展起来的一种对基因水平上的差异进行分离基因的方法。现在该法和DD-PCR法已成为分子生物学中进行基因差别分析的两个重要的方法。与差示杂交和cDNA文库突变体补偿等传统方法相比,它们具有简便迅速的优点。

3 cDNAsubstraction cDNA 差别选择

将对照材料的mRNA 逆转录成单链cDNA后与实验材料的mRNA 进行杂交,去除杂交双链,回收单链mRNA,即为试验材料中特异表达的基因

SSH:是差减杂交与PCR结合的简单、快速分离差异基因的方法。运用杂交动力学原理,即丰度高的单链DNA在退火时产生同源杂交的速度快于丰度低的单链DNA,从而使不同

丰度的单链DNA得到均衡;抑制PCR则利用链内退火优于链间退火的优点,使非目的基因片段两端反向重复序列在退火时产生类似发卡的互补结构, 无法作为模板与引物配

对,选择性地抑制了非目的基因片段的扩增,从而使目的基因得到富集、分离。

cDNA文库差别选择:改技术需要两种不同的细胞群体:在一个细胞群体中目的基因正常表达,在另一个细胞群体中目的基因不表达,制备两种不同的mRNA的提取物,其一是含有目的基因的mRNA类型的总MRNA群体,另一个是不含有目的基因mRNA的总mRNA群体,用这两种总mRNA为探针,对有目的基因的细胞mRNA构建的克隆库进行筛选,当使用存在目的基因的mRNA作探针时,所有包含重组体的菌落都呈阳性反应,在x光片下呈黑色斑点,而使用不存在目的基因的mRNA探针时,除了含有目的基因的菌落外,其余的都呈阳性反应,在x光片下呈黑色斑点,比较这两种底片并对照原平板,便可挑选出目的基因的菌落。

5、关于基因沉默:

答:(1)转基因沉默现象(transgene silencing)。

是指利用遗传转化方法导入并稳定整合进受体细胞中的完整的外源基因在当代转化体或在其后代中表达

受到抑制的现象。

(2)转基因沉默是由DNA-DNA DNA-RNA RNA-RNA 分子之间的相互作用而引起的;

根据其作用机制和水平不同可分为三种:位置效应、转录水平的基因沉默TGS和转录后水平的基因沉默PTGS;

a:位置效应:插入位点的微环境影响了外源基因启动子的活性从而导致基因沉默;

b:转录水平:具有重复序列的核酸序列相互作用使得启动子甲基化或导入基因的异染色质化,导致DNA水平的基因沉默;

c:转录后水平:即RNA水平的基因调控。有三种作用方式:①与具有同源序列的特异的靶mRNA结合导致其降解②与特定的靶mRNA的非编码序列结合导致其翻译阻断;③引起受体细胞的防御系统导致非特异性的降解

重复序列是基因沉默的普遍诱因,甲基化是基因沉默的直接原因

(3)克服基因沉默的策略:

a:转基因密码子优化及转化载体的合理修饰.;

b: 在有性生殖后代中筛选单拷贝转基因个体

c: 选择合适转化方法

d: 利用MAR或SAR

e: 去甲基化试剂5-氮胞苷的使用

(4)下面是RNAi导致基因沉默的过程:

a:siRNA的构建:包括化学合成,体外转录,长片断dsRNAs经RNase III 类降解,siRNA表达载体构建,PCR 制备siRNA表达框;

b:导入,磷酸钙共沉淀法,阳离子脂质体,电击法,显微注射法等;

c:发挥作用:①双链RNA进入细胞后,Dicer酶的作用下被裂解成siRNA;②RdRP的作用下自身扩增③SiRNA 的双链解开变成单链,在蛋白质的作用下与靶mRNA结合,导致其降解,或以其为模板RdRP作用下合成出mRNA的互补链,形成的双链RNA在Dicer酶作用下产生大量的siRNA④新形成的siRNA加强了基因沉默的效果。

6、原核基因在真核细胞中表达要进行的修饰:

答:因为原核基因和真核基因在组成及表达上存在一些差异(此处可扩充),所以要使其在真核细胞中表达要进行一些修饰:

(1)采用植物基因的表达调控体系;

(2)优先使用植物偏爱的密码子.

(3)改变基因的GC 含量(36~45%),使之与植物基因

GC含量一致.

(4). 注意XCG/XCC和XTA/XTT的比值。对植物而言,该比值低好。Thr, Pro, Ala和Ser密码子第三位避免用G。

(5)翻译起始区第4个核苷酸用G,以符合ATG GC的要求。.

(6)去除隐含的poly(A)信号。.

(7)去除隐含的RNA聚合酶II终止序列。CAN1~9AGTNNAA.

(8)清除发夹环结构。CUUCGG

(9)消除隐含的内含子剪切序列AAG GTAAGT等

地理考试后的总结怎么写

地理考试后的总结怎么写 ----WORD文档,下载后可编辑修改---- 下面是小编收集整理的范本,欢迎您借鉴参考阅读和下载,侵删。您的努力学习是为了更美好的未来! 地理考试后的总结怎么写篇一就地理学科而言,我从去年下学期才开始任教,以前从没接触,本周一我们年级部开展教研活动,我有幸上教研公开课,作为一名地理新教师,既感到兴奋,也感到压力很大,在这种心情下完成了《黄河》这节课,通过自己上课和同行的点拨与评析,使我看到了自身的一些闪光点和不足之处,同时也给我留下了许多值得反思的地方。 一、闪光点: 1.培养了学生读图能力,增强了学生的合作探究意识和能力。如:在学习黄河的地理概况时利用了读图导学的方法,在学生读图的基础上再由教师启发引导列出一些的题目,学生自己就能够找出,再相互说明所找的内容,记忆住重点知识,进一步上黑板前展示,这样学生既巩固了知识,又培养了他们的读图能力,树立了学生学习的自信心,同时,增强了合作探究的意识和能力。再如,在治理黄河中游水土流失严重的问题上,我设计一个探究活动:如果你是水利部部长的话,你认为在中游“截弯取直”可行吗?为什么?学生通过讨论,拿出可行或不可行的方案,然后教师再给以评价,培养了学生的探究和创新意识,提高了课堂上学生活动的有效性。 2.加强了知识的拓展和归纳,让学生学习对生活有用的地理,体现开放式的地理教学。在引导学生分析黄河各河段的忧患及治理时,提供了大量的课外视频资料,以及补充一些课外的“地上河”的阅读材料,这样,既拓展了学生的知识面,又体现了学科知识的综合。在黄河的根治中,黄河各段的忧患及其治理是本节课的难点,把学生分为三大组讨论,交流探究,要求学生结合当今我国水资源的现状和国民经济的发展状况,从不同的角度去分析原因,找出最合理的根治办法,再配以多媒体课件教学,体现了新课程要求的“合作探究学习方式”的转变,同时也体现了开放式的地理教学。 3.情感教育始终贯串在教学当中。在根治黄河上,分组讨论,让学生献计献策,并对学生及时地进行思想教育,从现在起,努力学习,打好基础,学好本领,

