当前位置:文档之家› 多变量自寻优稳态解耦模糊控制器

多变量自寻优稳态解耦模糊控制器

第13卷增刊12009年11月

电机与控制学报

ELECTRICMACHINESANDCONTROL

V01.13

NOV.

Suppl.1

2009多变量自寻优稳态解耦模糊控制器

符强1’2,林辉1

(1.西北t业大学自动化学院,陕西西安710072;2.长安大学信息丁程学院,陕两西安710064)

摘要:针对交流电机伺服控制系统,提出一种多变量自寻优稳态解耦模糊控制器。控制器回避多变量模糊规则库的构建问题,由前后两级串联而成,前级为常规单变量模糊控制器的简单并联,后级为解耦系数矩阵。为了限定控制器的基本应用范围,以闭环控制系统的多项式矩阵描述为基础,给出线性定常系统渐近稳定的基本必要条件。利用被控对象的稳态增益矩阵,在稳定状态附近实现系统的解耦控制,并引入额外的解耦系数评估调节子模糊控制器。对其进行实时评估和调节,进一步改善系统的动态性能。理论分析和仿真验证了控制方案的正确性和有效性。

关键词:多变量模糊控制;多项式矩阵描述;稳态增益;解耦控制;自寻优

中图分类号:TP273文献标志码:A文章编号:1007—449X(2009)增l-0092—07

Novelmultivariablefuzzycontrolsystemwithself-optimizing

andsteady-statedecompositionscheme

FUQian91”,LINHuil

(1.SchoolofAutomaticControl,NorthwesternPolytechnicalUniversity,Xi’an710072,China;

2.SchoolofInformationEngineering,Chang’anUniversity,Xi’an710064。China)

Abstract:InordertoacceleratefuzzycontroltheoryapplicationinACmachineservosystem,anovel

multivariableself-optimizing

steady?-state?-decompositionfuzzy

controlstructurewithtwoseries??connected

stageswasputforward.Thefirststageconsistedof

simplyparallel-connected

conventionalunivariable

fuzzycontrollersandthesecondoneWiltsanumericaldecompositionmatrix.Suchkindofdecentralizedstructureskillfullyavoidedthepainstakingtaskofmuhivariablefuzzyrulebaseconstruction.BasedonthePolynomialMatrixDescriptiontheory,anasymptoticalstabilitynecessaryconditionfortheclosed—loopcontrolsystemwithalineartime—invariantcontrolledobjectWasderived,whichclearlydefinestheappli-cationscopeofthemuhivariablefuzzycontrolstructure.Meanwhilethesystemsteady-statedecompositioncontrolWasrealizedwiththehelpofthesystemSteady-stateGainMatrix.Toimprovethesystemtransientperformance,theevaluationandregulationfuzzysub—controllerswereintroducedtoself-optimizethede-

compositionmatrixelementsdynamically.Theoverantheoreticalanalysisandtheultimatesimulationre-suitsreveMedthevalidityandreliabilityofthewholecontrolstructure.

Keywords:muhivariablefuzzycontrol;polynomialmatrixdescription;steady—stategain;decompositioncontrol;self-optimizing

收稿日期:2008—07—28

作者简介:符强(19r78一),男.博士研究生,研究方向为检测技术与自动化装1、航空航天交流电机伺服控制技术等;

