当前位置:文档之家› 风电机组叶片规程

风电机组叶片规程

风电机组叶片规程
风电机组叶片规程

风电机组叶片规程

●简介

●叶片是运用空气动力学最新研究成果设计的复杂曲面体,使用模具一次真空

吸注成型。其成品外形图如下:

●叶片主材为玻璃纤维增强环氧树脂或者玻璃纤维增强聚酯。

●叶片结构包括外壳、主梁帽及夹层结构的腹板。主梁帽、腹板、外壳都采

用玻璃钢,外壳内无主梁帽支撑的部位用芯材填充,夹层采用Balsa(轻木)、PVC泡沫结构。

●叶片与变桨轴承用T型螺栓连接,T型螺栓是由螺栓和交叉螺母构成的。共54

支T型螺栓均匀分布在直径1800mm叶根圆周上,螺栓规格为M30 x 410mm;在叶根处,设有0°标记,与叶片用户的要求一致;正、负方向分别用“﹢”和“﹣”

标注。

●避雷系统由铝制的叶尖接闪器和附加的位于风轮半径19.5m处的接闪器组

成。接闪器间用70mm2铜质导线连接,并引到叶片根部,最后与轮毂上接地线连接。连接铜导线和铝制件部分的电缆采用镀层,以防止铜铝间的电化学腐蚀。叶根配有雷电峰值记录卡,安装盒已固定在叶根隔板外侧约200mm处的电缆线上,雷电峰值记录卡片随叶片一起发运,为防丢失,仅当叶片吊装时

才放入安装盒,扣上安装盒即可。

●在叶片内部叶根处设置隔板,隔板设有通孔,便于维修人员进出,隔板是采

用玻璃钢泡沫夹层结构,能承载250公斤重量;在叶片内部还设置有平衡室,平衡室由玻璃钢夹层隔板组成,固定在腹板与前缘之间,当叶片组间不平衡时,通过增减配重来平衡叶片组;为了避免叶片内部的冷凝水积聚,叶尖处有一个直径至少为8mm的排水孔;在叶片根部外表面与轮毂罩连接处安装一个挡雨环,防止雨水进入轮毂。

●叶片的检查与维护

●叶片的首次维护检查应在风机动态调试完毕且正常运行7——10天后进行;

以后每6个月进行一次。

●维护和检修工作必须由明阳风电公司工作人员或经过明阳风电公司培训并

得到认可的人员完成。

●在进行维护和检修工作时,必须携带《叶片检修表》。并按照《叶片检修表》

上的每项内容严格进行检查与记录。

●在进行维护和检修前必须:

●◆认真阅读《MY1.5S安全手册》所有操作必须严格遵守《MY1.5s安全手册》;

●◆如果环境温度低于-20℃,不得进行维护和检修工作。雨雪天气不得进行

维修工作;

●如果超出下列任何限定值,必须立即停止工作,不得进行维护和检修工作:●◆叶片位于工作位置和顺桨位置之间的任何位置

●5-分钟平均值(平均风速) 10m/s

●5-秒平均值 (阵风速度) 19m/s

●◆叶片位于顺桨位置(当叶轮锁定装置启动时不允许变桨)

●5-分钟平均值(平均风速) 18m/s

●5-秒平均值 (阵风速度) 27m/s

●重要提示:

●◆对叶片进行任何维护和检修,都必须使风力发电机处于停机状态,各制动

器处于制动状态并将叶轮锁锁定。

●◆如特殊情况,需在风力发电机处于工作状态或风轮处于转动状态下进行

维护和检修时(如检查噪音、振动等状态),必须确保有人守在紧急开关旁,可随时按下开关,使系统刹车。

●◆当修复叶片表面时,必须穿戴安全面具和手套。这一点特别重要,因为

修复材料有刺激性并对人体有伤害。

●外观检查

●检查叶片表面是否有裂纹、损害和脱胶现象。在最大弦长位置附近处的后缘

应该格外的注意。

●叶片清洁

●通常情况下,用变桨来调节功率的风力发电机不是特别脏时,不推荐清洁叶

片;污垢经常周期性发生在叶片边缘,在前缘处或多或少会有一些污物,但是,在雨季期间,它将再一次消失。

●也取决于风机局部的环境,过多的污物可以影响叶片的性能和噪音,在这种

情况下叶片的清洁是很必要的。

●裂纹检查

●如果发现叶片有裂纹或裂缝,必须将所有问题做好记录:机号、叶片号、叶

片长度、裂纹长度、方向及其所在的位置等。

●深度裂缝的检查可通过敲击叶片表面,从其发出的声响可判断;表面出现的

裂纹也必须记录并报告,如果可能,须在裂纹末端处用防水记号笔作标记写下日期并且进行拍照记录。在下一次检查中必须检查此裂纹,如果裂纹未发展,就无须更深一步检查。

●如果在叶片根部或叶片承载部分找到裂纹或裂缝,风机必须停机。如果上述

两处的外壳位置已裂开,风机必须立即停机。关于裂纹或其他损坏信息请及时告知明阳风电公司。

●裂纹修补

●裂纹发展至增强玻璃纤维处,必须修补。

●如果是叶片外壳受损,及时通知生产厂家进行修补或联系明阳风电公司执行

修补。

●如果环境温度在10℃或以上时,叶片修补可在现场进行。温度降低,修补工

作延迟直到温度回升到10℃以上。如果你认为是安全的,可以让没有修补的风机运行一段时间。当叶片修补完,风机先不要运行,等胶完全固化。

●因为现场温度太低而不能修补时且现场无条件(指短期内温度不回升),叶

片应吊下运往条件允许的室内修补或运回生产厂家修补。

●防腐检查

●检查叶片表面是否有腐蚀的现象:典型的腐蚀表象为叶片前缘表面上的小

坑,有时会彻底穿透涂层。

●检查叶片表面是否有气泡:当叶片涂层与底层之间没有完全结合时可以产生

气泡。由于气泡内积聚湿气,在温度低于0oC时会产生膨胀(冰的膨胀)随即产生裂缝,所以这种缺陷应该及时进行修复。

●叶根处的螺栓及螺母垫圈具有足够的防腐保护层。由于在安装过程中表面会

有轻微损伤而产生轻微腐蚀,可及时防腐,严重腐蚀应该报告到服务部门。

●叶轮不平衡

●如果功率异常并随叶片旋转呈周期变化,但与风速无关,则可能是由于叶轮

产生严重不平衡所致。做好记录(机号、叶片号及大致改变的功率),并及时与明阳风电公司联系。

●如果功率变化是不规则的且部分与风速有关,则可能是叶片角度调整错误。

测量叶片角度,并重新调整。

●叶片噪音

●叶片的异常噪音是由于叶片表面缺陷(坑、洞)造成,主要发生在叶片的边缘

或叶尖处;叶片的异常噪音很大时,可能是由于雷击损坏,被雷击损坏的叶片外壳处可能会裂开,此时,风力发电机必须停机。一般情况下上述缺陷可用玻璃纤维布修补。

●雷击损坏的叶片

●较大的雷击闪电,在叶尖附件防雷接闪器处可能产生小面积的损伤(常见于

接闪器周围形成约10毫米大小的黑点):

●叶片表面有火烧黑的痕迹,远距离看像油脂或油污点;

●叶尖或边缘裂开;

●在易断裂的叶片边缘有纵向裂纹;

●在叶片表面有纵向裂纹;

●在外壳和梁之间裂开;

●在外壳中间裂开;

●在叶片缓慢旋转时,叶片发出卡嗒声。

●以上问题通常可以从地面或机舱上用望远镜观察。确有疑问的情况下,应使

用升降机单独检查叶片,决定是否要拆下叶片,如确定必须拆下维修,须得到明阳风电公司认可方案后,方可进行。一个修补过的叶片,必须与同组叶片做平衡调整。

●T型螺栓维护检查

●在叶根外侧应该检查柱型螺母上部的层压物质是否有裂纹。应该检查螺母有

没有受潮。在叶片内侧,柱型螺母通过一层PU密封剂进行保护,有必要进行外观检查(见下图)。

●排水孔检查

●排水孔可以清洁,并且可以使用直径大约为5毫米的钻头在原处重新开孔。

●根部螺栓连接示意图

1.螺母 M30

2.叶片螺栓 M30×410mm

3.叶片

4.柱形螺母外径:65 mm×M30mm

●叶片螺栓的维护和检查

●2.2.2.1 首次检查(应在风机动态调试完毕且正常运行7——10天后,

强制停机维护检查!)

