当前位置:文档之家› 热释光光释光测年仪器性能指标及其他

热释光光释光测年仪器性能指标及其他

热释光光释光测年仪器性能指标及其他
热释光光释光测年仪器性能指标及其他

热释光/光释光测年仪器性能指标及其他

热释光/光释光自动测量系统:

1.主要测量系统

a)自动换样系统可载48个样,安装在真空室内,(可抽真空度为20×10-2毫巴)。

b)两个可交换使用的载样器(每个均可载48个样),盛样的平底测片直径为9.7mm.,样

品杯直径为11.65mm。

c)真空传感系统具自动反馈功能,真空流量表连接在连接真空或氮气的电磁阀上(附

专门的真空泵)。

d) 抬升装置为加热元件,升温最高可达700℃。

e) 成型的铬铝钴耐热钢电热丝适用于9.7 mm的测片或9.7/11.65mm样杯测样;

f) 提供可适用于多种不同组合的滤光片固定装置;

g) 光电倍增管包含倍增管电极及Mu金属包裹;

h)100个不锈钢样品杯及不锈钢钢片;

2. 电子探测与控制系统

a) 袖珍型的迷你PC控制系统可控制TL/OSL测量系统的输入或输出端口、计数器、

加热发生器来完善TL/OSL的运行;

b) 连续的正弦波加热系统可以完成光电倍增管任一预热、等温加热(上升温度可达

700℃)

c) 可控制beta 辐照、气阀及所有机械部分的自动控制软件

d) 光电倍增管获得装置

e) 完整的单颗粒/测片计数放大器

f) 向光电倍增管提供稳定的高压

g) EMI 9235QA光电倍增管,可适用于较低计数状态

3. Beta 辐照装置

可分离的自动beta 辐照移动板包含铍箔真空窗口为样品辐照时进行软件控制(不包括放射源)

4. 红外/蓝光固态光释光激发装置

a) 具高效的红外(IR)/蓝光(BLSL)固态光释光(OSL)计数器适用于样品的热释光测

量及天然或人造样品的红外/蓝光光释光测量。(与系统规格一致),红外发光二极管管阵波长为875nm,照射在样品上的最大光强为> 135mW/cm2,蓝光发光二极管管阵波长为470nm,照射在样品上的最大光强为> 40mW/cm2

b) 测量系统可较方便的变化或联合进行红外、蓝光或热释光的测量。红外/蓝光光释

光测量步骤中可变化激发光源的强度、激发时间且包含可线性调制(LM-OSL).步骤,该方法可应用于分离释光信号的快、中、慢信号组分。

c)允许连续的TL/OSL在任意选择的加热温度、预热温度、时间

5.加热系统

加热组件由铬铝钴耐热钢电热丝组成,该组件按照载样的测片的特定外形做成。载

样测片能够依照自动化程序放在加热盘上以用户设定的加热速率加热到室温至700度范围内的你所期望的温度值。为了提高测量过程中升温或降温速率,读数室内可以被抽空并可以调节流量注入不同的气体。

电子组件和软件可以给出线性TL、预热、cut-heat和等温函数的加热曲线图。6. 控制功能软件

软件能够灵活控制测量过程的种种要求。软件可以创建程序能够被存储以备重新调出在未来测量使用,热释光发光曲线和光释光信号能够在屏幕显示并且可以作一系列的分析。软件可计算任一小部分温度区间内的热释光信号也可以计算任一小部分时间内或通道内的光释光信号,并且在程序运行过程中的信号量可以在屏幕上观测到。数据文件可直接被存储。软件允许对同一测片进行TL/OSL联合测量。前期预热也可以选择在任意温度,在光释光信号读取过程中,样品可以保持在某一温度下贮存。新软件允许无限制的运行测量程序,微机的应用可以使用户比较方便的读取测量文件和宏语言。光释光信号测量可以在不同激发光强下进行,不同激发功率有助与研究室光释光信号电子不同陷阱的衰减。

7. 特殊应用软件

a) 单测片再生法测量步骤

b) 分析方法

8. 滤光片

激发和探测的滤光片适合于滤光片固定器。

注:整套测量系统包含1, 2, 3, 4, 5, 6 ,7,8

9. 90Sr/Y放射源

该放射源强为1.48 GBq (40 mCi),适用于生产厂家软件控制测量步骤。

10. 培训

必须提供1个人为期2-4周的学习,地点在生产厂家。主要侧重学习如何获得一个释光测量结果,课程费用包含吃、住、行及生活费用。

11.安装

安装、测试、委托专家在使用者实验室进行。

12.电脑

能够正常运行TL/OSL系统,且必须有RS232串行端口。

13.标定仪器源强度的标准样品

新采购的仪器,放射源需要标定,须提供一套生产厂家标定源的标准样。

14.放射许可证的办理

负责并协商使用者单位放射许可证的办理并支付一切相关费用。

15.机票

须负责使用者培训的往返机票。

16.其他

除此之外的一切发生费用都包含在里面(即从仪器购置到安装后正常运行前的一切费用),此外,运输过程中发生的意外故障由供货商负责。

75 热释光和光释光

7.5 热释光和光释光 半导体中的杂质和缺陷,在带隙中形成局域能级。如上一节讨论的,它们能够对带间复合进行某种程度上的调制。本小节要讨论的是某些较深,且为亚稳态的局域能级,在一定温度范围内处在这种能级上的载子可以长期稳定地处在这样的状态。这意味著这类陷阱将成为储存激发信息(电子或空穴)的场所。如果对材料进行某种激励,例如加热或光照,陷阱中俘获的电子或空穴可以被重新释放 出来,并复合发光。对于已经储存了电子(或空穴)的材料,借助于加热使 陷阱中的电子(或空穴)获释并复合发光,被称为热释光(简记为TL),或热激励发光(TSL);借助于光的激使陷阱中的电子(或空穴)获释并复合发光,被称为光释光或光激励发光(OSL)。 图7.5-1热释光和光释光示意图 图7.5-1给出了完整的TSL和OSL过程的示意图。其中(a)描述了激发过程,材料吸收外界的光能量,电子被激发到导带,并被陷阱T俘获,同时价带中的空穴被发光中心L俘获。这种状况也常被称为电子陷阱被填充,发光中心被电离; (b) 显示了发光中心和电子陷阱上积累了一定量的空穴和电子(常称之为光和),它们与激发的历史有关;(c)描述了激励过程:在加热或光照的刺激下,电子从陷阱中被释放到导带,然后与发光中心上的空穴复合发光,形成热释光或光释光。可以看出,释光现象涉及的跃迁元过程就是前面讨论过的两类过程:由电声子相