林辉(1957一),男,教授,博士研究生导师,研究方向为现代电力电子技术、交流电机伺服控制技术、智能控制技术等。

万方数据

恒压供水模糊自适应PID控制器的设计_仿真

第30卷第3期2 0 1  1年9月计 算 技 术 与 自 动 化ComutinTechnoloandAutomationVol.30,No.3 Sep .2 0 1 1收稿日期:2011-05-17 作者简介:黄祥源(1974—),男,江苏盐城人,硕士研究生,研究方向:自动控制(E-mail:hxy @czili.edu.cn)。文章编号:1003-6199(2011)03-0056-06 恒压供水模糊自适应PID控制器的设计、 仿真黄祥源 (常州轻工职业技术学院,江苏常州 213164 ) 摘 要: 对遗传算法和传统PID控制作简要的介绍,针对工程整定方法整定的初始值超调量较大,调节时间较长的问题,利用遗传算法对其初值进行整定。利用遗传算法整定出的一组性能较优良的PID初值,结合模糊控制的思想,利用专家系统直接建立模糊规则,进行模糊自适应PID控制器的初步设计,并对恒压供水系统进行仿真,仿真结果满足设计要求。 关键词:模糊控制;PID控制器;恒压供水;Matlab中图分类号:TP312 文献标识码:A Design to Adaptive Fuzzy  PID Controller for Constant-pressure Water SupplyHUANG Xiang-y uan(Changzhou Institute of Light Industry  Technology,changzhou 213164,china) Abstract:This paper gave a brief introduction for the traditional PID control and genetic algorithms.For the larger o-vershoot of tuning initial solution and longer adjustment time from engineering neaten method,the initial values were set byuse of genetic algorithm.The paper set up the fuzzy rules directly and made the preliminary design to the adaptive fuzzy PIDcontroller,and simulated the constant-pressure water supply system according to fuzzy control theory,by a set of good ini-tial PID values from g enetic algorithms,and expert system.Key  words:fuzzy control;PID controller;Constant-pressure water supply;matlab1 引 言 目前恒压供水技术在农业、工业和民用供水系统中已广泛使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在大多数恒压供水系统中采用传统意义的PID调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现应用模糊控制理论形成的控制方案在恒压供水系统中有较好的效果。本方案在常规PID控制器基础上引入模糊控制器,实现被控制对象参数变化在一定范围内模糊PID控制,使恒压供水系统动态静态性能指标保持最优。 2 模糊控制的结构与原理 模糊控制系统是以模糊集理论,模糊语言变量和模糊逻辑推理为理论基础,采用计算机控制技术构成的一种具有闭环结构的数字控制系统,它从行为上模仿人的模糊推理和决策过程,它的组成核心 是具有智能性的模糊控制器[ 1] 。模糊逻辑控制的实质是利用模糊逻辑建立一种“自由模型”的非线性控制算法,在那些采用传统定量技术分析过程过于复杂的过程,或者提供的信息是定性的、非精确的、非确定的系统中,其控制效果是相当明显的。 模糊控制的基本原理框图如图1所示[ 3] 。它的核心部分为模糊控制器,如图1中点划线框中所 示,模糊控制器的控制规律由计算机的程序实现。

多变量解耦控制方法

多变量解耦控制方法 多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多女量矗解WSi+o其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以.血豹疔1964年提出的基于精确对消的全解竊映右全向癌及 Rosenbroc好20世纪60年代提出的基于对角优势化的现代频率法为代表,但这两种方 *法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发展’多种解耦控制方渕应运而生,如特征结构配置解須、自校正解粮、拿性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解越等等护解耦控制丄直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。-* 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿幺和现代频率法。前者包括矩阵求逆解耦、不变性解耦和逆向解耦G扁陶鮒滾漆nuM玆佼疇fW擄林遞跖网禅融8 据是其理论基础,比较适合 于线性金常竝力系统。主要尙括:七?? 1)逆奈氏阵列法

逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析.必滋系统性态的精确方法。当采用其中的増益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足’因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看’类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主増益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。它是近年来普遍使用的方法之一。 此外,还有一些比较成功的频率方法,包括相对増益法、逆曲线法、特征曲线分析法。以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。 自适应解耦控制 自适应解耦岡是将自适应控制技术与解耦控制技术相结合并用于多变量系统,也即将被控对象的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。吉禹萸底宴将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。它是智能解耦理论的基础,适于时变对象。对于最小相位系统,自适应解耦控制采用最爪分臺佥前俺可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合项,就可达到消

多变量系统解耦现状的分析

万方数据

万方数据

万方数据

多变量系统解耦现状的分析 作者:达成莉 作者单位:西安建筑科技大学控制理论与控制工程专业,陕西西安,710055 刊名: 工业控制计算机 英文刊名:Industrial Control Computer 年,卷(期):2011,24(12) 被引用次数:1次 参考文献(15条) 1.闵娟;黄之初多变量解耦控制方法 2004(z2) 2.王启智工程解耦控制系统的研究 2002 3.史继森精馏塔的控制[期刊论文]-自动化博览 2008(08) 4.王诗宓多变量系统分析和设计 1992 5.李旭;张殿华;何立平特征轨迹法解耦活套高度和张力控制系统 2006(01) 6.古孝鸿;周立峰线性多变量系统频域法 1990 7.蒋慰孙;叶银忠多变量控制系统分析与设计 2001 8.Kouvaritaskis B;Rossiter J A Multivariable Nyquist self-tuning:a general approach 1989(05) 9.Wittenmark B;Middleton R;Goodwin G C Adaptive decoupling of multivariable systems 1987(06) 10.舒迪前;奉川东;尹怡欣多变量系统神经网络解耦广义预测控制及应用 2006(04) 11.平玉环;于希宇;孙剑多变量系统模糊解耦方法综述[期刊论文]-仪器仪表用户 2010(01) 12.曾静;薛定宇;袁德成非线件系统的多模型预测控制方法[期刊论文]-东北大学学报(自然科学版) 2009(01) 13.尹成强;岳继光多变量时滞过程的鲁棒解耦控制 2009 14.王晓燕多变量解耦内模控制在锅炉燃烧系统中的应用研究[学位论文] 2008 15.戴文战;丁良;杨爱萍内模控制研究进展[期刊论文]-控制工程 2011(04) 引证文献(1条) 1.张建华.鞠晓峰基于LMDI的中国石化产业CO2排放的解耦分析[期刊论文]-湖南大学学报(自然科学版) 2012(10)本文链接:https://www.doczj.com/doc/b96620846.html,/Periodical_gykzjsj201112033.aspx

