当前位置:文档之家› 3.5 标准正交向量组

3.5 标准正交向量组

a1,a2,a3是规范正交向量组,

竭诚为您提供优质文档/双击可除a1,a2,a3是规范正交向量组, 篇一:第三讲向量组 第三讲向量组 --------------------------------------------------- 向量作为工具可以描述空间中的点、矩阵中的行或列、线性方程组中的方程等等。研究向量的线性运算[加法与数乘]、向量组线性相关性、向量组的秩[矩阵秩]与最大无关组、等价向量组等概念可以解决线性方程组的理论。 向量组是线性代数的重难点之一,概念多,内容抽象,推理逻辑性强,描述要求准确,与矩阵、方程组相互交织,可以相互转换。例如,向量组秩、最大无关组是线性方程组解的判定、结构定理的理论基础;向量组的秩和相应矩阵秩一致,是向量组与矩阵结合点,反映了向量组和矩阵的本质。 向量组主要分三大部分: ■线性表示与线性相关性:向量的线性组合和线性表示;向量组的线性表示与等价向量组;向量组的线性相关性; ■向量组的秩:向量组的最大无关组与秩的概念、性质

及求法,向量组秩与矩阵秩关系;秩与线性相关性的关系; ■向量空间:向量空间及其基、维数;向量在基下的坐标;两基间的过渡矩阵;基的规范正交化: 正交阵及其性质。 教材:第四,第五章第1节。 ----------------------------------------------------------------------------------------- 一、主要内容 1、向量及其线性运算 ----概念 ------------------------------------------ (1)n个数组成的有序数组称为n维向量;写成一行的称为行向量,写成一列的称为列向量;若干个同维行(列)向量的集合称为向量组; (2)设有向量a(a1,a2,,an),b(b1,b2,,bn),实数kR,则下列运算 ka(ka1,ka2,,kan),ab(a1b1,a2b2,,anbn), 称为向量的线性运算; (3)设有向量组a1,a2,,an和向量b,若存在常数 k1,k2,,kn,使得有 bk1a1k2a2knan,

标准正交基

标准正交基 一、标准正交基的定义及相关概念 1、欧几里得空间:设V 实数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记作(βα,),它具有以下性质: (1)(βα,)=(αβ,); (2)(k βα,)=k(βα,); (3)(γβα,+)=(γα,)+(γβ,); (4)(αα,)>=0,当且仅当α=0时,(αα,)=0; 这里,γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间,简称欧氏空间。 2、正交向量组:欧式空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。 3、标准正交基:在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。 二、标准正交基的相关性质 1、正交向量组的性质: (1)正交向量组是线性无关的。 证明:设m ααα,...,,21是一正交向量组,m k k k ,...,,21是m 个实数,且有: 0...2211=+++m m k k k ααα 用i α与等式两边作内积,得:0),(=i i i k αα 由0≠i α,有0),(>i i αα,从而:0=i k ),...,2,1(m i = 命题得证。

(2)单个非零向量组成的向量组是正交向量组。 (3)在n 维欧氏空间中,两两正交的非零向量不超过n 个。(如:在平面上找不到三个两两垂直的非零向量,在空间中找不到四个两两垂直的非零向量。) 2、标准正交基的性质: (1)若n εεε,...,21是一组标准正交基,则:? ??≠==.,0; ,1),(j i j i j i εε 证明:j i =时,由单位向量定义:1),(=j i εε,1),(=∴j i εε j i ≠时,由正交向量定义:0),(=j i εε 命题得证。 (2)对一组正交基单位化就得到一组标准正交基。 例如:????? ???? ? ?-=????????? ??=????????? ??-=????????? ??=212100,212100,002121,0021214321e e e e 由于?????====≠=).4,3,2,1,;(,1),(),4,3,2,1,;(,0),(j i j i e e j i j i e e j i j i 所以4321,,,e e e e 是4R 的一组标准正交基。 (3)n 维欧氏空间中,一组基为标准正交基的充要条件是这组基的度量矩阵为单位矩阵。 因为度量矩阵是正定的,根据第五章关于正定二次型的结果,正定矩阵等同于单位矩阵,这说明在n 维欧氏空间中存在一组基,它的度量矩阵是单位矩阵,由此可以断言,在n 维欧氏空间中,标准正交基是存在的。