基因工程实验技术介绍

一、大肠杆菌质粒DNA的提取 质粒DNA的提取是从事基因工程工作中的一项基本实验技术,但提取方法有很多种,以下介绍一种最常用的方法:碱裂解法。此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下: 1、接1%含质粒的大肠杆菌细胞于2ml LB培养 基。 2、37℃振荡培养过夜。 3、取1.5ml菌体于Ep管,以4000rpm离心3 min,弃上清液。 4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-H Cl pH8.0)充分混合。 5、加入0.2ml溶液 II(0.2 mM/L NaOH,1% SDS),轻轻翻转混匀,置于冰浴5 min 。 6、加入0.15m1预冷溶液III(5 mol/L KAc,p H4.8),轻轻翻转混匀,置于冰浴5 min 。 7、以10,000rpm离心20min,取上清液于另 一新Ep管 8、加入等体积的异戊醇,混匀后于?0℃静置1 0min。 9、再以10,000rpm离心20min,弃上清。 10、用70%乙醇0.5ml洗涤一次,抽干所有 液体。 11、待沉淀干燥后,溶于0.05mlTE缓冲液中 二、质粒DNA琼脂糖凝胶电泳鉴定 琼脂糖是从海藻中提取出来的一种线状高聚物,应选用电泳纯的,琼脂糖此级产品筛除了抑制物和核酸酶,而且用溴化乙锭染色后荧光背景最小。 (1)琼脂糖凝胶电泳装置

由于琼脂糖凝胶电泳既要求不高,而适应性又强,在过去15年里已成功地设计了形形色色及大大小小的电泳槽。对这些装置的选择主要是依据个人的喜恶。使用最普遍的装置是Walt er Schaffner发明的水平板凝胶。 水平板凝胶通常在一块可安放于电泳槽平台的玻璃板或塑料盘上灌制。在有些装置中,则可将凝胶直接铺在平台上。凝胶恰好浸在缓冲液液面下进行电泳。凝胶的电阻几乎与缓冲液的电阻相同,所以有相当一部分的电流将通过凝胶的全长。 (2)琼脂糖凝胶的制备 琼脂糖凝胶的制备是将琼脂糖在所需缓冲液中熔化成清澈、透明的溶液。然后将熔化液倒入胶模中,令其固化。凝固后,琼脂糖形成一种固体基质,其密度取决于琼脂糖的浓度。通贯凝胶的电场接通后,在中性pH值下带负电荷的DNA向阳极迁移。 (3)琼脂糖凝胶的染色 电泳完毕,将琼脂糖凝胶转移入含EB的染液中,染色10分钟,取出紫外灯下观察。 三、质粒DNA热激法转化大肠杆菌 感受态的细胞可以摄入外部溶液中的DNA,而常态的细胞却不能,所以要转化质粒DNA进入大肠杆菌必须首先制备感受态的大肠杆菌细胞。 1、取1%大肠杆菌E.coli接种于含2ml LB培 养基的试管中,37℃振荡培养过夜 2、取0.1ml过夜培养物转种于含10ml LB培 养基的三角瓶中,37℃振荡培养3h至OD600=0. 3 3、然后把培养物倒入1.5ml离心管中,冰浴1 0min。 4、在4℃下以4000rpm离心5min,去上清液 5、把菌体悬浮于15m1冰冷的0.1M CaCl2溶液 中,置冰上30min 6、然后再在4℃下以4000rpm离心10min,去 上清液

基因工程在农业中的应用与发展前景

(一)基因工程的定义、诞生及重大发现 基因工程是利用人工的方法将DNA在体外进行切割,再和一定的载体拼接重组,获得重组的DNA分子,然后导入宿主细胞或者个体,使受体生物的遗传特性得到修饰或改变的过程。 基因工程的正式诞生是以斯坦福大学的Cohen等人于1973年建立的基因工程的基本模式为标志。Cohen的实验向人们证实,基因工程很容易打破不同的物种之间的界限,可以依据人们的目的和意愿定向地改造生物的遗传特性,甚至创造新的生命类型,因此把这一年定为基因工程诞生元年。基因工程得以诞生完全依赖于分子生物学、分子遗传学、微生物学等多学科研究的一系列重大突破,概括起来,从20世纪40年代开始,在现代分子生物学研究领域中,理论上的三大发现和技术上的三大发现对基因工程的诞生起到了决定性作用。 基因工程理论上的三大发现: (1)1928年,英国医生格里菲斯发现了生物主要的遗传物质是DNA (2)1953年,沃森和克里克明确了DNA的双螺旋结构和半保留复制的机制 (3)1961年,以莱文伯格为代表的一批科学家,经过大量的实验,1966年全部破译了64个密码,编排了一本遗传密码字典。 基因工程技术上的三大发现: (1)DNA分子的体外切割和连接。 (2)利用载体携带DNA片段 (3)大肠埃希菌转化体系的建立 (二)园艺基因工程的介绍 园艺基因工程具有的特点:1、植物细胞具有全能性2、园艺植物遗传资源丰富3、植物细胞具有细胞壁4、染色体基因组庞大而且往往是多倍体。 园艺基因工程主要包括:目的基因的克隆、表达载体的构建、目的基因的植物细胞的遗传转化、细胞培养及蜘蛛再生、转化植株的筛选与鉴定等。 园艺基因工程的研究与发展的领域:1、花卉基因工程2、果树基因工程3、蔬菜基因工程4、药用植物基因工程 -----------------------文献 (三)基因工程在农业中应用实例 随着人口的不断增加,在世界上不少地方视频的供给都成了大问题。生物工程技术的应用为最终解决了这一问题提供了有效的途径。科学家利用基因工程可培育出具备抗寒、抗旱、抗盐碱、抗病等特性的品种,使得适合农作物生长的范围大大增加。 (1)提高植物固氮能力和光合效率 科学家发现了一种与合成脯氨酸有关的基因,将其转入固氮菌后,后者获得了即固氮又抗盐的能力,从而有助于植物的生长。植物光合作用效率的高低决定了其产量的多少,英国剑桥的植物育种所研究了如何转移叶绿体基因,将其中的高光效基因转移到另一种品种中去,以增强其光和效率,从而能产生更多的粮食。根瘤菌可帮助豆科植物固定、吸收和利用空气中游离的氮,科学家们曾把肺炎克氏杆菌的孤单基因转入大肠杆菌,是大肠杆菌也能直接利用空气中的氮。日本已成功将固氮基因转入到水稻根系微生物中,这种微生物可向水稻提供1/5的需氮量,因而可减少氮肥的使用量。 (2)提高粮食蛋白质含量 应用基因工程技术还可以使粮食中的蛋白质含量提高。美国威斯康星大学的研究人员从菜豆中提取了储藏蛋白质基因,并将其转移到向日葵中后,表达了该基因美国明尼苏达大学也进行了类似的研究,他们把玉米醇溶蛋白基因转移到了向日葵根部的细胞中。这些实验