PCS液位单元PID控制器参数自寻优

电信学院毕业设计任务书 题目PCS液位单元PID控制器参数自寻优 学生姓名班级学号 题目类型技术开发指导教师李二超系主任李炜 一、毕业设计的技术背景和设计依据 在大多数的工业过程控制中,被控对象通常具有严重的滞后、时变、非线性的特性,使得传统PID控制难以获得满意的动、静态效果。由于常规PID控制器的结构和参数一旦确定则无法改变,这必然影响控制系统的动态品质和稳态性能。为了优化基本PID控制器的性能,必须在线进行参数的实时调整,使PID控制器向自适应、自学习的方向发展。 本实验室具有德国FESTO公司研制生产的PCS实验装置,集成了目前工业控制中较为典型的四种控制系统:液位控制、流量控制、压力控制、温度控制,分为四个独立站。在往届毕业设计中,开发了基于OPC的PCS平台独立单元控制算法,数据采集方便,利于PID控制器自寻优方法的实施。故本设计拟通过对PCS平台液位控制单元研发,进行基于PCS液位单元的自寻优PID控制。 二、毕业设计的任务 1、查阅相关科技文献,掌握控制、检测、通讯等技术要求; 2、基于液位控制单元的控制平台方案论证; 3、分析PID控制算法性能; 4、基于目标函数对PID控制器参数进行寻优; 5、利用OPC进行通讯完成对液位控制单元的实时控制; 6、进行系统调试; 7、撰写毕业设计说明书; 8、完成指定内容的外文资料翻译。 三、毕业设计的主要内容、功能及技术指标 1、毕业设计的主要内容 1)设计说明书正文主要内容要求 ① PCS液位单元控制硬件; ②总体方案论证 ③分析PID控制算法性能; ④PID控制器参数自寻优; ⑤MA TLAB、OPC之间的通讯步骤。 全文要求逻辑严密、条理清晰,文字流畅,理论联系实际,符合科技写作规范。 2)设计说明书装订及外文阅读翻译要求 毕业设计说明书由以下各部分组成,共100页左右,其顺序为:封面、前言、目录、中文摘要(约200字)和关键词(3-5个)、英文摘要(约200字)和关键词(3-5个)、正文、外文原文(2-3万字符)和译文、参考文献、设计总结、致谢、封底等。 2、设计实现的主要功能及技术指标 1)通过校园局域网和相应的通信协议,实现PCS液位单元和MATLAB/Simulink的半 实物网络化控制系统的连接,为后续研究建立相应的平台。 2)在开发的实验平台上对PID控制器参数进行寻优。

模糊控制 - 模糊自适应整定PID控制仿真实验

实验三模糊自适应整定PID控制仿真实验 一、实验目的 1.通过实验了解数字PID控制的原理 2.通过实验实现离散系统的数字 PID 控制仿真 3.通过实验了解模糊自适应整定PID控制的原理 4.通过实验实现模糊自适应整定PID控制仿真 5.通过实验进一步熟悉并掌握Matlab软件的使用方法 二、实验内容 1.针对给定离散系统的输入信号的位置响应,设计离散PID控制器,编制相应的仿真程序。2.若采样时间为1ms ,采用模糊PID控制进行阶跃响应,在第300个采样时间时控制器输出加1.0 的干扰,编制该模糊自适应整定PID系统的Matlab仿真程序 三、实验步骤 1.针对给定离散系统的阶跃信号、正弦信号和方波信号的位置响应,设计离散PID控制器,编制相应的仿真程序。 2.确定模糊自整定PID的算法基础 3.针对 kp, ki , kd 三个参数分别建立合适的模糊规则表 4.画出PID参数的在线自校正工作程序流程图 5.编制该模糊自适应整定PID系统的Matlab仿真程序 四、实验要求 1.设被控对象为: 采样时间为1ms,采用Z变换进行离散化,经过Z变换后的离散化对象为: yout(k)=-den(2)yout(k-1)-den(3)yout(k-2)-den(4)yout(k-3)+num(2)u(k-1) +num(3)u(k-2)+num(4)u(k-3) 针对离散系统的阶跃信号、正弦信号和方波信号的位置响应,设计离散PID控制器。其中,S为 信号选择变量,S=1时为阶跃跟踪,S=2时为方波跟踪,S=3时为正弦跟踪。 2.采样时间为1ms ,采用模糊PID控制进行阶跃响应,在第300个采样时间时控制器输出加1.0的干扰,编制炉温模糊控制系统的Matlab仿真程序 五﹑自适应模糊控制的规则 1﹑控制规则:

模糊自适应PID控制..

