当前位置:文档之家› 中南大学 电力电子技术实验指导书

中南大学 电力电子技术实验指导书

中南大学 电力电子技术实验指导书
中南大学 电力电子技术实验指导书

各位同学:

电力电子实验室有两种不同的设备,设备的分配是随机的;故试验指导书有两套,请都熟悉一下,方便做实验。指导书1在2~15页,指导书2在16~24页。

实验1-1 三相脉冲移相触发电路

一、实验目的:

1.熟悉了解集成触发电路的工作原理及双脉冲形成过程

2.掌握集成触发电路的应用

二、实验内容:

1.集成触发电路的调试

2.各点波形的观察与分析

三、实验电路原理

三相脉冲移相触发电路,采用三片集成芯片KJ004(或KC04)及外电路组成,以锯齿波移相的方式确定六个晶闸管的触发脉冲,根据输入控制电压U ct的变化,改变晶闸管的整流控制角α或逆变控制角β。

由三相脉冲移相触发电路产生的六路单窄脉冲分别输入到六路双脉冲形成芯片KJ041(或KC41)的1-6号脚,由芯片内的输入二极管完成“或”功能,形成补脉冲。补脉冲按+A←-C,-C←+B,+B←-A,-A←+C,+C←-B,-B←+A顺序列组合。经电流放大后分别对应于15–10引脚输出间隔为60°的双窄脉冲,经功放后加至1-6号晶闸管(使三相桥式全控整流电路中的器件导通次序为VT1-VT2-VT3-VT4-VT5-VT6,彼此间隔60°,相邻器件成双接通)。芯片KJ041(或KC41)的7号引脚为电子开关端口,当其为“0”电平时,允许各路输出触发脉冲,为“1”电平时,封锁各路输出触发脉冲。实验电路原理如图1-1所示。

图1-1

四、实验设备:

1.YB4320A型双线方波路一台

2.万用表一块

3.实验挂箱:LY101,LY105-1,LY124

五、实验步骤和方法:

1.将挂箱LY101的给定信号输出接入LY105-1的U ct孔,并将LY105的U bif、U bir孔接地。

2.LY105-1的触发脉冲输出25芯插件与LY123 I组桥的触发脉冲输入25芯插件相连。

3.将LY124的±15V电源、地与LY105-1及LY101的±15V、地相连。

4.先合LY121中的三相交流总开关,再合直流控制电源开关(不允许合主电路电源开关),并用万用表直流电压档检查±15V电源是否在+15+1V范围内。

5.从LY105-1面板上观察各点电压波形。

①LY105-1中的A、B、C孔为三相同步电压波形。先将LY121中的N孔与LY105-1中的地临时相连,用双线示波器观察A2与A,B2与B,C2与C的相位是否一致,检查A、B、C相序是否正确。

②观察14孔,36孔,52孔波形。其波形是由KJ004第4脚输出的锯齿波与负偏臵电压U P、控制信号U ct经综合后输入到KJ004第9脚形成的波形,调整该波形如下:

a) 调锯齿波斜率:先使U ct=0V,U P调至负的最大值(将偏臵电位器顺时针旋转至最大),分别调节各斜率电位器,使三孔波形的斜率保持一致,调好后,斜率电位器不要再动。

b) 调α=90°脉冲位臵:合直流调速主电源开关,用双线示波器的参考地端接N孔,一个探头测A2孔,一个探头测LY105-1中的1孔。U ct=0V,调节U P,使1孔的第一脉冲对应于A2相的ωt=120°,即B2相电压过零点(由低向高的过零点,此时α=90°)时刻发出,并检查B2孔与3孔的第1脉冲、C2孔与5孔的第一个脉冲是否均与相应的时刻相对应。调整好U P的偏臵电位器后不要再动。

c) 观察移动范围:在U ct=0V时,脉冲应在α=90°位臵。

缓慢给定+U ct,脉冲往前移动,记录当1孔第一个脉冲即将消失时所对应的α角度;

缓慢给定-U ct,脉冲往后移动,记录当1孔第一个脉冲即将消失时所对应的α角度。

脉冲前后移动的范围即为能产生脉冲的范围。

实验1-2 三相桥式整流电路的研究

一、实验目的:

1.加深对三相桥式整流电路电阻、电感性负载时工作情况的理解。

2.对实验当中出现的问题进行分析并解决。

二、实验内容:

1. 观察并分析三相桥式整流电路电阻性负载时的工作情况。

2. 观察并分析三相桥式整流电路阻感性负载时的工作情况。

3. 观察并分析三相桥式整流电路带续流二极管的阻感性负载时的工作情况。

三、实验设备:

1.YB4320A型双线示波器一台

2.万用表一块

3.实验挂箱:LY101、LY105-1、LY121-LY124及灯挂箱(LY113)

四、实验步骤和方法:

1.按图1-2接好控制电路。

图1-2

①将挂箱LY101的给定输出信号输入到LY105-1的U ct孔,并将U bif孔接地。

②将LY105-1的25芯插件与LY123的I组桥晶闸管的25芯插件相连。

③将LY124中的±15V、地端接好。

2.按图1-3接好主回路

A2

B2

C2

图1-3

①电阻性负载:续流二级管VD暂时不接,将电感L用导线短接,灯箱做电阻性负载,冷态时,先合60W灯泡一个。

a)先合LY121单元的三相交流总开关,后合LY124单元的直流控制电源开关。用示波器观察三相同步电压相序是否正确,锯齿波斜率是否一致,1、2、3、4、5、6孔的双窄脉冲是否正常,顺序是否正确。

b)α=90°相位整定:先使U ct=0V,合主回路电源开关,用示波器观察电阻负载两端波形。后调节LY105-1中的U P偏臵电位器,使纯电阻负载下α=90°的整流电压波形如图1-4所示。电路负载较小时波形可能会不规整,这是正常现象。(注:逐一增加灯泡合的个数,使电流表A中的电流为1.5A左右。)。整定好α=90°的u d波形后,调U P的电位器不能再动。