互作用决定的无辐射跃迁过程和光子-电子-声子间相互作用引起的光跃迁过程。特殊之处在于材料具有合适的亚稳能态。 TSL和OSL与PL的不同之处在于,TSL和OSL需要两次激发:第一次激发是产生和储存载子(或光学激发能),第二次激发(通常称为激励)是释放储存的载子(或激发能)来产生复合发光。第二次激发所用的激励方式与第一次激发自然不必相同,通常是借助热能或不同波长的光能。激发和激励之间可以相隔很长的时间。例如在宇宙射线和高能粒子激发下,材料储存了与激发的剂量有关的一定量的激发能(光和),若干年以后进行热释光或光激励发光,就能以此来检测累积的辐射剂量,或者进而判断其地质年代等,这已成为辐射探测和考古的重要工具。对材料科学而言,通过TSL和OSL的研究可以了解材料中的杂质能级以及复合过程等基本问题。 7.5.1 热释光 热释光现象是事先储存一定数量载子(激发能)的材料,通过加热,使储存的载子被释放并发光。温度升高,晶格振动变强,储存的载子就有可能从晶格振动获得足够能量而从陷阱中释放出来。释放的难易程度取决于陷阱的深度和材料的温度。随着晶格温度的升高,陷阱中的电子被释放的几率增大,但是随时间的推移,陷阱中储存的载子的不断释放,留存的载子数随之不断减少,结果从陷阱释放载子的总速率先随时间增加,必定会在达到一个极大值后,随时间逐渐减少。与此相应,热释光也随时间先增强,随后逐渐变弱。在这一过程中,发光强度随 温度(或时间)变化的曲线称为加热发光曲线或热释光曲线。 热释光(TSL)实验通常是以恒定的升温速率对样品加热,同时记录发光强度随温度的变化,这样得到的热释光曲线,会呈现一个(或一些)峰,称为热释光峰。不同深度的陷阱,相应的热释光峰的位置(温度或时间)原则上是不同的。如果材料中存在深度差异较大的几类陷阱,热释光曲线就会呈现若干个可以分辨的热释光峰。 热释光现象是研究陷阱的种类和深度的有效途径。 但是,如果不同类陷阱的能级深度相近,它们相应的热释光峰就可能难以分辨。那时就得靠陷阱的其它性质来区分它们。 热释光现象的实验研究常遇到的另一个问题是发光的热猝灭。它也将影响热释光峰出现的位置,甚至导致因发光太弱,观测不到热释光峰。 下面介绍热释光现象的动力学过程,以常见的电子陷阱为对象,讨论热释光规律,并由此提取陷阱深度等物理参数。

试验5热释光剂量仪

实验5 热释光剂量仪 实验目的 1. 了解热释光剂量仪的工作原理,并掌握热释光剂量仪的正确使用方法。 2.了解照射距离和屏蔽材料对测定γ射线照射量的影响,并掌握外照射防护的基本原 则。 实验内容 1.测量LiF元件的发光曲线,选择加热程序。 2.校准热释光剂量仪。 3.用光和法测量不同照射距离上的照射量。 4.根据对减弱照射量的要求,选择铅屏蔽体的厚度。 原理 热释光剂量法(即TLD)与通常采用的电离室或胶片等方法相比,其主要优点是:组织等效好,灵敏度高,线性范围宽,能量响应好,可测较长时间内的累积剂量,性能稳定,使用方便,并可对α、β、γ、n、p、π等各种射线及粒子进行测量。因此,热释光剂量法在辐射防护测量,特别是个人剂量监测中有着广泛的应用。热释光剂量仪方框图如图1所示。

热释光剂量仪的基本工作原理是:经辐照后的待测元件由仪器内的电热片或热气等加热,待测元件加热后所发出的光,通过光路系统滤光、反射、聚焦后,通过光电倍增管转换成电信号。输出显示可用率表指示出发光峰的高度(峰高法)或以数字显示出电荷积分值(光和法),最后再换算出待测元件所接受到的照射量。 1. 热释光 物质受到电离辐射等作用后,将辐射能量储存于陷阱中。当加热时,陷阱中的能量便以光的形式释放出来,这种现象称为热释发光。具有热释发光特性的物质称为热释光磷光体(简称磷光体),如锰激活的硫酸钙[CaSO 4(Mn)]、镁钛激活的氟化锂[LiF(Mg 、Ti)]、氧化铍[BeO]等。 磷光体的发光机制可以用固体的能带理论解释。假设磷光体内只存在一种陷阱,并且忽 略电子的多次俘获,则热释光的强度I 为: )exp(kT nS I ε -= (1) 这里,S 为一常数,k 是玻耳兹曼常数, T 是加热温度(K ),n 是在所考虑时刻 陷阱能级ε上的电子数。强度I 与磷光 体所吸收的辐射能量成正比,因此通 常用光电倍增管测量热释光的强度, 就可以探测辐射及确定辐射剂量。 2. 发光强度曲线 热释光的强度与加热温度(或加 热时间)的关系曲线叫做发光曲线。 如图2所示。晶体受热时,电子首先 由较浅的陷阱中释放出来,当这些陷 阱中储存的电子全部释放完时,光强 度减小,形成图中的第一个峰。随着 加热温度的增高,较深的陷阱中的电子被释放,又形成了图中的其它的峰。发光曲线的形状与材料性质、加热速度、热处理工艺和射线种类等有关。对于辐射剂量测量的热释光磷光体,要求发光曲线尽量简单,并且主峰温度要适中。 发光曲线下的面积叫做发光总额。同一种磷光体,若接受的照射量一定,则发光总额是一个常数。因此,原则上可以用任何一个峰的积分强度确定剂量。但是低温峰一般不稳定,有严重的衰退现象,必须在预热阶段予以消除。很高温度下的峰是红外辐射的贡献,不适宜用作剂量测量。对LiF 元件通常测量的是210℃下的第五个峰。另外,剂量也可以与峰的高度相联系。所以测量发光强度一般有两种方法: (1) 峰高法-测量发光曲线中峰的高度。这一方法具有测速快、衰退影响小、本底荧光和热辐射本底干扰小等优点。它的主要缺点是,因为峰的高度是加热速度的函数,所以加热速度和加热过程的重复性对测量带来的影响比较大。 (2) 光和法-测量发光曲线下的面积,亦称面积法。这一方法受升温速度和加热过程重复性的影响小,可以采用较高的升温速度,并可采用测量发光曲线中一部分面积的方法(窗户测量法)消除低温峰及噪声本底的影响。它的主要缺点是受“假荧光”热释光本底及残余剂量干扰较大。所以在测量中必须选择合适的“测量”阶段和“退火”阶段的温度。合理地选择各阶段持续时间,以保证磷光体各个部分的温度达到平衡,以利于充分释放储存的