《系统辨识与自适应控制》 课程论文 基于Matlab的模糊自适应PID控制器仿真研究 学院:电信学院 专业:控制工程 姓名:王晋 学号:

基于Matlab 的模糊自适应PID 控制器仿真研究 王晋 (辽宁科技大学 电信学院 鞍山) 摘 要:传统PID 在对象变化时,控制器的参数难以自动调整。将模糊控制与PID 控制结合,利用模糊推理方法实现对PID 参数的在线自整定。使控制器具有较好的自适应性。使用MATLAB 对系统进行仿真,结果表明系统的动态性能得到了提高。 关键词: 模糊PID 控制器;参数自整定;Matlab ;自适应 0引言 在工业控制中,PID 控制是工业控制中最常用的方法。但是,它具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用模糊控制理论的方法[1] 模糊控制已成为智能自动化控制研究中最为活跃而富有成果的领域。其中,模糊PID 控制技术扮演了十分重要的角色,并目仍将成为未来研究与应用的重点技术之一。到目前为止,现代控制理论在许多控制应用中获得了大量成功的范例。然而在工业过程控制中,PID 类型的控制技术仍然占有主导地位。虽然未来的控制技术应用领域会越来越宽广、被控对象可以是越来越复杂,相应的控制技术也会变得越来越精巧,但是以PID 为原理的各种控制器将是过程控制中不可或缺的基本控制单元。本文将模糊控制和PID 控制结合起来,应用模糊推理的方法实现 对PID 参数进行在线自整定,实现PID 参数的最佳调整,设计出参数模糊自整定PID 控制器,并进行了 Matlab/Simulink 仿真[2] 。仿真结果表明,与常规PID 控制系统相比,该设计获得了更优的鲁棒性和动、静态性及具有良好的自适应性。 1 PID 控制系统概述 PID 控制器系统原理框图如图1所示。将偏差的比例(K P )、积分(K I )和微分(K D )通过线性组合构成控制量,对被控对象进行控制,K P 、K I 和K D 3个参数的选取直接影响了控制效果。 / 图1 PID 控制器系统原理框图 )( t u 比例 积分 微分 被控对)(t r )(t c )(t e

基于Matlab模糊自适应PID控制器设计

基于Matlab模糊自适应PID控制器设计 摘要:本文介绍了用模糊推理的原则进行PID参数的整定方法,并利用MATLAB仿真相结合的方法,实现了模糊自适应PID控制器与常规PID控制器的仿真与比较。 关键词:模糊控制PID 自适应 0引言 PID控制广泛应用于工业控制过程。但是大多数工业过程存在着非线性、参数时变性和模型不确定性,常规PID控制就显得无能。模糊自适应控制是一类应用模糊集合理论的控制方法,特别适用于一些大滞后、时变、非线性的复杂系统。 1模糊自适应PID控制器设计 1.1模糊自适应PID控制器的结构 模糊自适应PID控制器在PID控制器的基础上根据系统偏差e和偏差变化率ec,利用模糊规则进行模糊推理,使控制对象具有良好性能,从而控制的目的。结构如下图 图1自适应模糊PID 1.2模糊自适应PID控制算法的设计 (1)精确量得模糊化 该控制器采用2输入3输出的形式,输入语言变量e和ec的论域均为: {e、ec}={-3,-2,-1,0,1,2,3},其模糊集为{NB,NM,NS, ZO, PS, PM, PB},子集中元素分别为负大、负中、负小、零、正小、正中和正大。输出语言变量ΔKp、ΔKi、ΔKd 的论域为:ΔKp、ΔKi、ΔKd={-3, -2, -1,0, 1, 2, 3},其模糊集为{NB,NM,NS, ZO, PS,PM, PB}。 (2)建立模糊控制规则 依据自整定原则及工程设计人员的技术知识和实际操作经验,可列出相应的参数调节规则,建立参数Kp、Ki、Kd模糊控制规则表,如表1所示(3)Simulink 下的模糊推理与模糊控制器的建立 可以利用模糊逻辑工具箱在MATLAB命令窗口输入fuzzy命令按回车键,出来FIS Editor窗口,下来在编辑菜单下添加输入输出模块及进行规则添加,打