记录α=90°纯电阻负载下Ud的数据于表一中。

②R+L负载:断开主电路电源,去掉短接电感L的连线,负载变为R+L负载,此时接入电源,用示波器观察α=90°的u d波形,并记录U d于表一中。

③R+L+VD:按图1-3虚线所示将续流二极管接入电路中,用示波器观察α=90°时的R、R+L、R+L+VD负载的u d、u L、u R波形,并记录U d于表一中。

3.观察α=60°时的R、R+L、R+L+VD负载的u d、u K、u R波形。

①电阻性负载

a) 断开主电源,电路恢复纯电阻负载(短接L,断开VD)。

b) α=60°的确定方法:1°用示波器的地点接LY105-1中的地,一探头测第一孔的双窄脉冲,调示波器的扫描时间旋钮,U G1的第一个脉冲在第一个周期的α=90°位臵到第二个周期α=90°的位臵为360°,在示波器显示屏上将360°调至成六大格,每大格为60°,

如图1-5所示。

将U ct由零往正方向缓慢增加,脉冲由α=90°向前移动半格,即是α=60°的位臵。

c)合主回路电源开关,用示波器观察电阻负载α=60°时的两端电压波形U d,应如图1-6所示,恰为电流连接与断续的分界点。记录

U d,U ct于表一中。

②R+L负载:断电,去掉短接L的连线,上电,观察R+L负载α=60°的u d、u L、u R波形,记录U d于表一中。

③R+L+VD:断开电源,将VD接入电路中,再接上电源,观察

α=60°的u d、u L、u R波形,记录U d于表一中。

4.重复步骤3的内容,观察α=30°,α=120°时的R负载,R+L 负载,R+L+VD时u d、u L、u R波形,并记录U d于表一中。(注意:α<90°,U ct>0V,α>90°,则U ct<0V,α=90°,U ct=0V。)

5.分析波形和实验数据,并与理论值进行比较。

6.用示波器观察电感L两端电压波形,观察晶闸管阳—阴极之间管压降U VT波形,并分析其特征。

表一

五、注意事项:

发现故障,立即停电源,检查并排除。

六、实验报告内容:

1.绘制实验线路,分析其工作原理。

2.绘制α=60°时,R、R+L、R+L+VD负载下的u d波形,并做出U d=f(α)曲线。

3.该实验设备整流变压器线型式为ΔY-11,在相序检查中观察,以KJ004组成的触发电路中,其同步变压器的接线组别是什么?

实验1-3 三相桥式变流电路反电动势负载的研究

一、实验目的:

1.加深对三相桥式变流电路反电动势负载整流和有源逆变工作情况的理解。

2.了解三相桥式变流电路反电动势负载的结构、原理及其工作特性。

二、实验内容:

三相桥式变流电路串电感的反电动势负载工作特性测试

三、实验设备:

1.YB4320A型双线示波器一台

2.万用表一块

3.电阻灯箱一个

4.实验挂箱LY101、LY105-1、LY121-LY124

四、实验步骤与方法:

1.先按图1-7接好控制电路,即:

①将挂箱LY101给定信号的输出接入LY105-1的U ct孔,并将LY105-1的U bif孔接地。

②将LY105-1的触发脉冲输出25芯插件与LY123的I组桥变流器的25芯插件相连。

③将LY104的±15V电源、地与LY105-1、LY101的±15V、地相连。

图1-7

2.按图1-8接好主电路,电动机回路串电感L(200mH)。

3.实验步骤与实验方法:

①合LY124中直流控制电源开关,观察同步信号电压的相序是否正确,锯齿波斜率是否一致。

②要求U ct=0V时,调整偏臵电压U P电位器,使脉冲停留在α=90°处。

具体方法:

a)负载先接成纯电阻负载如图1-3所示。

b)U ct=0V,合主回路电源开关,用示波器观察电阻两端电压波形。调节U P,使输出整流电压波形如图1-4所示。调好后,调U P的电位器不能再动。

c)停主回路电源,将主回路电路恢复为图1-8的接线。

③先合电动机的励磁开关,检查励磁电源电压是否正常,极性是否正确。

④合主回路电源,用示波器观察α=90°的u d波形,并将Ud、Id、n记录于表二中。

⑤做α=60°时的电动机机械特性n=f(I d):

a)确定α=60°位臵:用示波器观察LY105-1的第1孔的双窄脉冲,从第一个周期α=90°的位臵到第二个周期α=90°的位臵为360°,调示波器使360°分为六大格,每大格60°,如图1-5所示,缓慢给定+Uct,脉冲前移半格则使α=60°,此时电动机起动、升速。用示波器观察负载上的u d波形。

b)改变负载大小(即合灯箱中灯的个数),从直流电表A1中读出2A,1.5A,1A,0.5A时所对应的U d值(从直流电压表V1中读得)和转速n值(从转速表中读得),并分别记录于表二中,从而做出α=60°的电动机机械特性n=f(I d)。

c)仿照a)、b)过程可做出α=30°的n=f(I d)特性曲线。

d)停机:先将U ct调至零伏,断主回路电源,最后切断励磁电源。

表二

3.有源逆变实验

①控制线路接线不变,换机组,按图1-9接好主电路。

②发电机G的反电动势E G极性检查:

a)先不要合主回路电源开关,合励磁电源开关,调R W,使U LG=0V。

b)合三相交流电动机电源开关,交流电动机M带动直流发电机G旋转,因无励磁电压(但发电机中有剩磁),故E G为十几伏左右。

c)调R W,使U LG缓慢增加,E G也增加,用万用表检查E G的极性是否如同图1-9所标的一致,若不一致将P、Q端调换。

d)确定极性无误后,将U LG调至零状。

③在U ct=0V情况下,α=β=90°,合主回路电源,缓慢调节R W,U LG由零上升,E G上升,电流表A1读数上升到1A左右(注意:因为α=β=90°,cosU d cosα=U d cosβ=0V,E G上升一点点,电流上升很快,要求电流表A1中的读数不超过2A)。此时用示波器观察负载两端u d 波形。

④将示波器观察LY105-1中的第1孔双窄脉冲,按照图1-5,调示波器扫描时间,使第一周期α=90°位臵到第二周期α=90°位臵为六大格(即360°),每大格为60°。