设备性能及参数

设备性能及参数 品目号品目单位数量 1 视频解码器台 1 品牌:海康型号:DS-6408HD-T 制造厂家:海康产地:中国 技术指标及相关要求: 功能特性①备必须符合《GB/T28181-2011 安全防范视频监控联网系统信息传输、交换、控制技术要求》中的相关规定,包括解注册、注销、校时、心跳、实时点播、信息查询、状态查询、远程启动功能、会话流程及格式均须符合GB/T 28181-2011中的相关要求; ②单台设备支持大屏拼接及画面分割功能,支持2*2、2*3、2*4的大屏拼接,支持1/4/9/16画面分割; ③支持主动解码和被动解码两种解码模式; ④支持直连前端设备和通过流媒体转发的方式获取网络实时数据。 解码卡①解码最大分辨率支持≥1920*1080,HDMI输出≥8路,VGA输出≥8路 ②单台设备支持≥8路1080P或16路720P或32路4CIF解码输出 ③解码输出图像语音延时小于40ms; ④支持远程录像文件的解码输出。 网络特性RJ45 10M/100M/1000Mbps自适应以太网口≥1个,标准RS-485串行接口≥1个,标准RS-232串行接口≥1个。 品目号品目单位数量 2 数字交互系统 (包括数字交互硬件设备1台、数字交互软件开发 1套、数字白板软件1套) 套 1 (1)数字交互系统硬件设备套 1 品牌:威创型号:IDB VL6561 制造厂家:威创产地:广东 技术指标: 显示尺寸65英寸以上 产品结构LED屏窄边设计 屏幕宽高比16:9 分辨率≥1920*1080@60Hz 亮度300cd/㎡ 对比度40000:1 色彩深度10bit 可视角度178° 响应时间≤16ms 触摸性能触摸分辨率≥32767*32767,触摸扫描速度>60fps

仪表主要性能指标

仪表主要性能指标 仪表主要性能指标 一、概述 在工程式上仪表性能指标通常用精确度(又称精度)、变差、灵敏度来描述。仪表工 校验仪表通常也是调校精确度,变差和灵敏度三项。变差是指仪表被测变量(可理解为输 入信号)多次从不同方向达到同一数值时,仪表指示值之间的最大差值,或者说是仪表在 外界条件不变的情况下,被测参数由小到大变化(正向特性)和被测参数由大到小变化 (反向特性)不一致的程度,两者之差即为仪表变差,变差大小取最大绝对误差与仪表标 尺范围之比的百分比。 其中变差产生的主要原因是仪表伟动机构的间隙,运动部件的磨擦,弹性元件滞后等。取胜着仪表制造技术的不断改进,特别是微电子技术的引入,许多仪表全电子化了,无 可动部件,模拟仪表改为数字仪表等等,所以变差这个指标在智能型仪表中显得不那么重 要和突出了。 灵敏度是指仪表对被测参数变化的灵敏程度,或者说是对被测的量变化的反应能力, 是在稳态下,输出变化增量对输入变化增量的比值: 式中s-仪表灵敏度; ΔL-仪表输出变化增量; Δx-仪表输入变化增量; 灵敏度有时也称 然而对于仪表用户,诸如化工企业仪表工来讲,仪表精度固然是一个重要指标,但在 实际使用中,往往更强调仪表的稳定性和可*性,因为化工企业检测与过程控制仪表用于 计量的为数不多,而大量的是用于检测。另外,使用在过程控制系统中的检测仪表其稳定性、可*性比精度更为重要。 二、精确度 仪表精确度科称精度,又称准确度。精确度和误差可以说是孪生兄弟,因为有误差的 存在,才有精确度这个概念。仪表精确度简言之就是仪表测量值接近真值的准确程度,通 常用相对百分误差(也称相对折合误差)表示。相对百分误差公式如下: 式中δ-检测过程中相对百分误差; (标尺上限值-标尺下限值)--仪表测量范围; Δx-绝对误差,是被测参数测量值x1和被测参数标准值x0之差。

智能仪表快速使用说明书【模板】

智能仪表快速使用说明书 一、注意事项 ◆本记录仪主机不防水,使用时切勿将记录仪主机置于露天环境或者液体中,避免与腐蚀性气体和液体接触 ◆本记录仪采用塑料外壳,请防止酸碱等化学品对外壳的腐蚀 ◆请不要将记录仪(包含传感器)放在超出本记录仪工作温湿度区域的环境中,否则有可能出现不可预期的结果 ◆记录仪采用内置 3.6V 锂电池供电,不可充电,不允许短路,遇火会发生爆炸,请务必远离火源。废旧电池请妥善处理,保护环境◆本记录仪支持外部供电电压为7~16V 直流,推荐使用本公司配套的电源适配器 ◆本记录仪出现故障时,非本公司专业人员请勿自行拆卸维修,无需更换电池,请严格按照说明书中的操作步骤进行 二、技术参数 ◆测量范围:-40℃~85℃(整机投入温度-20℃~70℃) 0%~90% ◆精度:±0.5℃,±3%(全程) ◆记录容量:32720组 ◆记录间隔: 1秒~24小时连续可调 ◆通讯接口:USB接口或RS485接口 ◆外形尺寸:97.5×78×32.5 mm 三、软件安装 放入光盘,复制rar文件--- >粘贴到合适的磁盘 --- >解压rar文件--- >安装相关文件 --- >安装成功 --- >运行软件