标准正交基

§2 标准正交基 一、正交向量组 1.定义5 欧氏空间V 的一组非零的向量, 如果它们两两正交,就称为一个 正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组. 2.正交向量组是线性无关的. 3.上述结果说明,在n 维欧氏空间中,两两正交的非零向量不能超过n 个. 二、标准正交基 1.定义6 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基; 由单位向量组成的正交基称为标准正交基组. 对一组正交基进行单位化就得到一组标准正交基. 2. 设n εεε,,,21 是一组标准正交基,由定义,有 ? ??≠==.,0; ,1),(j i j i j i 当当εε (1) 显然,(1)式完全刻画了标准正交基的性质. 换句话说,一组基为标准正交基的 充要条件是:它的度量矩阵为单位矩阵. 3.因为度量矩阵是正定矩阵的,根据第五章关于正定二次型的结果,正定矩阵 合同于单位矩阵.这说明在n 维欧氏空间中存在一组基,它的度量矩阵是单位矩阵. 由此断言,在n 维欧氏空间中,标准正交基是存在的. 4.在标准正交基下,向量的坐标可以通过内积简单地表示出来,即 n n εαεεαεεαεα),(),(),(2211+++= . (2) 在标准正交基下,内积有特别简单的表达式.设 .2211n n x x x εεεα+++= .2211n n y y y εεεβ+++=

那么 .),(2211Y X y x y x y x n n '=+++= βα (3) 这个表达式正是几何中向量的内积在直角坐标系中坐标表达式的推广. 应该指出,内积的表达式(3),对于任一组标准正交基都是一样的. 这说明了,所有的 标准正交基,在欧氏空间中有相同的地位. 三、标准正交基的存在性及其正交化方法 1.把一组线性无关的向量变成一单位正交向量组的方法在一些书和文献中 称为施密特(Schimidt )正交化过程 设 12,, ,m ααα 是一组线性无关的向量 (1) 正交化 11βα= 2122111(,) (,) αββαβββ=- 313233121122(,)(,) (,)(,) αβαββαββββββ=-- 43414244123112233(,)(,)(,) (,)(,)(,) αβαβαββαβββββββββ=- -- 由此推出 1 1 (,) (,) k k i k k i i i i αββαβββ-==-∑ (2) 单位化 例1 1234(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,1,1,1)αααα===-=-- 变成单位正交组 2.定理1 n 维欧氏空间中任一个正交向量组都能扩充成一组标准正交基. 应该注意,定理的证明实际上也就给出了一个具体的扩充正交向量组的方法.

第一讲正交向量组及施密特正交法

第一讲 Ⅰ 授课题目: §5.1 预备知识:向量的内积 Ⅱ 教学目的与要求: 1.了解向量的内积及正交向量组的概念; 1.了解把线性无关的向量组正交规范化的施密特(Smidt)方法; 2.了解正交矩阵概念及性质。 Ⅲ 教学重点与难点: 重点:正交向量组及正交矩阵 难点:施密特正交化方法 Ⅳ 讲授内容: 一、向量的内积 前面曾介绍过向量的线性运算,但在许多实际问题中,还需要考虑向量的长度等方面的度量性质.在此,作为解析几何中向量的数量积的推广,引进向量的内积运算. 定义1 设有n 维向量 ??????? ??=n x x x x 21,?????? ? ??=n y y y y 21, 令 []n x y x y x y x +++= 2211,, []y x ,称为向量x 与y 的内积. 内积是向量的一种运算,用矩阵记号表示,当x 与y 都是列向量时,有 []y x y x T =,. 内积具有下列性质(其中z y x ,,为n 维向量,λ为实数): ① [][]x y y x ,,=; ② [][]y x y x ,,λλ=; ③ [][][]z x y x z y x ,,,+=+.

例1 设有两个四维向量??????? ??-=5121α,???? ?? ? ??--=56 03β.求[]βα,及[]αα,. 解 []3425603,-=--+-=βα []3125141,=+++=αα n 维向量的内积是数量积的一种推广,但n 维向量没有3维向量那样直观的长度和夹 角的概念,因此只能按数量积的直角坐标计算公式来推广.并且反过来,利用内积来定义 n 维向量的长度和夹角: 定义2 令x = []2 2221,n x x x x x ++= ,则x 称为n 维向量x 的长度(或范数). 向量的长度具有下列性质: ① 非负性 当0≠x 时,0>x ,当0=x 时,0=x ; ② 齐次性 x x λλ=; ③ 三角不等式 y x y x +≤+. 向量的内积满足施瓦兹不等式 [][][]y y x x y x ,,,2 ?≤ 由此可得 [] 1 ,≤y x y x (当0y ≠x 时) 于是有下面的定义: 当0≠x ,0≠y 时, [] y ,arccos x y x =θ 称为n 维向量的夹角. 二、正交向量组 当[]0,=y x 时,称向量x 与y 正交.显然,若0=x ,则x 与任意向量都正交. 两两正交的非零向量组称为正交向量组. 定理 1 若n 维向量r ααα ,,21是一组两两正交的非零向量组,则r ααα ,,21线性无关. 证明 设有r λλλ ,,21使 02211=+++r r αλαλαλ ,

相关主题
文本预览
相关文档 最新文档