⑤缓慢给定负Uct(注意:Uct千万不能给正值,否则逆变失败!),脉冲向后移动半格,即为α=120°(即β=60°),变流器工作于逆变状态,U d cosβ反向增加,A1表中电流下降。

⑥缓慢增加U LG,E G增加,当A1表中电流上升到1A左右,不用再调U LG,用示波器观察β=60°的有源逆变波形。

⑦在步骤④、⑤、⑥的基础上,用示波器重新观察LY105-1中的第一孔双窄脉冲(六大格),缓慢增大负U ct,使脉冲继续向后移动半格,即为α=150°(β=30°),A1表中电流又下降,再缓慢增加U LG,使A1表中电流上升为1A左右,用示波器观察β=30°的有源逆变波形。

⑧波形观察完后停机:

a)先调R W滑动变阻器,使U LG=0V

b)后调U ct,使U ct=0V

c)切断主电源及三相交流电机电源。

五、注意事项:

发现问题,特别是逆变失败问题,应立即停主电源,避免事故的扩大。

六、实验报告内容:

①绘制实验线路,做出α=30°,α=60°时的n=f(I d)特性。

②做有源逆变实验应具备什么条件?

③逆变回电网的电能何来?能量又是如何传递的?

④在本电路的有源逆变实验线路中,分析当U ct给定为正值时产生有源逆变失败的原因。

实验1-4 单相交流调压电路

一、实验目的:

1.加深理解单相交流调压电路的工作原理。

2.加深理解交流调压感性负载对移相范围的要求。

3.了解晶闸管移相触发器的原理及应用。

二、实验内容:

1.移相触发电路的调试。

2.单相交流调压器带电阻性负载工作情况观察。

3.单相交流调压器带阻感性负载工作情况观察。

三、实验设备:

1.YB4320A型双线示波器一台

2.万用表一块

3.实验挂箱:LY101、LY108、LY113、LY121-LY124

四、实验步骤:

1.按图1-10接好控制回路,用示波器观察LY108有关波形,了

解脉冲形成的原理,调节R P 1观察锯齿波斜率的变化,改变U ct 观察输出脉冲的移相范围如何变化,移相能否达到180°,记录上述观察到的各点电压波形。

-15V GND

图1-10

2.单相交流调压器带电阻性负载:

按图1-11接好主回路,先用导线将电感L 短接,启动主回路,用示波器观察负载电压u d 波形及晶闸管两端电压波形u VT ,观察不同α角时各波形的变化,并记录α=60°、90°、120°的波形。

3.单相交流调压器接阻感性负载:

去掉短接电感L 的连接线,负载变为R-L 负载,改变灯箱中灯亮的个数,即改变R 值大小,也就改变了负载阻抗角φ的大小。

调节灯箱中灯的个数,使阻抗角φ为一定值,用双踪示波器同时观察,在不同α角时负载电压u o 和负载电流i o 的波形变化情况。

计算:R

WL

1

tan -=?;L 、R 值在实验中选定。 用示波器观察:

a) α>Φ时,u o 和i o 波形特征,并记录。 b) α =Φ时,u o 和i o 波形特征,并记录。 c) α<Φ时,u o 和i o 波形特征,并记录。

五、实验报告内容:

1.实验线路原理简述。

2.实验所得电阻性负载α=60°、90°、120°的U O 波形。

3.实验所得阻感性负载时α>Ф、α=Ф、α<Ф的u o 和i o 波形,并说明其特征。

MPD-08实验设备《电力电子技术》实验指导书

实验一、三相脉冲移相触发电路

1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的

应用。

2.实验内容:集成触发电路的调试及各点波形的观察与分析。

3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-08实验设备中“模拟量可

逆调速系统”控制大板中的“脉冲触发单元”。

4.实验接线:见图1

图1

该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。

5.实验步骤:

(1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动)

(2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16

U C16相位一致)。

(3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。

(4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。

(5)触发器锯齿波斜率的整定

a.先将信号给定电位器逆时针调至零位,即使控制信号U ct=0V;

b.将示波器的两个信号探头检测同一个被测点(例如斜率A孔),示波器的两探

头使用唯一的公共端接GND(注:示波器的两个信号探头各有一个公共端,但

两个公共端在示波器内部已经连接好,为避免烧坏示波器,只允许一根公共端

作用外部检测用)。调节示波器上的幅值调整旋钮,使两根线的波形完全重合,

调整好后,在斜率检查时不要再动示波器的幅值调整旋钮。

c.用示波器的一个信号探头移至斜率B孔,观察A孔和B孔的斜率是否一致,若

不一致调斜率电位器RW9或RW11,使其完全一致。

d.将观察斜率A孔的示波器探头移至斜率C孔,观察斜率C孔的斜率是否与斜率

B孔的斜率一致,若不一致,只能调RW13电位器使其一致。

注意:触发器的斜率调整好后,调斜率的电位器不能再动。

(6)触发器相位特性整定:

a.系统初始相位的整定

在触发器中偏移电位器RW10,RW12,RW14的作用就是为了整定系统的初始工

作状态而设置的。对于不同的负载,初始工作状态,所对应的控制角α是不同

的。但通常一般指当触发器输入的控制信号U ct=0V时,要求U d=0V,对于阻感

负载或平波电抗器的反电动势负载,当U ct=0V时,U d=0V,则α=90°。所以本

实验要求:U ct=0V时,α=90°,其调试步骤为:

1.先使U ct=0V,先调A相角触发器。用示波器的公共端接GND孔,示波器一信号探

头接同步信号电压U sb孔(注意:在示波器上确定好横坐标位置,U sb波形在示波器显示屏上必须上、下对称),一信号探头接TP11孔(11#双脉冲检测孔)调节A相的偏移电位器RW10(即调A相的偏移信号U p),使TP11孔的双脉冲的第一脉冲的前沿正好位于U sb波形由负到正过零点处,TP14孔(14#双脉冲检测孔)的第一个脉冲正好位于U sb由正到负过零点处。如图2所示。如果用示波器一信号探头观察A相触发器的P A孔,其波形如图2-b的实线所示,其X宽度=Y宽度,这就是α=90°的位置。