四、设备操作 1、将设备插入USB接口,显示检测到设备对话框,第一次需安装驱动,点击下一步选择[自动安装软件]至完成 2、进入上位机管理软件,设置好[通讯设置]参数后再点击[连接]按钮,连接成功后设备内部已组态参数自动显示在左侧的属性显示栏 五、启动设备『组态参数』 在使用记录仪之前,需先启动设备,组态用户所需的参数,方法 如下: 1、单击工具栏中『组态』按钮,出现提示对话框选择是否重新组态 2、单击[是]按钮,随后出现设备信息检索画面 3、单击[下一步]按钮到通道信息设置画面,设置各通道的记录或报警相关功能 4、设置完通道信息后单击[下一步]按钮到组态、系统等参数信息设置画面,用户请根据需求进行设置 5、设置完参数信息后,单击[下一步]按钮确认将重新组态的设备参数,无误则单击[完成],软件会自动更新设备新组态的运行参数 6、组态成功后,弹出组态成功提示对话框,确定后用户可将设备从USB接口取下,放入被测试环境中开始工作 六、下载数据/在线采集 1、下载数据:当测量过程结束后,可将设备插入USB接口,打开记录仪上位机软件,单击工具栏中『下载』按钮,选择好处理方式,软件自动将设备中已记录的数据下载到上位机中来查看数据或曲线,下载的数据可另存到电脑中,亦可直接进行打印,下载软件操作说明见上位机『帮助』内容 2、在线采集:当测量过程中时,请将设备插入USB接口,打开上位机软件,单击工具栏中『实时通讯』按钮,软件可进行在线采集实时数据,在线采集到的数据可另存到电脑中,亦可直接进行打印

热释光剂量计测量实验

本科生实验报告 实验课程热释光剂量计测量实验 学院名称核技术与自动化学院 专业名称辐射防护与环境工程 学生姓名 学生学号2012060801 指导教师张庆贤 实验地点核工楼 实验成绩 二〇一五年六月二〇一五年六月

填写说明 (1)适用于本科生所有的实验报告(印制实验报告册除外); (2)专业填写为专业全称,有专业方向的用小括号标明; (3)格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值 (缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

热释光剂量计测量实验 实验目的: 1.了解热释光剂量计的原理及应用。 2.运用热释光剂量计测量自身平时所受辐射剂量。 实验原理: 1.热释光 热释光是指发光体中以某种方式被激发储存了能量,然后加热发光体,使发光体以光的形式把能量再释放出来的发光现象。物理机制是发光体被激发时产生了离化,被离化出的电子将进入导带,这时它或者与离化中心复合产生发光,或者被材料中的陷阱俘获。所谓陷阱是缺陷或杂质在晶体中形成的局部反常结构。它在禁带中形成了局域性能级,可以容纳和储存电子。这些电子只有通过热、光、电场的作用才能返回到导带,到导带后它们或者和离化中心复合产生发光,或者再次被陷阱俘获。由热释放出的电子同离化中心复合所产生的发光,就叫作热释光。 2.热释光剂量计 热释光剂量计是利用热致发光原理记录累积辐射剂量的一种器件。热释光剂量计将接收照射的这种剂量计加热,并用光电倍增管测量热释光输出,即可读出辐射剂量值。优点是即使搁置很长时间后,其读数衰减很少。此外,可制成各种形状的胶片佩章,以供个人剂量

XMT系列智能数显温控仪使用说明书

XMT-系列智能数显温控仪使用说明书 XMT-7000系列智能数显温控仪使用说明书 操作注意 ·断电后方可清洁仪器。 ·清楚显示器上的污渍请用软布或绵纸。 ·显示器易被划伤,禁止用硬物擦洗过触及。 ·禁止用螺丝刀或圆珠笔等硬物体操作面板按键,否则会损坏或划伤按键。 一、主要技术指标 1.1 输入 热电偶S R B K N E J T 热电阻Pt100 JPt100 Cu50 1.2 基本误差: 输入满量程的±0.5%±1个字 1.3 分辨率:1℃0.1℃ 1.4 采样周期:3次/sec,按需可达到8次/sec 1.5 报警功能:上限,下限,上偏差,下偏差上下限,上下偏差,

范围内及待机状态报警 1.6 报警输出:继电器触点AC250V 3A(阻性负载) 1.7 控制方式:模糊PID控制、位式控制 1.8 控制输出:继电器触点(容量:220VAC3A) SSR驱动电平输出(DC0/5V) 过零触发脉冲:光偶可控硅输出1A 600V 移相触发脉冲:光偶可控硅输出1A 600V 1.9 电源电压: AC85-264V(50/60Hz) 21.6-26.4V AC(额定24V AC) 21.6-26.4V DC(额定24V DC) 1.10 工作环境:温度0-50℃,湿度<85%RH的无腐蚀性场合,功耗<5VA 1.11 面板尺寸:80×160 96×96 72×72 48×96 96×48 48×48 二、产品型号确认 产品代码: X M T ①- 7 ②③④- ⑤⑥~⑦ ①仪表面板尺寸(高×宽mm) S:160×80 E:96×48 F:48×96 A:96×96 G:48×48 D:72×72 空:80×160

数字电力仪表的技术参数

(1)电压输入信号 输入范围:0~100/220/380/500V(量程自动切换) 持续过压:800V; 短时过压:1200V(1s); 输入阻抗:500KΩ。 (2)电流输入信号 输入范围:0~1/5/6A(量程自动切换); 持续过流:15A ; 短时过流:50A(1s); 输入阻抗:2 mΩ 。 (3)模拟量输出(选件,仅对-A1的型号) 输出范围:A、B、C三相电流中的某一相输出DC4~20mA(出厂默认0~5A对应4~20mA,其他对应输出可编程设定,例如:0~1A对应4~20mA)。 负载能力:0 ~750Ω; 输出阻抗:≥ 25MΩ 。 (4)显示输出: 采用128×64大屏幕图形点阵液晶显示各电参数值。 (5)通讯接口(选件) 标准RS485接口,MODBUS规约。 (6)数字量接口(选件): 数字量输入:-CD的型号可选6路光电隔离无源触点输入。 数字量输出:-CD的型号可选3路继电器无源触点输出。 输出触点负载:AC 250/5A或DC30V/5A(阻性负载); 继电器寿命:10万次。

(7)供电电源:AC 90 ~260V (50/60 Hz)/DC90~260V ; 功耗:≤3W 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/b94955520.html,/