基因工程和植物细胞工程习题

高二生物周练习2013.3.20 1.碱基互补配对发生在下列哪些生理过程或生物技术中: ①种子的萌发②病毒的增殖过程③细菌的二分裂过程④目的基因与运载体的结合 ⑤DNA探针的使用⑥分泌蛋白的加工和运输 A.①②③④⑤B.①②③④⑤⑥C.②④⑤ D.②③⑤⑥ 2.下列关于基因工程的叙述,正确的是() A.基因工程经常以抗菌素抗性基因为目的基因 B.细菌质粒是基因工程常用的运载体 C.通常用一种限制性内切酶处理含目的基因的DNA,用另一种处理运载体DNA D.为育成抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体 3.20世纪70年代创立了一种新兴生物技术——基因工程,其最主要的目的是() A.定向提取生物DNA B.定向地对DNA分子进行人工剪切 C.在生物体外对DNA分子进行改造 D.定向地改造生物的遗传性状 4.为了培育节水高产品种,科学家将大麦中与抗旱节水有关的基因导入小麦,得到转基因小麦,其水分利用率提高了20%。这项技术的遗传学原理是() A.基因突变 B.基因重组 C.基因复制 D.基因分离 5.运用现代生物技术,将苏云金芽孢杆菌的抗虫基因整合到棉花细胞中,为检测实验是否成功,最简便的方法是检测棉花植株是否有() A.抗虫基因 B.抗虫基因的产物 C.新的细胞核 D.相应的性状 6.基因工程中,科学家常用细菌、酵母菌等微生物作为受体细胞,主要原因是这些微生物() A.结构简单,操作方便 B.繁殖速度快 C.遗传物质含量少、简单 D.性状稳定,变异少 7.如果科学家通过转基因工程,成功地对一女性血友病患者的造血干细胞进行改造,使其凝血功能恢复正常。那么,她后来所生的儿子中() A.全部正常 B.一半正常 C.全部有病 D.不能确定 8.我国科学家运用基因工程技术,将苏云金芽孢杆菌的抗虫基因导入棉花细胞并成功表达,培育出了抗虫棉。下列叙述不正确的是() A.重组DNA分子中增加一个碱基对,不一定导致毒蛋白的毒性丧失 B.抗虫棉的抗虫基因可通过花粉传给近缘作物,从而造成基因污染 C.转基因棉花是否具有抗虫特性是通过检测棉花对抗生素抗性来确定的

植物基因工程的重要意义

植物基因工程的重要意义 关键词:植物基因工程技术,转基因 正文: 作为21世纪科技的重要发展项目,基因工程技术在植物方面应用的意义主要体现在以下五个方面。 1.植物基因工程技术可以实现超远缘育种,克服不亲和障碍 我们知道,在作物育种中最早应用的是植物组织培养技术,这种技术已在花卉、药材、森林和农作物育苗得到广泛的应用,我国已在甘蔗、人参和马铃薯等方面收到显著经济效益。此外,还可从培养细胞或再生植株选择所需要的突变体。如Shepard(1983)从马铃薯培养物中选出一种能抗腹疫病(Phytophthorainfectans)的抗性植株以及利用培养细胞生产诸如喜树碱等化合物。但以上方法只是同类植株的基因改变。此外人们还对植物原生质体融合进行了研究。但是植物细胞融合后性状的表达,取决于它在以后有丝分裂时染色体是否发生交换或丢失情况。[1]但到目前为止,由融合的细胞而能培养成植株者容寥寥无几,这可以说是克服远缘杂交不亲和障碍的最早例子。如果说细胞融合可以克服种属之间不亲和性,而基因重组则可在更大范围内进行了。动物基因如萤火虫的发光蛋白基因,寒带鱼的抗冻蛋白基因,蛇、蝎的毒液基因等也已转移给作物,分别获得能发光的转基因烟草,抗寒的转基因甜菜、转基因番茄和抗虫的转基因棉花等。[2]由此可见,外源基因导入植物细胞后引发的改变是巨大的。 2.植物基因工程技术可以增强作物改良力度,促进品种更新换代 作物改良基本有两方面,其中提高作物品种的光合与养分效率、病害与虫害抗性正在成为植物基因工程的研究重点,促使作物品种适应低温、干旱、雨涝、土壤瘠薄和盐碱以及温室效应等新旧灾害从而提高作物产量,也已成为基因工程育种的主要内容。 农业生产中,增加粮食产量无非依靠两种途径:一是提高作物品种的生产能力;二是减轻环境因素对作物生长的不利影响。据报道,全世界每年因虫害、病害、草害以及寒冷、干旱、盐碱等灾害对粮食生产所造成的损失令人惊叹:全球每年因虫害与病害所造成的作物减产达30%以上,因杂草所损失的粮食至少在10%以上,再加上低温、干旱和盐碱等各种因素,全世界每年至少要损失粮食产量的一半以上。[3~5] 同时,为了防治病虫害及杂草等,还要施用大量的化学农药,这不仅消耗大量的能源,更严重的是对生态环境造成了极大的甚至是不可逆的破坏。为了摆脱上述困境,从20世纪80年代起,人们开始研究和利用转基因抗性植物来预防病虫害和杂草等,并收到了良好的效果。与传统作物育种技术相比,利用基因工程技术进行遗传育种有其自身的优势,一方面由于它可以将特定的抗性基因定向转移,因而成功率较高,可大大提高选择效率,在很大程度上避免了传统育种工作的盲目性;另一方面是其基因来源打破了种属的界限,除了植物基因以外,动物和微生物的抗性基因都可以作为外源基因转人植物基因组中,并获得表达。[6] 3.植物基因工程技术可以拓宽应用研究,扩大生产领域 随着转基因植物技术日益成熟,利用植物的生物反应器作用,进行贵重药品、人畜疫苗和精细化工等的生产,因具有成本低,竞争力强的吸引力,正在成为高技术及其产业化的新兴热门领域。现已成功地将干扰素、胰岛素、多肽抗体、人血清白蛋白等基因转给植物进行这些药物的生产。美国现已得到多肽抗体转基因烟草,美国还在通过转基因植物研制麻疹、乙肝、艾滋病等疫苗,甚至成功地获得了口服植物疫苗。现国际上正在出现研制营养药物的新思路。此外,现还大量进行用于塑料、染料、涂料、洗涤、香料、润滑剂等的转基因植物研究。据