参数自寻优模糊控制器优化方法的研究

参数自寻优模糊控制器优化方法的研究 摘要 模糊控制是智能控制的一个重要分支,其实质是对人观察,思考,判断,决策的思维过程的一种模拟。常规模糊控制器设计简单,易于实现,有着广泛的应用。但因模糊控制器的设计在很大程度上依赖于设计者的实践经验,带有相当的主观性。因此,对于一个特定的被控对象,需要借助某种手段对控制器进行优化才能取得较为满意的设计效果。而改善模糊控制性能的最有效方法是优化模糊控制器的控制规则和有关参数。本文提出了一种基于MATLAB的模糊控制器综合优化方法。该方法首先利用MATLAB中的模糊系统工具箱结合MATLAB函数构建控制规则可调整的模糊控制器,然后利用最优化工具箱优化模糊控制器的控制规则和参数,从而提高模糊控制器的控制性能。最后利用仿真连接器建立系统仿真模型并在单位阶跃输入信号作用下仿真分析系统动态性能和优化设计结果。仿真表明控制规则及参数优化后系统阶跃响应特性基本上能达到快速小超调的设计目标。 关键词:模糊控制;优化;MATLAB;仿真

Rearch on Optimization Method of Fuzzy controller based on Parameters self-optimizing Abstract Fuzzy control is an important branch of the intelligent control.The essence is a simulation to the process of human thinking of observation, thinking, judgement and decision-making. Conventional fuzzy controller is easy to design and implement,and has a wide range of applications. But the design of fuzzy controller mostly relies on the designers’practical experience, with considerable subjectivity.Therefore, a specific object,needs to be optimized to achieve relatively satisfied with the design effect. And the most effective way of improve the performance of fuzzy control is optimizing fuzzy controller control rules and the relevant parameters.It is presented in this paper a comprehensive optimization method of the fuzzy controller. The method based on MATLAB and digital simulation analysis includes three steps: firstly it uses fuzzy control system toolbox and MATLAB function to construct a fuzzy controller with adjustable control rules; secondly, it optimizes the control rules and parameters of the fuzzy controller by the optimum toolbox; thirdly, with the simulation linker, it builds an smulation model of a second-order system with delay and analyzes the dynamic characteristics of the whole system according to the step response. The simulation results show that the system can meet the target of quick and none-overshoot and design the fuzzy controller with high efficiency. Key words: fuzzy control;optimization;MATLAB;simulation

模糊自适应PID控制器

模糊自适应PID控制器 的设计

模糊自适应PID 控制器的设计 一、 模糊自适应原理 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用,模糊控制与传统控制方式相比具有以下突出优点: ·不需要精确的被控对象的数学模型; ·使用自然语言方法,控制方法易于掌握; ·鲁棒性好,能够较大范围的适应参数变化; ·与常规PID 控制相比,动态响应品质优良。 常规模糊控制器的原理如图1所示: 图1 模糊控制系统框图 PID 控制规律: 1 01()[()()()] p D I d u t k e t e t dt T e t T dt =++? 式中:p k ---比例系数; I T ---积分时间常数; D T ---微分时间常数。 在工业生产中过程中,许多被控对象随着负荷变化或干扰因素影响,其对象特性参数或结构发生改变。自适应控制运用现代控制理论在线辨识对象特征参 数,实时改变其控制策略,使控制系统品质指标保持在最佳范围内,但其控制效果的好坏取决于辨识模型的精确度,这对于复杂系统是非常困难的。因此,在工业生产中过程中,大量采用的仍然是PID 算法,PID 参数的整定方法很多,但大多数都以对象特性为基础。 随着计算机技术的以展,人们利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场实际情况,计算机能自动调整PID 参数,这样就出现了智能PID.这种控制器把古典的PID 控制与先进的专家系统相结合,实现系统的最佳控制。这种控制必须精确地确定模型,首先将操作人员长期实践积累