MT系列智能数显温控仪使用说明书

M T系列智能数显温控仪使用说明书 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

XMT-系列智能数显温控仪使用说明书 XMT-7000系列智能数显温控仪使用说明书 操作注意 ·断电后方可清洁仪器。 ·清楚显示器上的污渍请用软布或绵纸。 ·显示器易被划伤,禁止用硬物擦洗过触及。 ·禁止用螺丝刀或圆珠笔等硬物体操作面板按键,否则会损坏或划伤按键。 一、主要技术指标 输入 热电偶 S R B K N E J T 热电阻 Pt100 JPt100 Cu50 基本误差: 输入满量程的±%±1个字 分辨率: 1℃℃ 采样周期:3次/sec,按需可达到 8次/sec 报警功能:上限,下限,上偏差,下偏差上下限,上下偏差,范围内及待机状态报警 报警输出:继电器触点 AC250V 3A(阻性负载) 控制方式:模糊PID控制、位式控制 控制输出:继电器触点(容量:220VAC3A) SSR驱动电平输出(DC0/5V) 过零触发脉冲:光偶可控硅输出 1A 600V

移相触发脉冲:光偶可控硅输出 1A 600V 电源电压: AC85-264V(50/60Hz) AC(额定24V AC) DC(额定24V DC) 工作环境:温度0-50℃,湿度<85%RH的无腐蚀性场合,功耗<5VA 面板尺寸:80×160 96×96 72×72 48×96 96×48 48×48 二、产品型号确认 产品代码: X M T ① - 7 ②③④ - ⑤⑥~⑦ ①仪表面板尺寸(高×宽mm) S:160×80 E:96×48 F:48×96 A:96×96 G:48×48 D:72×72 空:80×160 ②主控控制方式 0 二位式 2 三位式 3 位式PID 4 PID继电器输出 5 PID固态继电器输出 6 PID移相可控硅触发 7 PID过零可控硅触发 8 三相PID过零可控硅触发

主要设备技术指标概况

1.1主要设备技术指标 1.1.1KXJ660(A)矿用隔爆兼本安型PLC控制箱 1)工作电压:660 V/380 V/127 V AC 2)电压波动范围:75~110%; 3)频率:48Hz~52 Hz ; 4)控制箱本安直流电源输出特性: 5)输入信号: ●4路本安(4~20)mA电流信号(负载阻抗350Ω); ●4路非本安(4~20)mA电流信号(负载阻抗350Ω); ●23路本安开关量信号; ●7路非本安开关量信号。 6)输出信号: ●4路非本安(4~20)mA电流信号(负载阻抗600Ω); ●10非本安开关量信号,接点容量250V/6A; ●1路电压信号,接通时输出电压90VAC~150VAC(受电压波动影响),断开时输出电压≤1VAC。 7)本安RS485通信:2路,波特率2400 bps,最大传输距离1 km; 8)本安以太网电口:1路,10/100Mbps自适应,最大传输距离100 m; 9)本安以太网光口:2路,100Mbps单模光纤接口,最大传输距离10 km;

1.1.2KTK18(A)矿用本安型扩音电话 1)额定工作电压:18V DC; 2)工作电压:(11.5~25.0)V DC; 3)工作电流:≤600mA; 4)FXS通信:2路,最大传输距离1Km; 5)FXO通信:1路,最大传输距离5Km; 6)以太网电口通信:1路,10/100Base-T/TX自适应,最大传输距离100 m; 7)音频通信:1路,最大传输距离5Km; 8)声级强度:不小于100dB(A); 9)支持的通信协议:VoIP、PSTN; 1.1.3KTK18(B)矿用本安型扩音电话 1)额定工作电压:18V DC; 2)工作电压:(9.0~25.0)V DC; 3)工作电流:≤50 mA; 4)音频通信:1路,最大传输距离5Km; 5)声级强度:不小于100dB(A); 1.1.4KHJ18矿用本安型急停开关 1)额定工作电压:18V DC; 2)工作电压:(9.0~25.0)V DC; 3)工作电流:≤20mA; 4)输入信号:4路无源触点信号; 1.1.5TH15矿用本安型显示控制台 1)额定工作电压:15V DC; 2)工作电压范围:(11.5~25.0)V DC;

热释光辐射剂量测量

热释光辐射剂量测量 学院:理工学院专业:核工程与核技术学号:08345002实验人:赖滔合作者:麦宇华 一、实验目的 1、了解热释光测量仪的工作原理,并掌握热释光测量仪的正确使用方法; 2、测量分析Al2O3:C元件的发光曲线,了解发光曲线的意义; 3、了解热释光剂量计的温度稳定性; 4、测量Al2O3:C元件的剂量响应曲线; 5、测量未知剂量的热释光曲线,确定其照射剂量。 二、实验原理 1、热释光 物质收到电离辐射等作用后,将辐射能量储存于陷阱中。当加热时,陷阱中的能量便以光的形式释放出来,这种现象称为热释发光。具有热释发光特性的物质称为热释光磷光体(简称磷光体),如锰激活的硫酸钙[CaSO4(Mn)]、镁钛激活的氟化锂[LiF(Mg、Ti)]、氧化铍[BeO]等。 磷光体的发光机制可以用固体的能带理论解释。假设磷光体内只存在一种陷阱,并且忽略电子的多次俘获,则热释光的强度I为: I=nSexp(-) 这里,S为一常数,k是波尔兹曼常数,T是加热温度(K),n是所在考虑时刻陷阱能级ε上的电子数。强度I与磷光体所吸收的辐射能量成正比,因此通常用光电倍增管测量热释光的强度就可以探测辐射及确定辐射剂量。 2、发光强度曲线 热释光的强度与加热温度(或加热时间)的关系曲线叫做发光曲线。如图1所示。警惕受热时,电子首先由较浅的陷阱中释放出来,当这些陷阱中储存的电子全部释放完时,光强度减小,形成图中的第一个峰。随着加热温度的增高,较深的陷阱中的电子被释放,又形成了图中其它的峰。发光曲线的形状与材料性质、加热速度、热处理工艺和射线种类等有关。 对于辐射剂量测量的热释光磷光体,要求发光曲线尽量简单,并且主峰温度要适中。 发光曲线下的面积叫做发光总额。同一种磷光体,若接受的照射量一定,则发光总额是一个常数。因此,原则上可以用任何一个峰的积分强度确定剂量。但是低温峰一般不稳定,有严重的衰退现象,必须在预热阶段予以消除。很高温度下的峰是红外辐射的贡献,不适宜