植物地理总结

(1)生物圈:地球上所有生物赖以生存的生活领域与范围的总会。(海平面以上10千米,海平面以下12千米。大量生物局限在海平面上下100米。)第一章: (1)种:是生物分类的基本单位,包含起源于共同祖先、形态和生物学特征极相似的不同个体的集合。 (2)种群:分布在一定时空范围内的相同物种的所有个体即为一个种群,种内个体常分成若干群。 (3)变种:种内某些个体积累了一定的形态变异,且比较稳定,又分布在一定的空间地域,据此可定名为变种。 (4)变型:虽有形态变异,但零星分布。 (5)植物分类的单位:门、纲、目、科、属、种。 (6)地衣门:多年生,是自养型蓝藻或绿藻与异养型真菌共生体。 (7)完整花的组成:花轴、花托、花柄、花萼、花瓣、雄蕊群、雌蕊群。 第二章 1、植物区系:指某一地区,或者是某一时期、某一分类群、某类植被等所有植 物种类的总称。 2、生态型(差型):属于同一个种,但生境相差大的地方形态,行为等有差异 的种群,有气候生态型与土壤生态型。 3、分布区形状分为连续分布与间断分布两大类。对于没有主分布区而呈星散状 的,叫星散分布。 4、世界种:少数种类植物分布遍及世界各地称为世界种,多为盐生植物淡水水

5、特有种:除去少量的世界种外,各种植物的分布限于某一地区范围内,称为 该地区的特有种。该地区可大可小如某洲或某个山地或海岛。 6、第三纪植物避难所:温湿的第三纪曾让大量被子植物空前繁盛,更新世冰期 寒冷的气候使北半球中高纬原有植物大部分灭绝或被迫南退。只有部分受影响较轻保存住丰富的第三纪植物,这些地方称为第三纪植物避难所。 7、地理残遗分布:第三纪广泛分布但在冰期内范围急剧减小,至今仍保存狭小 的分布区该现象称为地理残遗分布。 8、地理残遗种:以历史化石分布为证,若化石表现为广泛分布但现实狭窄分布 则证为地理残遗种。 9、分类学残遗种:分类学上现存的孤立的单种科属,现存分布可能具有地理残 遗种的特点。 10、区系成分:分布区在空间上或多或少重合的各植物种或其他分类单位就 属于一定的区系成分。 11、区系成分分类:地理成分,发生成分,迁移成分,历史成分,生态成分。 12、世界植物分区:泛北极植物区,古热带植物区,新热带植物区,开普植 物区,澳大利亚植物区,泛南极植物区。其中我国的是泛北极植物区与古热带植物区。 13、中国植物区系特征:(1)丰富的植物种类;(2)起源古老,具有演化系 统中的各种类群:(3)分布类型多样,地理成分复杂;(4)特有性程度高;(5)地理分布区域分异明显又相互渗透。 1、栽培植物的起源中心:

植物基因工程实验技术

植物基因工程实验技术
编者: 赵 燕
主审: 张学文
湖南农业大学植物科学实验教学中心
2007 年 4 月



基因工程是现代生物技术的核心, 也是现代分子生物学研究的重 要手段. 掌握基因工程技术对于生物技术专业及其它生物学相关专业 学生都很重要. 基因工程本身是由一系列分子生物学操作技术组成的系统性技 术体系,本实验指导侧重于 DNA 重组操作,将基因工程操作的常用 和核心技术组织起来, 以为我校生物技术本科生及有关专业研究生基 因工程实验提供简单而明确的指导. 为适应基因工程的飞速发展,一些生物技术公司匠心独运,开发 出专门的试剂盒,使一些复杂的实验操作简单化了.这对于实验者来 说自然是好事,但也使实验者动手胜于用脑.对于实验人员来说,一 定应知其然并知其所以然, 才会在实验中运用自己的知识予以创新性 的发展.期望本实验指导不成为实验中的教条.


2007 年 4 月
1


实验一 实验二 实验三 实验四 实验五 实验六 实验七 实验八 实验九 实验十 附录:

大肠杆菌的对照培养,单菌落的分离及菌种保存 ...............3 强碱法小量制备质粒 DNA.....................................................5 琼脂糖凝胶电泳......................................................................7 植物总 DNA 的提取,纯化和检测 ........................................9 DNA 的 PCR 扩增................................................................. 11 植物总 RNA 的分离 .............................................................15 RT-PCR..................................................................................17 体外重组分子的构建,筛选及检测.....................................21 植物表达载体的构建,筛选及检测.....................................22 植物遗传转化技术 ................................................................23 实验中常用的仪器与器皿 .....................................................24
2

植物叶绿体基因工程发展探析(一)