自适应模糊控制几个基本问题的研究进展

自适应模糊控制几个基本问题的研究进展 谢振华程江涛耿昌茂 (海军航空工程学院青岛分院航空军械系青岛 266041 ) 周德云 (西北工业大学西安 710072 ) [摘要] 综述了模糊控制系统的稳定性分析、系统设计及系统性能提高三个基本问题的研究 ,简述了应用研究 ,最后对自适应模糊控制的理论和应用进行了展望。 关键词模糊控制自适应控制鲁棒性稳定性 1 引言 自从 L. A. Zadeh提出模糊集合论以来 ,基于该理论形成一门新的模糊系统理论学科 ,在控制、信号处理、模式识别、通信等领域得到了广泛的应用。近年来 ,有关模糊控制理论及应用研究引起了学术界的极大兴趣 ,取得了一系列成功的应用和理论成果 ,与早期的模糊控制理论和应用相比有了很大的发展。模糊控制理论成为智能控制理论的一个重要分支。 一般来讲 ,模糊控制理论研究的核心问题在于如何解决模糊控制中关于稳定性和鲁棒性分析、系统的设计方法 (包括规则的获取和优化、隶属函数的选取等 )、控制系统的性能 (稳态精度、抖动及积分饱和度等 )的提高等问题 ,这己成为模糊控制研究中的几个公认的基本问题。其中 ,稳定性和鲁棒性问题的研究最为热烈 ,从早期基于模糊控制器的“多值继电器”等价模型的描述函数分析法 ,扩展到相平面法、关系矩阵分析法、圆判据、L yapunov稳定性理论、超稳定理论、基于滑模控制器的比较法、模糊穴 -穴映射及数值稳定性分析方法等非线性理论方法。设计方法的研究也倍受关注 ,主要表现在对规则的在线学习和优化、隶属函数参数的优化修正等应用了多种思想 ,如最优控制的二次型性能指标、自适应、神经网络、遗传算法等思想。稳态性能的改善一直是模糊控制学者所关注。 围绕上述几个基本问题 ,出现了多变量模糊控制[1 ,2 ] 、模糊神经网络技术 [3 ] 、神经模糊技术 [4 ] 、自适应模糊控制 [5] 、模糊系统辨识[6 ] 等热点研究领域。在模糊控制理论与应用方面 ,日本学者取得了很大的成就[7] ,我国学者在这方面也付出了不懈的努力 ,并取得了许多重要的成果。所有这些工作促进了模糊控制的理论和应用的快速发展。 本文拟对近几年自适应模糊控制几个基本问题的研究现状作一总结 ,希望能从这一侧面反映其研究情况和发展动向。主要内容包括 :( 1 )稳定性分析问题的研究 ;( 2 )系统设计方法的研究 ;( 3)系统性能提高的研 究 ;( 4 )应用研究情况。 2 稳定性分析 众所周知 ,任何一个自动控制系统 ,首先必须是稳定的 ,否则这个系统就无法工作。因此 ,在控制系统的分析和设计中 ,系统的稳定性研究占有重要的地位 ,模糊控制系统也是如此。由于模糊系统本质上的非线性和缺乏统一的系统描述 ,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和

多变量解耦控制

多变量解耦控制 在现代化工业生产中,对过程控制的要求越来越高,因此,对一个生产装置中往往设置多个控制回路,稳定各个被控参数。此时,各个控制回路之间会发生相互耦合,相互影响,这种耦合构成了多输入-多输出耦合系统。由于这种耦合,使得系统的性能很差,过程长久不能平稳下来。例如发电厂的锅炉液位和蒸汽压力两个参数之间存在耦合关系。锅炉系统的示意图如图所示。 发电锅炉中,液位系统的液位是被控量,给水量是控制变量,蒸汽压力系统的蒸汽压力是被控量,燃料是控制变量。这两个系统之间存在着耦合关系。例如,蒸汽负荷加大,会使液位下降,给水量增加,而压力下降;又如压力上升时,燃料量减少,会使锅炉蒸汽蒸发量减少,液位升高,如此等等,各个参量之间存在着关联或耦合,相互影响。 实际装置中,系统之间的耦合,通常可以通过3条途径予以解决: (1) 在设计控制方案时,设法避免和减少系统之间有害的耦合; (2) 选择合适的调节器参数,使各个控制系统的频率拉开,以减少耦合; (3) 设计解耦控制系统,使各个控制系统相互独立(或称自治)。 8.4.1 解耦控制原理 工业生产中可以找出许多耦合系统。下面以精馏塔两端组分得到耦合,说明解耦控制原理。精馏塔组分控制如图8.65所示。 图中 q ),(t r q s (t)分别是塔顶回流量和塔底蒸汽流量; y 1(t),y 2(t)分别是塔顶组分和塔地组分。 显然,在精馏塔系统中,塔顶回流量q ),(t r 塔底蒸汽流量q s (t)对塔顶组分y 1(t)和塔底组分y 2(t)都有影响,因此,两个组分控制系统之间存在耦合,这种耦合关系,可表示成图 8.66所示。 图中R 1(s),R 2(s)分别为两个组分系统的给定值; Y 1(s) Y 2(s)分别为两个组分系统的被控量 D 1(s) D 2(s)分别为两个组分系统调节器的传递函数; g 2(s)是对象F(s)的传递矩阵,其中G 11(s)是调节器D 1(s)对Y 1(s)的作用通道。G 21(s)是调节器D 1(s)对Y 2(s)的作用通道。G 22(s)是调节器D 2(s)对Y 2(s)的作用通道。G 12(s)是调节器D 2(s)对的Y 1(s)作用通道。 由此可见,两个组分系统的耦合关系,实际上是通过对象特性G 21(s), G 12(s)相互影响的。为了解决两个组分之间的耦合,需要设计一个解耦装置F(s)。如图所示。F(s)实际上由F 11(s), F 12(s), F 21(s), F 22(s)构成。使得调节器D 1 (s)的输出U 1(s)除了主要影响Y 1(s)外,