图2

2.仿照上述方法,调B相和C相触发器的偏移信号UP。

B相:调偏移电位器RW12,TP13孔的双脉冲(即13脉冲)的第一个脉冲的前沿正好要对于USc由负到正的过零点,PB孔的波形与PA点的波形相同。

C相:调偏移电位器RW14,TP15孔的双脉冲的第一个脉冲的前沿正好要对应于USa 由负到正的过零点,PC孔的波形与PA点的波形相同。

b、触发器移相控制特性的整定与±Uctm的确定。

在这一环节实验中,要记录号当UCT为多少伏时,对应的控制角α为多少度,以便后面的实验快而准确。步骤为:

①、先将信号给定电位器RP1和RP2逆时针旋转至零位,并将K2开关拨至“停止”位置,

即U CT=0V, α=90°,用示波器观察TP11孔双脉冲,并调整示波器使波形如图3所示。

(说明:第一个周期11脉冲)的第二个周期11号脉冲的发出正好经历了一个周期的时间,即360°,在示波器上可分为六大格,每大格为60°。

②、将K2开关拨至“运行”位置,K1开关拨至“正给定”位置,顺时针缓慢旋转RP1,使

U ct>0V,脉冲向前移动,若脉冲向前移动了一大格的1/2,则脉冲向前移动了30°,即α=60°,将所对应的U ct记录于表格1中。

图3 α=90°,调示波器脉冲显示的波形

表1 α角所对应的Uct值

Uct﹥0V,α﹤90°¦Uct﹤0V,α﹥90°

③、继续增大U ct,脉冲继续向前移动,再往前移动1/2大格,即脉冲移动了60°,即α=30°,

将α=30°所对应的U ct值记录于表1中,该值就作为+U ctm值,它所对应的α角就是α=30°。

min

④、若再增大U ct,致使双脉冲的的第一个脉冲刚消失,记录此时的U ct值和脉冲移动的角度。

⑤、将RP1又逆时针调至零位,U ct=0V,α又回到α=90°的位置。将开关K1拨至“负给定”

位置,使U ct<0V,脉冲向后移动,当α=150°时(即βmin=30°)。记录此时的值,它作为最小β角所对应的-U ctm的值。(注:±U ctm的值将作为运动控制系统中电流调节器的外限幅值)。

⑥、做出触发器移相特性如图4所示。

图4

⑦、脉冲移相范围的确定:

当分别给定±U ct致使脉冲刚消失,所有移动的α角度想家就是脉冲移相的范围,一般KJ004为170°左右。

⑧、将RP1和RP2逆时针旋转至零位,K2拨至“停止运行”位置,将电源开关拨至“断”

位置,实验完毕。

实验二三相零式整流电路的研究

一、实验目的

1、熟悉三相零式整流电路的组成、研究及其工作原理。

2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。

3、掌握晶体管整流电路的试验方法。

二、实验设备

1、YB4320A型双线示波器一台

2、万用表一块

3、模拟量挂箱一个

4、MPD-08试验台主回路

三、实验接线

1、先断开三相电源总开关QF1;

2、触发器单元接线维持实验一线路不变;

3、主回路接线按图5进行。

A B C N

图5 三相零式整流电路(虚线部分用导线接好)

四、实验步骤(注意:根据表1中α所对应的Uct 数据来调节Uct 大小) 1、先用导线把电感Ld1短接(即将8-9短接),续流二极管VDR 暂不接。 2、合三相电源总开关QF1,将模拟挂箱上的电源开关拨至“通”位置,将正组脉冲开关拨至“通”位置,将RP1电位器逆时针旋转至零位;将K2拨至“停止运行”位置,此时,Uct=0V ,?=90α。

3、按“启动”按钮,主回路接通,用示波器观察负载电阻两端波形,分析此时Uct=0V ,?=90α的波形与它的正确性,并将Ud 记录于表2中。

4、去掉短接Ld1的接线,此时应为R+L 负载,观察其波形,将Ud 记录于表2中。

5、将续流二极管VDR 并联于负载旁(注意:VDR 极性不能接错,否则会引起短路),观察其波形,将Ud 记录于表2中。

6、将K2拨至“运行”位置,缓慢调节正给定电位器RP1,根据表1中的参数,确定当?=60α时,所对应的Uct 值,仿照上述过程将?=60α时,将R 、R+L 、R+L+VDR 实验做完。

7、将α调至30°位置,重复上述实验。

8、将RP1逆时针调至零位,并将开关拨至“负给定”位置,调RP2使脉冲位于

?=120α位置,重复上述实验。

9、调RP2使脉冲位于?=150α位置,重复上述实验。

10、用万用表测量U2的数据,将理论计算值和实验值进行比较。

11、该实验完毕,将RP1、RP2逆时针调至零位,将电源开关拨至“断”位置,最后将三相电源总开关QF1拉开,停止供电。 表2:

电子技术基础实验指导书

《电子技术基础》实验指导书 电子技术课组编 信息与通信工程学院

实验一常用电子仪器的使用 一、实验类型-操作型 二、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 三、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1-1 模拟电子电路中常用电子仪器布局图 1、示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点: 1)、寻找扫描光迹 将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。②触发方式开关置“自动”。③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。) 2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较低时使用。 3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。 4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。 有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