植物叶绿体基因工程发展探析(一) 摘要从叶绿体的概念、转化优点、转化主要过程及方法等方面概述了叶绿体基因工程的发展情况,介绍了叶绿体基因工程的应用,包括提高植物光合效率、合成有机物质、生产疫苗、增强植物抗性及在系统发育学中的应用等,并提出叶绿体基因工程存在的问题,对其未来发展进行了展望。 关键词植物叶绿体;基因工程;发展;应用;存在问题;展望叶绿体作为植物中与光合作用直接相连的重要细胞器,其基因组的功能也因此扮演着十分重要的角色。1882年Straburger观察到藻类叶绿体能分裂并进入子代细胞;1909年Baur和Correns通过在3种枝条颜色不同的紫茉莉间杂交得出,质体是母本遗传的。人们便开始对叶绿体遗传方面产生了浓厚的兴趣1]。1988年Boynton等首次用野生型叶绿体DNA转化了单细胞生物衣藻突变体(atPB基因突变体),使其完全恢复光合作用能力,标志着叶绿体基因工程的诞生2]。叶绿体基因工程作为一种很具有发展前景的植物转基因技术,在植物新陈代谢、抗虫性、抗病性、抗旱性、遗传育种等方面都将有着越来越重要的意义。 1叶绿体基因工程概述 1.1叶绿体简介 叶绿体是植物进行光合作用的重要器官,是一种半自主型的细胞器,能够进行自我复制,含有双链环状DNA。叶绿体DNA分子一般长120~160kb。叶绿体DNA有IRA和IRB2个反向重复序列(分别位于A链和B链),两者基因大小完全相同,只是方向相反,它们之间有1个大的单拷贝区(大小约80kb)和1个小的单拷贝区(大小约20kb)。 1.2叶绿体基因组转化优点 叶绿体基因具有分子量小、结构简单、便于遗传的特点,故相对于传统的细胞核遗传更能高效表达目的基因,这是因为叶绿体基因本身拥有巨大的拷贝数3]。叶绿体基因可实现外源基因的定点整合,避免位置效应和基因沉默;遗传表达具有原核性;安全性好,叶绿体属于母系遗传,后代材料稳定;目的基因产物对植物的影响小。利用叶绿体基因转化的这些优点,可以加快育种速度和效率,节约育种时间。 1.3叶绿体转化的主要过程 叶绿体转化过程通常分4步:一是转化载体携带外源目的基因通过基因枪法或其他转化体系导入叶绿体;二是将外源表达框架整合到叶绿体的基因组里;三是筛选具有转化的叶绿体细胞;四是继代繁殖得到稳定的叶绿体转化植物4]。 1.4叶绿体转化的主要方法 依据叶绿体转化的主要过程,生物学家相应地研究若干种叶绿体基因转化的方法,其中常用的叶绿体转化方法:一是微弹轰击法。将钨粉包裹构建完整的质粒载体,用基因枪轰击植物的各种组织、器官,然后对重组叶绿体进行连续筛选,不断提高同质化水平,最后获得所需的转基因植株5]。二是农杆菌T-DNA介导的遗传转化法。将外源目的基因、选择标记基因等构建到农杆菌的Ti质粒上,然后通过与植物组织或器官共培养,最后把所需外源基因转化到叶绿体并获得表达。三是PEG处理法。只需将构建好的质粒(含外源基因、标记基因、同源片断、启动子、终止子等)在一定的PEG浓度下与植物原生质体共培养。 2叶绿体基因工程的应用 2.1提高植物光合效率 植物的光合效率非常有限,太阳能的很小一部分可以转化为植物所需要的能量,从而转变为人类需要的产品。植物光合效率取决于Rubisco酶的丰富度。Rubisco酶一方面可以制造可溶性蛋白,另一方面也可以限制CO2合成。人们可以通过2种直接的方法提高光合速率:一是加速酶催化的循环过程;二是提高酶的特性,减少光呼吸浪费的能量6]。很多科学家正试图通过提高Rubisco酶来提高植物的光合效率,而其中拟南芥和水稻的定点整合试验取得了重大突

基因工程在园林植物中的应用

基因工程在园林植物中的应用 摘要:与传统育种方法相比,基因工程技术具有独特优势,近年来, 基因工程育种一直是园林植物育种研究的热点。本文就近年来与花卉基因工程相关的研究与应用进行综述, 同时简单评述了花卉基因工程育种研究中存在的问题并展望其应用前景。 关键词:基因工程,育种,园林,花卉 正文: 我国的花卉栽培有着悠久的历史, 花卉种质资源丰富, 为世界园林的发展作出了巨大的贡献。但是, 与花卉业发达的一些国家相比, 我国的花卉发展水平还处于较为落后的阶段。传统育种大多通过杂交或无性繁殖筛选的方式选择良种, 育种周期长且效率低。而辐射育种、航天育种等则难以定向培育新品种, 随机性大。基因工程育种具有育种周期短、效率高, 培育定向性强和可跨种类利用有价值的基因等优点。因此, 花卉基因工程育种具有极大的发展潜力, 为改良和创造优、新、特花卉品种提供了快捷途径。 基因工程又称遗传工程,是生物工程的主导技术。DNA重组技术或分子克隆是基因工程的核心。与传统育种相比,花卉基因工程育种有如下优点:①在基因水平上改造植物,更具精确性;②能够定向修饰花卉某个或某些性状而保留其他性状,提高育种的目的性和可操作性;通过引入外来基因扩大基因库,从而培育出新型的花卉品种;③能够创新种质,打破物种间交流的界限,为花卉的定向育种提供更先进的技术保障;④育种周期短,效率高。 目前, 植物遗传转化方法主要有农杆菌介导转化法和DNA直接导入法两类。农杆菌介导法和基因枪法是外源基因进入植物细胞应用比较广泛和比较成功的方法。观赏花卉的品质性状通常包括花色、花香、花形、花期、株形、叶色和观赏寿命等, 这些品质的优劣会直接影响其观赏价值和商品价值。植物基因工程可以通过定向修饰花卉的某些目标性状而保留其他原有优良性状或引入外源基因而扩大其基因库等方式来培育具有独特新奇品质的高档花卉,创造出巨大的经济效益。因此, 花卉基因工程在花卉品质性状改良方面有着广阔的应用前景。 目前基因工程在花卉育种中的应用方面主要有: 1、花色基因工程 花的颜色是一种复杂性状, 它主要由三大类色素决定, 即类黄酮、类胡萝卜素及甜菜色素。这三大类色素的合成都涉及到多个代谢步骤、多种酶的催化, 因而与之相关的基因也较多, 其作用机理十分复杂。花的颜色还受到色素浓度、多种色素的共同成色作用, 某些色素与重金属离子螯合作用、液泡液的PH 值等因素的影响。 目前, 花色修饰主要通过以下几种方式进行。(1) 直接导入新的目的基因法。(2) 反义基因抑制法。(3) 共抑制法。 菊花是中国传统名花,其花色变异丰富,但独缺蓝色系;瓜叶菊是菊科千里光属广泛栽培的观赏植物,具有典型的蓝色系。研究通过对比菊花和瓜叶菊花青素苷生物合成途径上关键结构基因的表达差异,探讨菊花蓝色系缺失的原因,分析花发育过程中蓝色花形成的分子生物学机理,对于开展花色改良的分子育种具有重要的理论意义和实际应用价值。 2、香味基因工程 花的香味是花卉的一个重要观赏性状。但是花卉香味基因工程目前还处于起步阶段, 研究进展缓慢。究其原因, 主要是芳香物质有比花色素更为复杂的代谢途径。控制香味的代谢物远比控制色彩的代谢物多。 3、花发育基因工程 目前, 研究人员已克隆出了一批与花发育相关的基因。主要有开花基因、花分生组织特