XMT智能仪表说明书

XMT-系列智能数显测量控制仪 使用说明书 1

目录 一、概述 二、主要技术指标 三、面板说明及操作说明 四、参数功能及设置 五、典型应用说明 六、仪表参数提示符字母与英文字母对照表 七、常见故障处理 2

XMT-系列仪表使用说明书 一、概述 (一)主要特点: ◆采用先进的微电脑芯片及技术,减小了体积,并提高了可靠性及抗干扰性能。适用于各种温度, 压力,流量,液位, 湿度等的测量控制。 ◆按国际标准制造,具备85—265VAC宽范围输入的自由电源供选配,备有多种安装尺寸。 ◆输入采用数字校正系统及自校准技术,测量精确稳定,消除了温漂及时漂引起的测量误差。 ◆具备WATCHDOG及数字滤波功能,在强干扰环境下也能保持精确的测量及稳定的工作。 ◆采用的先进专家 PID 控制算法,具备高标准的自整定功能,并可以设置出多种报警方式。 ◆仪表接热电阻输入时,采用三线制接线,消除了引线带来的误差;接热电偶输入时仪表内部具冷端补偿功能;接电压/电流输入时,对应显示的物理量程可任意定义。 ◆仪表有多种输入功能,一台仪表可以接不同的输入信号(热电偶/热电阻/线性电压/线性电流/线性电阻),大大减少了备表的数量。 ◆具有自动/手动无扰动切换功能。 注意事项 仪表在使用前应对其输入/输出参数进行设置,设置好的仪表才能投入使用。供货方可以为用户设置仪表的参数,请用户在订货时注明输入/输出规格及要求。 3

说明书阅读指导XMT -系列仪表技术先进,功能齐全。对于只作简单应用的用户,可以不必通读整本说明书,而只需阅读第三章(掌握仪表的操作方法及如何启动自整定),第四章的第一节(从参数速查表中选出用到的参数)和第五章(仪表的接线图)。 智能数显测量控制仪选型表

利用热释光剂量探测器测量γ射线剂量

实验四:利用热释光剂量探测器thermoluminescent detector (TLD) 测量γ射线的累积剂量 一、实验目的 1、了解LiF(Mg,Cu,P)热释光材料用于剂量测量的原理及特性; 2、掌握使用热释光剂量计测量个人剂量、环境剂量的基本原理和过程; 3、掌握热释光相关仪器的组成和基本使用方法; 二、实验原理 1、能带理论 按照能带理论,晶体物质的电子能级属于两种能带:处于基态的已被电子占满的允许能带,称为满带;没有电子填入或尚未填满的容许能带,称为导带。它们被一定宽度的禁带所隔开。在晶体中,由于存在杂质原子以及有原子或离子的缺位和结构位错等,从而造成晶体结构上的缺陷。这些缺陷破坏了电中性,形成了局部电荷中心,它们能吸引和束缚电荷,在能带图上,也就是相当于在禁带中存在一些孤立的局部能级。在靠近导带下面的局部能级能够吸附电子,又称为陷阱;在靠近满带上面的局部能级能够吸附空穴,称为激发能级。在没有受到辐射照射前,电子陷阱是空着的,而激活能级是填满电子的,具体见图1。 导带 陷阱 禁带 激活 能级 导带 禁带 价带 陷阱 图1、晶体能带图 图2、F、H中心的形成 图3、热释光发光机理 当辐射如γ、X、β射线照射晶体时,产生电离或激发,使价带或激发能级中的电子受激而进入导带成为自由电子(图2过程①),同时在价带或激发能级中产生空穴,根据能量最小原则,这些空穴落入激活能级的概率最大,俘获了空穴的激活能级称为H中心。类似的,进入导带的电子落入电子陷阱的概率也最大(图2过程②),称俘获电子的陷阱为F中

心。 在测量过程中对晶体加热,俘获的电子受热以后,获得足够的能量摆脱陷阱束缚跃回低能态,与空穴结合,同时多余的能量以可见光形式释放,称为辐射热释光(简称热释光,符号TL),见图3。晶体受热时发光量越大,表征它接受的累积辐射量越大。 2、热释光探测器主要剂量学特性 2.1、储能性 热释光磷光材料吸收的辐射能量一部分转变为电子的势能,电子被束缚在亚稳态的陷阱中,使这部分辐射能量被热释光磷光材料有效存储,直到测量时才释放出来,材料吸收的能量越多(吸收剂量越大),产生的自由电子越多,被俘获到陷阱中产生的电子即F中心也越多,那么储存的辐射能量也就越多。在一定的剂量范围内,储能与剂量成正比关系,这种剂量响应的线性关系,使得热释光磷光体材料可以定量地测量辐射剂量。 2.2、多峰的发光曲线 发光曲线是指热释光材料的发光强度随加热温度变化的关系曲线。由于材料中的电子陷阱有深有浅,深陷阱中的电子比浅陷阱中的电子受到更强的束缚力,因此要释放出来需要更多的能量,当加热热释光材料使,随着温度的升高,浅陷阱中的电子首先释放,且在某一温度(与加热速率有关)下电子的释放速率最大,形成发光曲线的峰值,随后该类陷阱中俘获的电子全部释放完毕,发光曲线就出现峰谷。随着加热温度的继续升高,较深的陷阱开始释放电子,依次类推,就会随温度出现一个个的发光峰,这样,发光强度就可以看作温度T的函数,形成的曲线我们称为热释光发光曲线。下图4是对GR-200圆片,在辐照1mGy(约88mR)、15℃/s升温速率条件下测出的发光曲线,如下图4所示: 图4、热释光发光曲线 从图4中可以看到GR- 200A型TLD在250℃前有2个较大的发光峰,第一个发光主峰约为170℃,后面一个主峰约为240℃,140℃以下的发光峰为杂散辐射。 2.3、剂量响应的线性和超线性 在测量时,并不是测量发光峰的全部发光的总和,对于LiF(Mg,Ti)热释光材料,多选择200℃左右的5峰的峰高或4、5峰的面积,主要是因为该峰稳定,常温衰退小,而且在约10-2-103 R(伦琴)范围内发光强度最大(与此峰对应的陷阱数目最多),对于小于103R的照射量,热释光与照射量(吸收剂量)之间有较好的线形关系,如下图5,其它温度峰的热释