中南大学基础力学实验答案

中南大学基础力学实验答案 基础力学实验绪论 1.基础力学实验一般分为材料的力学性质测定,实验静态应力测试实验,振动和动应力测试实验,综合性测试实验。 2.在力学实验测量中,对于载荷不对称或试件几何性质不对称时,为提高测量精度,常采用对称测量法。 3.若载荷与其对应的响应值是线性关系,则载荷增量与其对应的响应值增量也是线性关系。(正确) 4.对于任何测量实验,加载方案均可采用增量法。(错误) 5.载荷与变形的关系为ΔL=FL/EA 简支梁各阶固有频率的测量实验 1.简支梁横向振动固有频率若为f1=20HZ ,则f3=180HZ 。(f1:f3=1:9) 2.共振相位判别法判断共振时,激振信号与振动体振动位移信号的李萨如图是正椭圆。 3.共振相位判别法判断共振时,激振信号与振动体速度信号的李萨如图是斜线。 4.共振相位判别法判断共振时,激振信号与振动体加速度信号的李萨如图是正椭圆。 5.物体的固有频率只有一个。(错误) 6.物体的共振频率就是物体的固有频率。(错误) 压杆稳定测试实验 1.关于长度因数μ,正确说法是:其它条件相同时约束越强,μ越小 2.关于柔度λ,正确的说法是:其它条件相同时压杆越长,λ越大 3.关于压杆稳定性,正确的说法是:要让欧拉理论可用,应使压杆的柔度进尽可能大 4.在以下所列的仪器设备中,压杆稳定实验所需要的是:压杆稳定试验台 数字测力仪 计算机 5.两端球形铰支的压杆,其横截面如下图所示,该压杆失稳时,横截面对中性轴的惯性半径i=0.577mm (i=h/sqrt(12)=2/sqrt(12)=0.577mm) 6.已知某理想中心压杆的长度为l ,横截面的惯性矩为l ,长度因数为μ,材料的弹性模量为 为E ,则其欧拉临界力Fcr=22) (l EI μπ 7.已知某理想中心压杆的长度为l ,横截面的惯性半径为i ,长度因数为μ,则该压杆的柔度λ=μl/i 8.两端铰支的细长压杆,若在其中点加一个铰支座,以约束该截面的水平位移,则增加该约束后压杆的欧拉临界力是原来的4倍。 弯扭组合变形实验 1.在弯扭组合实验中,圆轴下表面测点处包含横截面 和径向截面的应力状态为

电力电子实验指导书(2013) 2

实验一三相桥式全控整流实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 3.了解集成触发器的调整方法及各点波形。 二.实验内容 1.三相桥式全控整流电路 2.观察整流下或模拟电路故障现象时的波形。 三.实验线路及原理 实验线路下图所示。主电路由三相全控变流电路桥给直流电机供电。可实现直流电动机的调压调速。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3. 电机导轨及测速发电机(或光电编码器) 4.二踪示波器 5.万用表 五.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察同步变压器电压和触发脉冲波形,观察移相控制过程并记录波形。其中一个探头接脉冲信号另一个接同步电压信号,两探头共15V地线。 U 注:将I组桥式触发脉冲的六个开关均拨到“接通”。GT和AP1已内部连线无需接线。将 blf 接地。 (5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使 =150o。 2.三相桥式全控整流电路供电直流电动机调压调速实验 (1)按上图接线,UVW电源线按实验板指定颜色接入保存相序正确,经指导教师检查后方可送电。送电前注意将给定电位器逆时针转到底,保证给定为0V或负给定。 (2)送电顺序合上电源总开关后先送控制电源,再按启动按扭送主回路电源。停机时前将给定电压降至零,按先停主电源后停控制电源顺序停电。 (3)调节Uct,移相控制整流电压,缓慢升速,用示波器观察记录转速为400、800、1200转/分时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值,计算相应的移相控制角数值。

电力电子技术实验

《电力电子技术》实验指导书 指导教师:王跃鹏李向丽 燕山大学电气工程学院 应用电子实验室 二零零四年七月

实验一 锯齿波同步移相触发电路实验 一、实验目的 1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2、掌握锯齿波同步触发电路的调试方法。 二、实验内容 1、锯齿波同步触发电路的调试。 2、锯齿波同步触发电路各点波形观察、分析。 三、实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大、锯齿波形成、同步移相等环节组成。 四、实验设备及仪器 1、MCL-Ⅲ型交流调速系统实验台 2、MCL-32组件 3、MCL-31组件 4、MCL-05组件 5、双踪示波器 五、实验方法 1、将MCL-05面板上左上角的同步电压接入MCL-32的U 、V 端,并将MCL-31的“g U ”和“地”端分别接入MCL-05的“ct U ”和“7”端,“触发电路选择”拨向“锯齿波”。 2、合上主电路电源开关,并打开MCL-05面板右下角的电源开关,用示波器观察各观测孔的电压波形,示波器的地线接于“7”端。 同时观测“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形,调节RP1,使3”的锯齿波刚出现平顶,记下各波形的幅值与宽度。 六、实验报告 整理,描绘实验中记录的各点波形。

实验二 单相桥式全控整流电路实验 一、实验目的 1、了解单相桥式全控整流电路的工作原理。 2、研究单相桥式全控整流电路在电阻负载、阻感负载时的工作特点。 二、实验内容 1、单相桥式全控整流电路供给电阻负载。 2、单相桥式全控整流电路供给阻感负载。 三、实验线路及原理 单相桥式全控整流电路的实验线路如图2-1所示,其工作原理可参见“《电力电子技术》(第四版,王兆安、黄俊编)”教材。 四、实验设备及仪器 1、MCL-Ⅲ型交流调速系统实验台 2、MCL-32组件 3、MCL-31组件 4、MCL-05组件 5、双踪示波器 五、实验方法 1、单相桥式全控整流电路供给电阻负载。 按照图2-1接线,接上电阻负载(采用MEL-03上的两只900Ω的电阻并联),并将负载电阻调至最大,短接平波电抗器。合上主电路电源,调节给定电压g u 的大小,观察不同α角时的整流电路的输出电压波形)(t f u d =,以及晶闸管的端电压波形)(t f u T =。 2、单相桥式全控整流电路供给阻感负载。 按照图2-1接线,接上阻感负载(电感选择700mH ,电阻采用MEL-03上的两只900Ω的电阻并联),并将负载电阻调至最大。合上主电路电源,调节给定电压g u 的大小,观察不同α角时的整流电路的输出电压波形)(t f u d =,以及晶闸管的端电压波形 )(t f u T =。 六、实验报告