高一地理考试反思与总结

高一地理考试反思与总结 引导语:反思一件事情就是找出自己的不足,进行完善与修改,使其在未来发展得更好,以下是的高一地理考试反思与总结,欢迎参考! 期中考试是对老师的教学与学生的学习进行的一次检测和总结,其意义在于查漏补缺和总结进取。考后总结主要可以下: 1、找出成绩与目标的距离。很多进入新高一的同学都给自己制定了目标,考试之后,首先要看看是否达到了这个目标。达到了,总结一下经验为以后的学习做准备,同时考虑自己的目标是否订的过低而缺乏挑战性。若达到不了,就应该格外反思自己这一阶段的学习态度与方法等等,同时反省自己制定的目标是否脱离了实际。 2、总结学习方法的得失。高中阶段有不同于初中阶段的学习方法,具体每科还有不同于其它科目的方法。初中的学习仍然处于基础阶段,强调思维的规则性和良好的记忆力;高中阶段则进入提高阶段,强调思维的发散性和主动性。在此基础上,学习方法不可避免的会有所转变。考试一旦失利,首先要考虑的就是自己在该科的学习方法上是否存在缺陷,并做出相应的调整。成绩十分理想,也应该找出原因所在以便今后“发扬光大”。 4、薄弱的知识点。各学科的内容都是由具体知识点构成的整体,每个知识点的缺失都会影响总体成绩。期中考试就是帮助进行的最好途径之一。考试进行之后,对试卷中耗时较多的题、摇摆不定的题、做错的题均做出认真细致的分析,找出原因所在,是公式掌握不牢,

是该记住的没有记住,是解题方法没有掌握,还是思考方式运用不够熟练?在此基础上进行补充学习。 考试后无论成绩好坏,提高才是目的。期中考试之后,我们要 认真总结,这一步的意义不低于考试本身。 仔细分析了这次期中考试的地理试卷,应该说题目的风格较传统,所以大部分题目都是见过的,不过很多题目的转弯地方多,个别题目甚至是几个知识的联合,客观的讲这次地理试卷知识点不难,但也反映出了同学们的一些问题。 首先是同学们的读图能力。很多同学能够记得书本上的文字知 识点,殊不知地理知识却也与其它不同,“图是地理的灵魂”这是不会错的,例如你能准确的知道亚非分界线在苏伊士运河,可是如果要你在图上准确的标出来呢?再如很多同学知道山地的不同部位的特征,但却不能准确的判断哪幅图是山脊,哪幅是山谷。这也让我联想到很多同学在周记中提到的历史考试中,有一个题是根据书本上的老子和墨子相关知识,然后自己进行拓展,写也他们的观点,如果我们平时上课时不理解,不去注意听老师讲解,就根本不能准确答案,所以光知道是没有用的,更重要的是理解。 另外一个问题就是很多同学学习地理时不能把章节内容联系起来,强行把相互联系的知识给分化开来。比如第一章标题中是“地球与地图”,下有三节,其一是地球和地球仪;其二是地球的运动;其三是地图。这三节显然是有联系的,如果我们能做到把书合上,在头脑里把前后知识串联起来,形成自己的地理知识结构,这就可以让自己

农杆菌介导的植物转基因技术实验指导

农杆菌介导的植物转基因技术 一、实验目的 1 了解低温离心机、恒温振荡培养箱、超净工作台等仪器的使用。 2 学习真核生物的转基因技术及农杆菌介导的转化原理;掌握农杆菌介导转化植物的实验方法,了解转基因技术的操作流程。 二、实验原理 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤。农杆菌通过侵染植物伤口进入细胞后,可将 T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 实验一培养基配制 一、仪器和试剂 1、仪器:高压灭菌锅,超净工作台 2、药品:Beef extract (牛肉浸膏) 5g/L ,Yeast extract (酵母提取物) 1g/L ,Peptone (蛋白胨) 5g/L ,Sucrose (蔗糖) 5g/L ,MgSO4.7H2O 0.4g/100ml ,Agar (琼脂)1.5g/100ml,MS粉,有机溶液,肌醇,Fe盐,NAA(萘乙酸),6-BA (6-苄氨基腺嘌呤),卡那霉素(kan),利福平(rif ),链霉素(str )。 二、实验方法 第一组配制YEB固体培养基 1、配制250mlYEB固体培养基:先称取1.25g Beef extract (牛肉浸膏); 1.25g Peptone (蛋白胨);0.25g Yeast extract (酵母提取物);1.25g Sucrose