热释光

本科生实验报告 实验课程热释光实验 学院名称核技术与自动化工程学院 专业名称辐射防护与环境工程 学生姓名 学生学号2012060801 指导教师张庆贤 实验地点核工楼114 实验成绩 二〇一五年五月二〇一五年六月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

热释光实验 实验目的: 1.掌握热释光个人剂量计的原理; 2.熟悉热释光剂量仪的使用方法。 实验原理: 1. 能带理论; 2. 晶体中添加杂质可以改变晶体的结构,使靠近满带的地方形成激发能级、靠近导带的地方形成电子陷阱。 3. 热释光计量仪的工作原理:经辐照后的待测元件由仪器内的电热片或热气等加热,待测元件加热后所发出的光,通过光路系统滤光、反射、聚焦后,通过光电倍增管转换成电信号。输出显示可用率表指示出发光峰的高度(峰高法) 或以数字显示出电荷积分值(光和法)。 4. 物质受到电离辐射等作用后,将辐射能量储存于陷阱中。当加热时,陷阱中的能量便以光的形式释放出来,这种现象称为热释发光。 5. 磷光体的发光机制可以用固体的能带理论解释。假设磷光体内只存在一种陷阱,并且忽略电子的多次俘获,则热释光的强度I为: 这里,S为一常数,k是玻耳兹曼常数,T是加热温度(K),n是在所考虑时刻陷阱能级ε上的电子数。强度I与磷光体所吸收的辐射能量成正比,因此通常用光电倍增管测量热释光的强度,就可以探测辐射及确定辐射剂量。最后再换算出待测元件所接受到的照射量。 实验仪器: 热释光剂量仪、镊子、退火盘,晶体等。 实验步骤: 1.晶体的选择:LiF3 2.晶体的分发(注意设立对照) 3.读出器开机、自检 4. 测本底:功能选择—测本底—确定,返回待机状态—拉开抽屉,放入待测晶体—等待程序运行结束,读出本底计量数,记录—待温度降低到60摄氏度以下后,拉开抽屉,拿出晶体。 5. 测量:功能选择—测量—确定—拉开抽屉,放入待测晶体—待程序运行结束,读出剂量,记录—待温度降低到60摄氏度以下,拉开抽屉,拿出晶体。

热释光剂量计使用说明书

FJ-427A1型微机热释光剂量计(读出器)使用说明书 样品测量步骤: 1.接通电源,打开热释光剂量计。 2.双击电脑桌面上图标,打开测试程序。 图1 3.参数设置 在进行样品测试前,首先进行参数设置,点图标进入参数设置窗口。 图2 在参数设置窗口可以对各参数进行设置,本程度提供五套升温程序,第5套提供解谱功能。 注意:在修改表格中每一项参数后,请点击“确定”按钮,以确认修改后,再对下一项参数进行修改,否则无法修改参数。 参数的修改根据不同的测试样品而有所不同。 例:对SrAl2O4:Eu,Dy进行热释光谱测试。 参照Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama,A New Long Phosphorescent Phosphor with High Brightness,SrAI2O4:Eu2+Dy3+,Journal of Luminescence (1997), 72-74

287-289. 所得的热释光谱图(图3),进行参数设置。 测试范围由0-250℃,升温速率为2℃/S。 图3 在参数窗口中对第五套升温程序进行参数设置,热试长余辉发光材料不需要预热,预热温度T1(℃)为室温30℃,预热时间t1(S)为0。由于测试范围由0-250℃,升温速率为2℃/S。故读出温度T2(℃)为250,读出时间t1(S)为110。退火温度T3(℃)和退火时间t3(S)均为0。 4.样品测试 设置好参数,在样品槽放进样品后,点击图标,进入测试窗口,升温程序选择第5 套,关上样品槽,热释光剂量计第一次运行时会自动进行本底扣除。扣完本底后,点击窗口左下角“启动”按钮,开始进行测试。 图4

热释电材料及其应用

热释电材料及其应用 王文瀚12S011029 1 热释电效应 热释电效应指的是极化强度随温度改变而表现出的电荷释放现象,宏观上是温度的改变使在材料的两端出现电压或产生电流。 考虑一个单畴化的铁电体,其中极化强度的排列使靠近极化矢量两端的表面附近出现束缚电荷。在热平衡状态下,这些束缚电荷被等量反号的自由电荷所屏蔽,所以铁电体对外界并不显示电的作用。当温度改变时,极化强度发生变化,原先的自由电荷不能再完全屏蔽束缚电荷,于是表面出现自由电荷,他们在附近空间形成电场,对带电微粒有吸引或者排斥作用。通过与外电路连接,则可在电路中观测到电流。升温和降温两种情况下电流的方向相反,与铁电体中的压电效应相似,热释电效应中电荷或电流的出现是由于极化改变后对自由电荷的吸引能力发生变化,使在相应表面上自由电荷增加或减少。 与压电效应不同的是,热释电效应中极化的改变由温度变化引起,压电效应中极化的改变则是由应力造成的。属于具有特殊极性方向的10个极性点群的晶体具有热释电性,所以常称它们为热释电体。其中大多数的极化可因电场作用而重新取向,是铁电体。经过强直流电场处理的铁电陶瓷和驻极体,其性能可按极性点群晶体来描写,也具有热释电效应。 2 热释电效应的描述 热释电效应的强弱由热释电系数来表示,假设整个晶体的温度均匀地改变,则极化的改变可由下式给出: , 1,2,3m m P p m T ?==? 其中P 为极化强度,T 为温度,其单位为cm -2 K -1。热释电系数符号通常是相对于晶体压电轴的符号定义的。按照IRE 标准的规定,晶轴的正端沿该轴受张力时出现正电荷的一端。在加热时,如果靠正端的一面产生正电荷,就定义热释电系数为正,反之为负。铁电体的自发极化一般随温度升高而减小,故热释电系数为负。但相反的情况也是有的,例如罗息盐在其居里点附近自发极化随温度升高而增大。在研究热释电效应时,必须注意边界条件和变温的方式。因为热释电体都具有压电性,所以温度改变时发生的形变也会造成极化的改变,这也是对热释电效应的贡献。 在均匀受热(冷却)的前提下,根据实验过程中的机械边界条件可将热释电效应分为两类。如果样品受到夹持(应变恒定),则热释电效应仅来源于温度改变造