电子技术实验指导书

实验一常用电子仪器的使用方法 一、实验目的 了解示波器、音频信号发生器、交流数字毫伏表、直流稳压电源、数字万用电表的使用方法。二实验学时 2 学时 三、实验仪器及实验设备 1、GOS-620 系列示波器 2、YDS996A函数信号发生器 3、数字交流毫伏表 4、直流稳压电源 5、数字万用电表 四、实验仪器简介 1、示波器 阴极射线示波器(简称示波器)是利用阴极射线示波管将电信号转换成肉眼能直接观察的随时间变化的图像的电子仪器。示波器通常由垂直系统、水平系统和示波管电路等部分组成。垂直系统将被测信号放大后送到示波管的垂直偏转板,使光点在垂直方向上随被测信号的幅度变化而移动;水平系统用作产生时基信号的锯齿波,经水平放大器放大后送至示波管水平偏转板,使光点沿水平方向匀速移动。这样就能在示波管上显示被测信号的波形。 2、YDS996A函数信号发生器通常也叫信号发生器。它通常是指频率从0.6Hz至1MHz的正弦波、方波、三角波、脉冲波、锯齿波,具有直流电平调节、占空比调节,其频率可以数字直接显示。适用于音频、机械、化工、电工、电子、医学、土木建筑等各个领域的科研单位、工厂、学校、实验室等。 3、交流数字毫伏表 该表适用于测量正弦波电压的有效值。它的电路结构一般包括放大器、衰减器(分压器)、检波器、指示器(表头)及电源等几个部分。该表的优点是输入阻抗高、量程广、频率范围宽、过载能力强等。该表可用来对无线电接收机、放大器和其它电子设备的电路进行测量。 4、直流稳压电源: 它是一种通用电源设备。它为各种电子设备提供所需要的稳定的直流电压或电流当电网电压、负载、环境等在一定范围内变化时,稳压电源输出的电压或电流维持相对稳定。这样可以使电子设备或电路的性能稳定不变。直流电源通常由变压、整流、滤波、调整控制四部分组成。有些电源还具有过压、过流等保护电路,以防止工作失常时损坏器件。 6、计频器 GFC-8010H是一台高输入灵敏度20mVrms,测量范围0.1Hz至120MHz的综合计频器,具备简洁、高性能、高分辨率和高稳定性的特点。 5、仪器与实验电路的相互关系及主要用途:

电力电子技术实验指导书最新版

电力电子技术实验指导书 第一章概述 一、电力电子技术实验内容与基本实验方法 电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。 电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。 电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。 电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。 波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。 由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。 二、实验挂箱介绍与使用方法 (一)MCL—07挂箱电力电子器件的特性及驱动电路 MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。 1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。 2、MOSFET驱动电路:内含高速光耦、比较器、推挽电路、MOSFET功率器件等。可以对高速光耦、推挽驱动电路、MOSFET的开启电压、导通电阻R ON、跨导g m、反相输出特性、转移特性、开关特性进行研究。 3、IGBT电路驱动:采用富士IGBT专用驱动芯片EXB841,线路典型,外扩保护电路。可对EXB841的驱动电路各点波形以及IGBT的开关特性进行研究。 本挂箱的特点: (1)线路典型,有助于对基本概念的理解,力求通过实验,使学生对自关断器件的特性有比较深刻的理解。

《电力电子技术》实验指导书

实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 三、实验线路及原理

单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用DK04滑线变阻器接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 图3-3单相半波可控整流电路 四、实验容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的容,弄清单结晶体管触发电路的工作原理。

(2)复习单相半波可控整流电路的有关容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系? (2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决? 七、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相围能否在30°~170°围移动? (2)单相半波可控整流电路接电阻性负载 触发电路调试正常后,按图3-3电路图接线。将滑线变阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U和电源电压U2,记录于下表中。

数字电子技术实验指导书

数字电子技术实验指导书 (韶关学院自动化专业用) 自动化系 2014年1月10日 实验室:信工405

数字电子技术实验必读本实验指导书是根据本科教学大纲安排的,共计14学时。第一个实验为基础性实验,第二和第七个实验为设计性实验,其余为综合性实验。本实验采取一人一组,实验以班级为单位统一安排。 1.学生在每次实验前应认真预习,用自己的语言简要的写明实验目的、实验原理,编写预习报告,了解实验内容、仪器性能、使用方法以及注意事项等,同时画好必要的记录表格,以备实验时作原始记录。教师要检查学生的预习情况,未预习者不得进行实验。 2.学生上实验课不得迟到,对迟到者,教师可酌情停止其实验。 3.非本次实验用的仪器设备,未经老师许可不得任意动用。 4.实验时应听从教师指导。实验线路应简洁合理,线路接好后应反复检查,确认无误时才接通电源。 5.数据记录 记录实验的原始数据,实验期间当场提交。拒绝抄袭。 6.实验结束时,不要立即拆线,应先对实验记录进行仔细查阅,看看有无遗漏和错误,再提请指导教师查阅同意,然后才能拆线。 7.实验结束后,须将导线、仪器设备等整理好,恢复原位,并将原始数据填入正式表格中,经指导教师签名后,才能离开实验室。

目录实验1 TTL基本逻辑门功能测试 实验2 组合逻辑电路的设计 实验3 译码器及其应用 实验4 数码管显示电路及应用 实验5 数据选择器及其应用 实验6 同步时序逻辑电路分析 实验7 计数器及其应用

实验1 TTL基本逻辑门功能测试 一、实验目的 1、熟悉数字电路试验箱各部分电路的基本功能和使用方法 2、熟悉TTL集成逻辑门电路实验芯片的外形和引脚排列 3、掌握实验芯片门电路的逻辑功能 二、实验设备及材料 数字逻辑电路实验箱,集成芯片74LS00(四2输入与非门)、74LS04(六反相器)、74LS08(四2输入与门)、74LS10(三3输入与非门)、74LS20(二4输入与非门)和导线若干。 三、实验原理 1、数字电路基本逻辑单元的工作原理 数字电路工作过程是数字信号,而数字信号是一种在时间和数量上不连续的信号。 (1)反映事物逻辑关系的变量称为逻辑变量,通常用“0”和“1”两个基本符号表示两个对立的离散状态,反映电路上的高电平和低电平,称为二值信息。(2)数字电路中的二极管有导通和截止两种对立工作状态。三极管有饱和、截止两种对立的工作状态。它们都工作在开、关状态,分别用“1”和“0”来表示导通和断开的情况。 (3)在数字电路中,以逻辑代数作为数学工具,采用逻辑分析和设计的方法来研究电路输入状态和输出状态之间的逻辑关系,而不必关心具体的大小。 2、TTL集成与非门电路的逻辑功能的测试 TTL集成与非门是数字电路中广泛使用的一种逻辑门。实验采用二4输入与非门74LS20芯片,其内部有2个互相独立的与非门,每个与非门有4个输入端和1个输出端。74LS20芯片引脚排列和逻辑符号如图2-1所示。