(蔗糖);1g MgS04.7H2O琼脂粉3.75g ;将上述药品置于250ml三角瓶中,用量筒称取 200ml蒸馏水将其溶解混匀,然后再定容至250ml,用NaOH调pH=7.4。 2、灭菌:将盛有250ml 培养基的三角瓶封口,在三角瓶表面写清培养基名称,用高压灭菌锅进行灭菌。 3、抗生素的加入:高压灭菌后,待培养基温度降到50-60 C时(手可触摸)加入已经过滤好的抗生素(100用/ml kan+50⑷/ml Str+ 50旧/ml rif ),以免温度过高导致抗生素失效。 4 、倒板:将抗生素与培养基混匀,每个平皿倒15ml 培养基,可以倒16个平皿,倒完后打开平皿盖,在紫外灯下照10min,等待培养基凝固,盖上平皿盖,封口备用。 第二组配制YEB液体培养基 1、配制500mlYEB液体培养基:先称取2.5g Beef extract (牛肉浸膏);2.5g Peptone (蛋白胨); 0.5g Yeast extract (酵母提取物); 2.5g Sucrose (蔗糖); 2g MgSO4.7H2O将上述药品置于500ml三角瓶中,用量筒称取450ml蒸馏水将其溶解混匀,然后再定容至500ml,用NaOH调pH=7.4。 2、灭菌:将盛有500ml 培养基的三角瓶封口,在三角瓶表面写清培养基名称,用高压灭菌锅进行灭菌。 3、抗生素的加入:高压灭菌后,待培养基温度降到50-60 C时(手可触摸)加入已经过滤好的抗生素(100用/ml kan+50⑷/ml Str+ 50旧/ml rif ),以免温度过高导致抗生素失效。 4 、分装:将培养基分别分装到试管和三角瓶中,每个试管中分装5ml,分 装12个试管。每个三角瓶中倒入35ml,共12个三角瓶。 5、分装好后,封口备用。 第三组配制MS液体培养基 1、配制500mlMS液体培养基:先在500ml三角瓶中加入400ml蒸馏水,称取2.15gMS 粉置于蒸馏水中,搅拌均匀;再向其中加入5ml 100倍Fe盐浓缩液;5ml100倍肌醇浓缩液;5ml有机溶液的混合液,然后混匀定容至500ml,用NaOH 调pH=5.8。

《植物病害防治》考试试卷答案

植物病害防治答案 一、转基因作物防治害虫的优缺点以及存在的潜在问题是什么? 答:优点:减少化学农药的使用,减少污染,减少用工成本等。如搞棉铃虫,玉米螟的品种。 缺点:存在安全性问题,即生物安全。可能由于对具有感染力的有机体或者遗传修饰有机体的研究和商品化生产而对人类的健康和安全以及环境的保护带来风险。 潜在问题: 一、转基因食品对人类健康具有潜在风险。包括预期效应和非预期效应。非预期效应的产生可能是有害的、中性的或是有益的,那些表现有害效应的转基因食品会对人类的健康构成危害,转基因植物中大多数标记基因会表达相应的酶或其他蛋白,它们可能对转基因植物产生危害性影响。 二、转基因生物具有生态风险。 转基因生物体中包含有来源于不同物种的基因,可以表达出新的性状,其实际实用和释放会带来生物安全问题,尤其是对于生态系统的影响,还是一个十分复杂和未知的问题。转基因作物具有的不稳定不确定性,可能产生负面影响,存在的问题主要有: 1、由于基因流引起作物变为杂草问题,产生生态灾难。 2、转基因作物的转基因通过基因流转移到野生植物问题,使其抗病力增加或抗药性增强等。 3、有关对含有编码病毒序列基因的转基因作物释放问题,产生过敏反应;杂草化;病毒重组;产生更胡害病毒株等不良现象。 4、转基因植物产生的杀虫剂对非靶生物的影响问题,可能对非靶标生物造成危害。 5、对生态系统的破坏问题。一些外来种是有害的,引入会造成生态系统的破坏。 二、在防治储藏物害虫时常用的防治方法是植物检疫,清洁卫生以及调节温湿度等措施,请你说明其理论依据? 答:仓库害虫能否大量繁殖,与温度、湿度和粮食的含水量等有密切的关系,这些条件适合了它们的要求,就能迅速繁殖。因此防治上,必须考虑使环境条件不适宜仓虫的生长发育和繁殖。具体防治措施有: 1、植物检疫。通过加强检疫,可有效防止由国外或其它地区传入新的危险性储粮害虫种类和限制国内危险性储粮害虫蔓延传播,全而减轻仓库害虫发生。目前国内仓虫检疫对象有谷象、豌豆象、蚕豆象、谷蠹、咖啡豆象、谷斑皮蠹、四纹豆象等。 2、清洁卫生。这是预防储粮害虫发生的最基本最重要的措施,仓库、加工厂及粮食存放场所内外的垃圾、杂草、尘屑及残粮是害虫躲藏和越冬的场所,另外储粮的器材和物品、车船及附属建筑物也是害虫孳生和躲藏的场所,通过清洁卫生,可以消灭害虫栖息和越冬的场所。 3、空仓器材消毒。通过认真执行腾一仓、扫一仓、消毒一仓,未经消毒杀虫的包装器材不入仓的管理制度。可消灭仓库虫源。 4、物理、机械防治。 物理防治包括:高温杀虫、低温杀虫、气调防治、电离辐射、灯光诱杀等。 储粮害虫喜欢阴暗环境,耐干性强,一般储粮害虫在粮食含水量8%的情况下,不易发生。因此做好粮食入仓前的预防工作,防潮、防雨,使粮食保持干燥对防治害虫发生。 绝大多数储粮害虫不耐高温和低温,发育的适宜温度为24-30摄氏度,超过35摄氏度即影响仓虫的生殖。高温杀虫法中日光曝晒、烘干杀虫、蒸汽杀虫和沸水烫杀等措施,通过高温环境处理,可有效预防害虫发生或直接杀灭害虫。如日光曝晒法,这是常用的方法之一。在夏日炎热的晴天,将感染有虫的粮物薄摊于晒场上,曝晒4~6 h,可获得良好的杀虫效果。 一般储粮害虫生命活动的最低温度界限为5-15摄氏度,低于此温度则发育和繁殖就会停止,当温度降至4-8摄氏度时,害虫会进入冷眠状态,持续较长时间能便害虫致死,若将温度降到-4摄氏度或更低,害虫很快死亡。通过自然低温和机械制冷等低温处理,可控制和延缓害虫的生长发育时期,甚至直接杀死害虫,减轻为害程度。 当粮堆中氧气浓度下降到8%以下时,就可抑制储粮害虫的发生,氧浓度下降到2%以下时,害虫就会很快死亡,二氧化碳浓度增至50-70%以上时,虫、螨和微生物都难以生存。因此通过人为控制调节仓库中的