设备性能参数

摄像机 型号:HTF-1026 品牌:中西华特 概述: 该系列红外防水枪型摄像机,它采用高品质的SONY CCD图像传感器和先进的数字信号处理技术,与红外灯相结合,实现了低照度下同时保证输出高质量的画面。金属屏蔽结构,抗电磁干扰,防尘防水、超轻设计,外观新颖美观,精细制造工艺,稳定性高。满足夜间监控要求。密闭防水,特别适合室外安装使用。 可用于室内、室外等光线不足或无光源的日夜监控场所….. 主要功能特性 ●1/3彩色高解SONY CCD ●配置DSP处理器。图像细腻柔和 ●最低照度:彩色0.01Lux,黑白0LUX(红外启动) ●支持自动白平衡、自动电子快门等功能 ●支持自动电子增益 ●选用红外对应镜头,避免晚上偏焦 ●双玻璃设计,有效避免红外漏光现象 ●恒流源电源控制,延长LED灯使用寿命 ●红外灯工作与彩转黑同步 ●全铝合金外壳,防止恶意破坏 ●屏蔽结构,IP66防水防尘标准 性能参数:

硬盘录像机 产品简介 DS-7200HF-S系列网络硬盘录像机是海康威视自主研发的最新款高性价比网络硬盘录像机。它融合了多项IT高新技术,如视频编解码技术、嵌入式系统技术、存储技术和网络技术等。 DS-7200HF-S系列网络硬盘录像机可作为DVR进行本地独立工作,也可联网组成一个强大的安全防范系统,广泛应用于公安、教育、电信、服务等行业的视频监控。订货型号 特别说明 ?VGA视频输出分辨率最高达1024*768; ?所有通道支持4CIF实时编码; ?采用HIKVISION云台控制协议时候,可通过鼠标选定画面任意区域并进行中心缩放; ?支持预览图像与回放图像的电子放大; ?VGA、VIDEO OUT互斥输出; ?4路机型支持环通输出; ?4路机型支持2路同步回放;8路机型支持4路同步回放;16路机型支持8路同步回放;

仪表主要性能指标

仪表主要性能指标 一、概述 在工程式上仪表性能指标通常用精确度(又称精度)、变差、灵敏度来描述。仪表工校验仪表通常也是调校精确度,变差和灵敏度三项。变差是指仪表被测变量(可理解为输入信号)多次从不同方向达到同一数值时,仪表指示值之间的最大差值,或者说是仪表在外界条件不变的情况下,被测参数由小到大变化(正向特性)和被测参数由大到小变化(反向特性)不一致的程度,两者之差即为仪表变差,如图1-1-1如示。变差大小取最大绝对误差与仪表标尺范围之比的百分比: (1-1-1) 其中 变差产生的主要原因是仪表伟动机构的间隙,运动部件的磨擦,弹性元件滞后等。取胜着仪表制造技术的不断改进,特别是微电子技术的引入,许多仪表全电子化了,无可动部件,模拟仪表改为数字仪表等等,所以变差这个指标在智能型仪表中显得不那么重要和突出了。 灵敏度是指仪表对被测参数变化的灵敏程度,或者说是对被测的量变化的反应能力,是在稳态下,输 出变化增量对输入变化增量的比值: (1-1-2) 式中s-仪表灵敏度; ΔL-仪表输出变化增量; Δx-仪表输入变化增量; 灵敏度有时也称"放大比",也是仪表静特性贴切线上各点的斜率。增加放大倍数可以提高仪表灵敏度,单纯加大灵敏度并不改变仪表的基本性能,即仪表精度并没有提高,相反有时会出现振荡现象,造成输出

不稳定。仪表灵敏度应保持适当的量。 然而对于仪表用户,诸如化工企业仪表工来讲,仪表精度固然是一个重要指标,但在实际使用中,往往更强调仪表的稳定性和可靠性,因为化工企业检测与过程控制仪表用于计量的为数不多,而大量的是用于检测。另外,使用在过程控制系统中的检测仪表其稳定性、可靠性比精度更为重要。 二、精确度 仪表精确度科称精度,又称准确度。精确度和误差可以说是孪生兄弟,因为有误差的存在,才有精确度这个概念。仪表精确度简言之就是仪表测量值接近真值的准确程度,通常用相对百分误差(也称相对折 合误差)表示。相对百分误差公式如下: (1-1-3) 式中δ-检测过程中相对百分误差; (标尺上限值-标尺下限值)--仪表测量范围; Δx-绝对误差,是被测参数测量值x1和被测参数标准值x0之差。 所谓标准值是精确度比被测仪表高3~5倍的标准表测得的数值。 从式(1-1-3)中可以看出,仪表精度不仅和绝对误差有关,而且和仪表的测量范围有关。绝对误差大,相对百分误差就大,仪表精确度就低。如果绝对误差相同的两台仪表,其测量范围不同,那么测量范围大的仪表相对百分误差就小,仪表精确度就高。精确度是仪表很重要的一个质量指标,常用精度等级来规范和表示。精度等级就是最大相对百分误差去掉正负号和%。按国家统一规定划分的等级有 0.005,0.02,0.05,0.1, 0.2,0.35,1.0,1.5, 2.5,4等,仪表精度等级一般都标志在仪表标尺或标牌上,如,,0.5等,数字越小,说明仪表精确度越高。 要提高仪表精确度,就要进行误差分析。误差通常可以分为疏忽误差、缓变误差、系统误差和随机误差。疏忽误差是指测量过程中人为造成的误差,一则可以克服,二则和仪表本身没有什么关系。缓变误差是由于仪表内部元器件老化过程引起的,它可以用更换元器件、零部件或通过不断校正加以克服和消除。系统误差是指对同一被测参数进行多次重复测量时,所出现的数值大小或符号都相同的误差,或按一定规律变化的误差,可目前尚未被人们认识的偶然因素所引起,其数值大小和性质都不固定,难以估计,但可以通过统计方法从理论上估计其对检测结果的影响。误差来源主要指系统误差和随机误差。在用误差表示精度时,是指随机误差和系统误差之和。 三、复现性(重复性) 测量复现性是在不同测量条件下,如不同的方法,不同的观测者,在不同的检测环境对同一被检测的量进行检测时,其测量结果一致的程度。测量复现性必将成为仪表的重要性能指标。 测量的精确性不仅仅是仪表的精确度,它还包括各种因素对测量参数的影响,是综合误差。以电动Ⅲ型差 压变送器为例,综合误差如下式所示:

相关主题
文本预览
相关文档 最新文档