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

电力电子实验指导书完全版范本

电力电子实验指导 书完全版

电力电子技术实验指导书 目录 实验一单相半波可控整流电路实验........................... 错误!未定义书签。实验二三相桥式全控整流电路实验........................... 错误!未定义书签。实验三单相交流调压电路实验 .................................. 错误!未定义书签。实验四三相交流调压电路实验 .................................. 错误!未定义书签。实验装置及控制组件介绍 ............................................ 错误!未定义书签。

实验一单相半波可控整流电路实验 一、实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用; 2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全 面分析; 3.了解续流二极管的作用; 二、实验线路及原理 熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极, 即构成如图1-1所示的实验线路。 图1-1 单结晶体管触发的单相半波可控整流电路 三、实验内容 1.单结晶体管触发电路的调试; 2.单结晶体管触发电路各点电压波形的观察; 3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定; 4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;

四、实验设备 1.电力电子实验台 2.RTDL09实验箱 3.RTDL08实验箱 4.RTDL11实验箱 5.RTDJ37实验箱 6.示波器; 7.万用表; 五、预习要求 1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱; 2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻 感性负载时,电路各部分的电压和电流波形; 3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。 六、思考题 1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何 解决? 七、实验方法 1.单相半波可控整流电路接纯阻性负载 调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT波形,并测定直流输出电压Ud 和电源电压U2,记录于下表1-1中。

高考力学实验运动学试验

力学实验专题复习 实验1、研究匀变速直线运动 1、在做“研究匀变速直线运动”的实验时,某同学得到一条用打点计时器打下的纸带,如图所示,并在其上取了A 、B 、C 、D 、E 、F 、G 等7个计数点,每相邻两个计数点间还有4个点图中没有画出.打点计时器接频率为f=50Hz 的交流电源. (1)每两个相邻的计数点的时间间隔为 s ,打点计时器使用的是 (选填“交流”或“直流”)电源. (2)打下E 点时纸带的速度v E = (用题中给定字母表示); (3)若测得d 6=65.00cm ,d 3=19.00cm ,物体的加速度a= m/s 2; (4)如果当时电网中交变电流的频率f >50Hz ,但当时做实验的同学并不知道,那么测得的加速度值比真实值 (选填“偏大”或“偏小”). 【参考答案】(1)0.1,交流; (2) 53 10 d d - f ; (3)3.0; (4)偏小. 【名师解析】(1)使用打点计时器来分析物体运动情况的实验中,打点计时器使用的是交流电源,若电源频率为50HZ ,则打点计时器打相邻两点的时间间隔是 0.02s . 每相邻两个计数点间还有4个点,图中没有画出,所以相邻的计数点之间的时间间隔为T=5×1/f=0.1s . (2)利用匀变速直线运动的推论得:v E = 532d d T -=53 10 d d -f 。 (3)根据匀变速直线运动的推论公式△x=aT 2可得a=63329d d d T --=2 0.650.190.1990.1 --? m/s 2=3.0m/s 2 ; (4)如果在某次实验中,交流电的频率f >50Hz ,那么实际打点周期变小, 根据运动学公式△x=at 2 得:真实的加速度值就会偏大,所以测量的加速度值与真实的加速度值相比是偏小. 2、如图是某同学在做匀变速直线运动实验中获得的一条纸带 (1)已知打点计时器电源频率为50 Hz ,则纸带上打相邻两点的时间间隔为________; (2)选取ABCD 纸带上四个点,从图中读出A 、B 两点间距s =________ cm ;C 点对应的速度是________ m/s ,匀变速直线运动的加速度为________ m/s 2 (计算结果保留两位有效数字)

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术实验指导书武夷学院机电工程学院

目录 第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1) 1-1 控制屏介绍及操作说明 (1) 1-2 DJK01电源控制屏 (1) 1-3 各挂件功能介绍 (4) 第二章电力电子及电机控制实验的基本要求和安全操作说明 (80) 1-1 实验的特点和要求 (81) 1-2 实验前的准备 (82) 1-3 实验实施 (83) 1-4 实验总结 (85) 1-5 实验安全操作规程 (87) 第三章电力电子技术实验 (89) 实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 (89) 实验二锯齿波同步移相触发电路实验 (95) 实验三单相桥式半控整流电路实验 (100) 实验四直流斩波电路原理实验 (108) 实验五单相交流调压电路实验 (116) 实验六三相半波可控整流电路实验 (124) 1

第一章DJDK-1 型电力电子技术及电机控制实验装置简介 1-1 控制屏介绍及操作说明 一、特点 (1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。 (2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW 左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备, 1

15电力电子实验指导书

《电力电子技术》 实 验 指 导 书

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 二、实验所需挂件及附件 三、实验线路及原理 锯齿波同步移相触发电路的原理图参见挂件说明。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见挂件说明和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为

220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽 度,并比较“3”点电压U 3和“6”点电压U 6 的对应关系。 (2)调节触发脉冲的移相范围 将控制电压U ct 调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压 信号和“6”点U 6的波形,调节偏移电压U b (即调RP3电位器),使α=170°,其波 形如图2-1所示。 图2-1锯齿波同步移相触发电路 (3)调节U ct (即电位器RP2)使α=60°,观察并记录U 1 ~U 6 及输出“G、K” 脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。 (4)