多变量自寻优稳态解耦模糊控制器

第13卷增刊12009年11月 电机与控制学报 ELECTRICMACHINESANDCONTROL V01.13 NOV. Suppl.1 2009多变量自寻优稳态解耦模糊控制器 符强1’2,林辉1 (1.西北t业大学自动化学院,陕西西安710072;2.长安大学信息丁程学院,陕两西安710064) 摘要:针对交流电机伺服控制系统,提出一种多变量自寻优稳态解耦模糊控制器。控制器回避多变量模糊规则库的构建问题,由前后两级串联而成,前级为常规单变量模糊控制器的简单并联,后级为解耦系数矩阵。为了限定控制器的基本应用范围,以闭环控制系统的多项式矩阵描述为基础,给出线性定常系统渐近稳定的基本必要条件。利用被控对象的稳态增益矩阵,在稳定状态附近实现系统的解耦控制,并引入额外的解耦系数评估调节子模糊控制器。对其进行实时评估和调节,进一步改善系统的动态性能。理论分析和仿真验证了控制方案的正确性和有效性。 关键词:多变量模糊控制;多项式矩阵描述;稳态增益;解耦控制;自寻优 中图分类号:TP273文献标志码:A文章编号:1007—449X(2009)增l-0092—07 Novelmultivariablefuzzycontrolsystemwithself-optimizing andsteady-statedecompositionscheme FUQian91”,LINHuil (1.SchoolofAutomaticControl,NorthwesternPolytechnicalUniversity,Xi’an710072,China; 2.SchoolofInformationEngineering,Chang’anUniversity,Xi’an710064。China) Abstract:InordertoacceleratefuzzycontroltheoryapplicationinACmachineservosystem,anovel multivariableself-optimizing steady?-state?-decompositionfuzzy controlstructurewithtwoseries??connected stageswasputforward.Thefirststageconsistedof simplyparallel-connected conventionalunivariable fuzzycontrollersandthesecondoneWiltsanumericaldecompositionmatrix.Suchkindofdecentralizedstructureskillfullyavoidedthepainstakingtaskofmuhivariablefuzzyrulebaseconstruction.BasedonthePolynomialMatrixDescriptiontheory,anasymptoticalstabilitynecessaryconditionfortheclosed—loopcontrolsystemwithalineartime—invariantcontrolledobjectWasderived,whichclearlydefinestheappli-cationscopeofthemuhivariablefuzzycontrolstructure.Meanwhilethesystemsteady-statedecompositioncontrolWasrealizedwiththehelpofthesystemSteady-stateGainMatrix.Toimprovethesystemtransientperformance,theevaluationandregulationfuzzysub—controllerswereintroducedtoself-optimizethede- compositionmatrixelementsdynamically.Theoverantheoreticalanalysisandtheultimatesimulationre-suitsreveMedthevalidityandreliabilityofthewholecontrolstructure. Keywords:muhivariablefuzzycontrol;polynomialmatrixdescription;steady—stategain;decompositioncontrol;self-optimizing 收稿日期:2008—07—28 作者简介:符强(19r78一),男.博士研究生,研究方向为检测技术与自动化装1、航空航天交流电机伺服控制技术等; 林辉(1957一),男,教授,博士研究生导师,研究方向为现代电力电子技术、交流电机伺服控制技术、智能控制技术等。 万方数据

多变量解耦控制方法研究

本科毕业设计论文 题目多变量解耦控制方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 多变量解耦控制方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的多变量解耦控制方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 每一个输出仅受相应的一个输入控制,每一个输入也仅能控制相应的一个输出。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内 外研究现状及研究意义;(第1、2周) 2、完成总体设计方案的论证并撰写开题报告;(第 3、4周) 3、分析控制系统解耦;(第5、6周) 4、应用前馈补偿法进行解耦;(第7、8周) 5、应用反馈补偿法进行解耦;(第9、10周) 6、利用MATLAB对控制系统进行仿真;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)

(2)二稿;(第14周) 8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮.《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松.《自动控制原理》,科学2008,6出版社,2008.6 [3]薛定宇.陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林.《MATLAB/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]刘豹.《现代控制理论》,机械工业出版社,2004.9 [6]古孝鸿.周立群.线性多变量系统领域法[M].上海:上海交通大学出版社,1990. [7]李帆.不确定系统的解耦控制与稳定裕度分析[D].西安:西北工业大学,2001. [8]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001. [9]张晓婕.多变量时变系统CARMA模型近似解耦法[J].中国计量学院学报,2004,15(4):284-286. 学生指导教师系主任