植物地理学知识点复习

植物地理学复习知识点 第一章 1.植物地理学是研究生物圈中各种植物和各种植被的地理分布规律、生物圈各结构单元(各地区)的植物种类组成、植被特征及其与自然环境之间相互关系的科学。 2.种是生物分类的基本单元,包含若干起源于共同祖先、形态和生物学特征极为相似的植物个体。 3.种群:植物种内的个体(植株)常分成若干群,每个群成片的分布在某个地段内,即各群在空间上互有间断。 4.植物分类原则:人为分类、自然分类。 植物的命名:双名法,即属名加上种加词(种名)。属名和种名均为斜体字,姓名则正体书写。 5.原核生物:细菌门:单细胞生物,无光合作用,最古老、最小的生物,适应能力极强,无孔不入 蓝藻门:没有细胞膜核的单细胞生物,可进行光合作用。 真核藻类和真菌、地衣:藻类:具有核、线粒体、质体等细胞器。 真菌门:完全是异养型 地衣门: 苔藓和蕨类植物:苔藓植物门:光合作用,没有完善的输导组织,躯体矮小 蕨类植物门: 种子植物:裸子植物门:营养体全部为木本,枝茎里木质部很发达。页呈针形、鳞形、线形,稀为扇形、椭圆形或退化成鞘状,裸露的胚珠。

被子植物门:具有形态多样的营养器官,有真正的花。 6.植物的个体发育和系统发育: 个体发育是指某种生物从其生命的某个阶段(如孢子、合子、种子等)开始,经过萌发、生长、分化、发育、成熟和生殖等一系列形态和生理的发展变化,再出现和开始那个发育阶段相同的第二代的全过程。 系统发育是指一种生物,或一个生物类群,在地球上的发生、发展演化和衰亡的历史过程。 二者关系:个体发育和系统发育是推动生物进化的两种不可分割的过程。个体发育是系统发育的前提和基础,任何个体发育也都受系统发育的影响和制约。 7.菌藻植物时代:大气层的改变、有机质的积累。 第二章 1.植物区系是某一地区,或者是某一时期、某一分类群、某类植被等所有植物种类的总称。 2.物种的形成与分布:P35 (1)异地物种形成: (2)同地物种形成: (3)平行物种形成: 3.气候演变与植物分布区的变化:P37 4.分布多度指某地区或单位面积内分布的植物种或属数,也表示某植物种或属在不同地区分布情况。 5.植物区系成分分析: (1)地理成分: (2)发生成分:

植物基因工程真题资料

植物基因工程真题(2011-2013) 一、名词解释 1. Southern blotting:是指通过吸附或电泳方法将经凝胶电泳分离的大分子物质从胶上转移到固相载体上,再与特定的探针反应从而达到检测或鉴定这些大分子物质的过程。 2. cis-acting elemen t顺式作用元件,存在于基因旁侧序列中能影响基因表达的序列,包括启动子、增强子、调控序列和可诱导元件等。它们的作用是参与基因表达的调控,本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。 3. subcloing: 4. Gene libray 5. Yeast Two-Hybrid Assays: 6. qRT-PCR 7. Shuttle plasmid vector 8. insert in activati on 9. cDNA library 10. RNAi 11. Gene kn ockout 12. Tran sducti on and tran sfect ion 13. DNA probe 14. En zyme-li nked immuno sorbe nt assay 15. Tran spositi onal recomb in ati on 16. EST

17. Fluoresce nee in situ hybridizati on 18. q-per 19. SNP 1. Per 反应原理和步骤;基本反应过程有哪些;反应体系与反应条件?简要介绍 温度和时间设臵间的关系? PCR 反应原理:DNA 的半保留复制是生物进化和传代的重要途径。双链 DNA 在多种 酶的作用下可以变性解旋成单链,在 DNA 聚合酶的参与下,根据碱基互补配对原则复制成 同样的两分子挎贝。在实验中发现, DNA 在高温时也可以发生变性解链,当温度降低后又 可以复性成为双链。因此,通过温度变化控制 DNA 的变性和复性,加入设计引物, DNA 聚合酶、dNTP 就可以完成特定基因的体外复制。 步骤:由变性--退火--延伸三个基本反应步骤构成: ①模板DNA 的变性:模板DNA 经 加热至(90-96C )左右一定时间后,使模板DNA 双链或经PCR 扩增形成的双链 DNA 解离, 使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA 与引物的退火(复性): 模板DNA 经加热变性成单链后,温度降至( 25-65C )左右,引物与模板 DNA 单链的互补 序列配对结合;③引物的延伸:DNA 模板--引物结合物在(70-75C )、DNA 聚合酶(如TaqDNA 聚合酶)的作用下,以 dNTP 为反应原料,靶序列为模板,按碱基互补配对与半保留复制原 理,合成一条新的与模板 DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就 可获得更多的 ?半保留复制链?,而且这种新链又可成为下次循环的模板。每完成一个循环 需2?4分钟,2?3小时就能将待扩目的基因扩增放大几百万倍。 标准的反应体系: 10 X 扩增缓冲液 4种dNTP 混合物 引物 模板DNA Taq DNA 聚合酶 Mg2+ 加双或三烝水至 5ul 各 200mol/L 各 10?100pmol 0.1 ?2 ig 1?2 U 1.5?2.0mmol/L 50 il 反应条件:为温度、 时间和循环次数。 温度和时间设臵间的关系: 基于PCR 原理三步骤而设臵变性-退火-延伸三个温度点。 在 标准反应中采用三温度点法,双链 DNA 在90?95 C 变性,再迅速冷却至 40?60 C,引物 退火并结合到靶序列上,然后快速升温至 70?75 C,在Taq DNA 聚合酶的作用下,使引物 链沿模板延伸。对于较短靶基因(长度为100?300bp 时)可采用二温度点法, 除变性温度外、 退火与延伸温度可合二为一, 一般采用94 C 变性,65 C 左右退火与延伸(此温度Taq DNA 酶 仍有较高的催化活性)。 ① 变性温度与时间:变性温度低,解链不完全是导致 PCR 失败的最主要原因。一般情 况下,93 C ?94 C lmi 足以使模板DNA 变性,若低于93 C 则需延长时间,但温度不能过高, 因为高温环境对酶的活性有影响。此步若不能使靶基因模板或 致PCR 失败。 ② 退火(复性)温度与时间:退火温度是影响PCR 特异性的较重要因素。 变性后温度快速 简单题 PCR 产物完全变性,就会导

相关主题
文本预览
相关文档 最新文档