电力电子技术实验指导书

景德镇陶瓷学院 机械电子工程学院 电子电子技术 实验指导书 专业:自动化 实验室:A1栋408 二零一五年六月制 实验一单结晶体管触发电路及单相半波可控整流电 路实验 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。

二.实验内容 1.单结晶体管触发电路的调试。 2.单结晶体管触发电路各点波形的观察。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三.实验线路及原理 将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门阴极,即可构成如图4-1所示的实验线路。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ) 3.MCL—33(A)组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件 5.MEL—03三相可调电阻器或自配滑线变阻器 6.二踪示波器 7.万用表 五.注意事项 1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 2.为保护整流元件不受损坏,需注意实验步骤:

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

《电子技术实验1》实验指导书

实验一仪器使用 一、实验目的 1.明确函数信号发生器、直流稳压稳流电源和交流电压表的用途。 2.明确上述仪器面板上各旋钮的作用,学会正确的使用方法。 3.学习用示波器观察交流信号波形和测量电压、周期的方法。 二、实验仪器 8112C函数信号发生器一台 DF1731SC2A可调式直流稳压稳流电源一台 DF2170B交流电压表一台 双踪示波器一台 三、实验内容 1.调节8112C函数信号发生器输出1KHZ、100mV的正弦波信号,将操

2.将信号发生器输出的信号接入交流电压表测量,配合调节函数信号发生器的“MAPLITUDE POWER”旋钮,使其输出为100mV。 3.将上述信号接入双踪示波器测量其信号电压的峰峰值和周期值,并将操作方法填入下表。

四、实验总结 1、整理实验记录、分析实验结果及存在问题等。 五、预习要求 1.对照附录的示意图和说明,熟悉仪器各旋钮的作用。 2.写出下列预习思考题答案: (1)当用示波器进行定量测量时,时基扫描微调旋钮和垂直微调旋钮应处在什么位置?

(2)某一正弦波,其峰峰值在示波器屏幕上占垂直刻度为5格,一个周期占水平刻度为2格,垂直灵敏度选择旋钮置0.2V/div档,时基扫速选择旋钮置0.1mS/div档,探头衰减用×1,问被测信号的有效值和频率为多少?如何用器其他仪器进行验证?

附录一:8112C函数信号发生器 1.用途 (1)输出基本信号为正弦波、方波、三角波、脉冲波、锯齿波。输出幅值从5mv~20v,频率范围从0.1HZ~2MHZ。 (2)作为频率计数器使用,测频范围从10HZ~50MHZ,最大允许输入为30Vrms。 2.面板说明

电力电子技术及电机控制实验指导书 第一章

第三章电力电子技术实验 本章节介绍电力电子技术基础的实验内容,其中包括单相、三相整流及有源逆变电路,直流斩波电路原理,单相、三相交流调压电路,单相并联逆变电路,晶闸管(SCR)、门极可关断晶闸管(GTO)、功率三极管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅双极性晶体管(IGBT)等新器件的特性及驱动与保护电路实验。 实验一单结晶体管触发电路实验 一、实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的调试步骤和方法。 二、实验所需挂件及附件 单结晶体管触发电路的工作原理已在1-3节中作过介绍。 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 五、预习要求 阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系? (2)单结晶体管触发电路的移相范围能否达到180°? 七、实验方法 (1)单结晶体管触发电路的观测 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相? (2)单结晶体管触发电路各点波形的记录

电力电子技术实验指导书

电力电子技术实验指导书郑州轻工业学院 电气工程实验中心 2006年3月

目录 BZT—Ⅲ B型变流、交直流调速实验装置简介及实验操作注意事项 (2) 实验一单相半控桥可控整流电路的研究 (5) 实验二三相桥式全控整流电路的研究 (8) 实验三单相交流调压电路的研究 (13) 实验四 IGBT直流斩波电路的研究 (17) 实验五 DC/AC单相半桥SPWM逆变电路性能研究 (21)

BZT—Ⅲ B型变流、交直流调速实验装置简介及 实验操作注意事项 一、概述 BZT—Ⅲ B型变流、交直流调速实验装置是华中师范大学机电厂研制生产的教学实验设备,该装置功能齐全,结构可靠,采用模块化设计,移动组合方便,面板布局直观。测试点用专门的接线端子引至面板,便于接线调试,测量及显示仪表全部采用三位半数显表。该装置供电力电子变流技术实验和交直流调速实验,也可供学生课程设计、毕业设计和有关科研使用。 二、总体结构 本装置外形尺寸为1550×800×780。实验桌上带有滑轮导轨的三个抽屉,分别装有实验所需的交直流电源、变压器、开关、熔断器及各种保护电路。各路交直流电源的输出端子都引到控制面板接线柱及台阶插座上,控制开关及可调旋纽也全部安装在面板上,并画有各个独立环节的电路原理图。实验电路全部画在各个模块面板上,接线柱、电位器也安装在电路相应的位置上,测试孔位置清晰、直观,通过模块和电源等共同构成相应的实验系统。 三、主要技术指标 (1)输入电源:三相四线 380V 50Hz (2)装置容量:10KVA (3)实验电源: 提供(a)三项四线制 380V交流电源。 (b)直流可调电源0―250V、8A。 (c)直流可调电源0―230V、8A。 (d)单相220V工作电源。 (e)直流稳压电源5V,1A;±15V,1A;30V,500mA (4)绝缘电阻:>5MΩ (5)漏电保护:漏电动作电流≥30mΑ 四、面板操作功能及操作方法 (1)面板操作功能说明: 1、漏电保护开关。 2、总电源开。 3、总电源关。 4、单相调压手柄。 5、三相电源(主电路) 开。6、三相电源(主电路)关。7、三相电路指示灯。8、三相电路输出指示灯。9、交流0―300V数字显示表。10、直流0―300V数字显示表。11、工作220V电源插座。12、交流380V/220V输出接线柱。13、急停开关。14、交流0―220V输出接线柱。15、直流0―220V输出接线柱。16、交直流可调电压输出开关。17、保险座(保险丝为10A)。18、

相关主题
文本预览
相关文档 最新文档