多变量系统的神经网络解耦新方法

1999年 6月第20卷第3期东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Jun.1999Vol 120,No.3 多变量系统的神经网络解耦新方法 X 靳其兵1 曾东宁o 王云华1 顾树生1 (1东北大学信息科学与工程学院,沈阳 110006;o东北电业管理局,沈阳 110006) 摘 要 利用前馈补偿的原理,设计了两种多变量系统的神经网络解耦方法#一种利用神经网络实现前馈补偿,使补偿以后的系统实现解耦,且解耦单变量系统具有原对象主通道的特性#第二种方法将解耦和神经网络逆动态控制结合起来,使对象的输出跟随对应输入值的变化#两种方法均可适用于多变量非线性系统# 关键词 神经网络,前馈补偿,非线性系统,解耦,神经网络逆控制#分类号 TP 2731112 对多变量系统实现解耦控制是目前普遍采用的方法#在闭环自适应解耦控制中,实现解耦的基本思想可归结为[1,2]:对于某一通道,可以将其余通道对它的影响看成是干扰信号,用前馈补偿的方法进行消除#本文就借鉴这一思想,设计了两种多变量系统的神经网络解耦新方法,这两种方法均可适用于非线性系统# 1 方法1:基于神经网络的开环前馈 解耦 以一个二输入、二输出对象为例,神经网络开环前馈解耦示于图1,其中f 11,f 12,f 21,f 22为对 象特性,且y i (k +1)= 62 j=1f ij [y i (k),y i (k - 1),,, y i (k -n i j ),u j (k),,,u j (k -m ij )] (i =1,2) (1) N 12,N 21为神经网络解耦环节#对于第一个主通道f 11和输出y 1(k +1),可以将第二通道的输入u 2(k)看成一个可测干扰,通过引入前馈补偿环节N 12进行消除,根据前馈补偿的原理可知,当取 N 12=f 12#f -1 11时,就可以消除u 2(k)对y 1(k +1)的影响#同理,当取N 21=f 21#f -1 22时就可消除u 1 (k)对y 2(k +1)的影响#不难看出,引入N 12,N 21 以后,y 1(k +1)只受r 1(k)的控制,且两者之间的映射关系为f 11,y 2(k +1)只受r 2(k)的控制,两 者之间的映射关系为f 22,即解耦以后的单变量系统具有原对象主通道的特性# f 11和f 22通常是未知的,可预先建立它们的估计模型f ^11和f ^22,并且利用下列J 1和J 2分别作为对N 12,N 21进行训练的性能指标函数: J 1= 12 [y * 1(k +1)-y 1(k +1)]2J 2=12 [y *2(k +1 )-y 2(k +1)]2 (2) 其中,y *1(k +1),y *2(k +1)分别是r 1(k),r 2 (k)作用于f ^11和f ^22产生的输出(如图1所示)# 图1 神经网络开环前馈解耦 下面讨论N 12,N 21的神经网络实现#由于N 12=f 12#f -111, 所以N 12的功能可以看成由f 12和 f -111两部分串接而成(如图2)#由式(1)所确定的输入输出关系可知,将 u 2(k),u 2(k -1),,,u 2(k -m 12),w 1(k),w 1(k -1),,,w 1(k -n 12) (3) X 1998 09 04收到# 靳其兵,男,28,博士研究生;顾树生,男,59,教授,博士生导师# 辽宁省自然科学基金资助项目(编号:970514)#

PID神经元网络解耦控制算法_多变量系统控制

%% 清空环境变量 clc clear %% 网络结构初始化 rate1=0.006;rate2=0.001; %学习率 k=0.3;K=3; y_1=zeros(3,1);y_2=y_1;y_3=y_2; %输出值 u_1=zeros(3,1);u_2=u_1;u_3=u_2; %控制率 h1i=zeros(3,1);h1i_1=h1i; %第一个控制量 h2i=zeros(3,1);h2i_1=h2i; %第二个控制量 h3i=zeros(3,1);h3i_1=h3i; %第三个空置量 x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i; %隐含层输出 %权值初始化 k0=0.03; %第一层权值 w11=k0*rand(3,2); w12=k0*rand(3,2); w13=k0*rand(3,2); %第二层权值 w21=k0*rand(1,9); w22=k0*rand(1,9); w23=k0*rand(1,9); %值限定 ynmax=1;ynmin=-1; %系统输出值限定 xpmax=1;xpmin=-1; %P节点输出限定 qimax=1;qimin=-1; %I节点输出限定 qdmax=1;qdmin=-1; %D节点输出限定 uhmax=1;uhmin=-1; %输出结果限定 %% 网络迭代优化 for k=1:1:200 %% 控制量输出计算 %--------------------------------网络前向计算-------------------------- %系统输出 y1(k)=(0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2); y2(k)=(0.2*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.4*u_1(2)^3+0.2*u_1(1))+0.3*y_1(3); y3(k)=(0.3*y_1(3)+u_1(3)/(1+u_1(3)^2)+0.4*u_1(3)^3+0.4*u_1(2))+0.3*y_1(1);

相关主题
文本预览
相关文档 最新文档