●叶片根部与变桨轴承内圈用T型螺栓连接,有54个等距的M30x410mm螺栓:● 1. 在被检查的螺母上做一个防水的位置标记 (每隔一个螺母检查1,3,5,…

或者2,4,6,…)

●2、使用700N.m力矩交叉把紧螺母

●3、使用900N.m力矩交叉把紧螺母

●4、使用1098N.m力矩交叉把紧螺母

●5、标出螺母的终端位置,完毕作防腐。

●如果螺母的终点位置距松开前的位置相差20度以内,说明预紧力仍在限度

以内,如果一个或者多个螺母超过20度,那么所有的螺母必须松开并重新把紧。

●叶片连接螺栓的松动将酿成危险,要及时紧固螺栓,如果有多个螺栓出现松

动,或者反复出现,请立即与明阳风电公司联系。

●2.2.2.2 叶片螺栓的检查报告单

● 2.2.2.3 叶片螺栓力矩每6个月定检

● 1.在被检的每一个螺母上做标记(每隔一个螺母检查,

●应与上一次不同,如果上次是按照奇数号螺栓检查的,

●则此次对偶数号螺栓检查);

● 2. 使用700N.m力矩交叉紧固螺母;

● 3. 使用900N.m力矩交叉紧固螺母;

● 4. 使用1098N.m力矩交叉紧固螺母;

● 5. 标出螺母的终端位置,完毕作防腐。

●如果不照此执行,对可能发生的损坏,明阳风电公司将不提供担保。

●叶片的安装及拆卸

● 2.2.3.1叶片起吊方法

●叶片是依据空气动力学特性且采用壳体式结构设计而成的,这种结构要求在

运输和吊装叶片时需要特别的注意。在进行捆绑或吊装叶片时,每一个叶片都需要使用两条尼龙带:

●方案1 推荐采用吊梁的方式进行吊装,吊梁两端吊环处左右各悬挂吊带,

下端捆绑于叶片重心左右各3米处,且需使用前后缘保护罩,保护罩需要至少为1m长、50cm宽,6mm厚,与相应剖面吻合,保护罩内还须垫橡胶等软的填充材料,避免局部的损害,前缘应该朝下(见附图1)。当使用吊带时,带宽至少为200mm。当叶片提升到轮毂高度时,至少要使用两个操纵缆(非金属)使得叶片离开地面时也能够很好地控制其位置。

●方案2一条吊带位于叶片长度方向上大约为1/4L处,一条吊带位于沿叶片

长度方向上大约为3/4L处,且需使用前后缘保护罩,保护罩至少需要1m长,50cm宽,6mm厚,与相应剖面吻合,保护罩内还须垫橡胶等软的填充材料,避免局部的损害,前缘应该朝下(见附图2)。当使用吊带时,带宽至少为

200mm。当叶片提升到轮毂高度时,至少要使用两个操纵缆(非金属)使得叶片离开地面时也能够很好地控制其位置。

对叶根处螺栓进行连接时要避免对螺栓的损害;

●重心标记处不能用运输支架;

●在吊装叶片时必须使用提供的后缘遮盖物,防止叶片后缘损坏;

●决不能在吊车吊着叶片时,使叶片绕纵轴转动;

●按照上述方法将叶片安装在变桨轴承上。

● 2.2.3.2 叶片的安装及修复

●叶片安装示意图

●※叶片的安装和0°标记

●在叶根处,设有0°标记,安装时与变桨轴承上的0°相对应。0°标记是根

据R=28.0m处的参考剖面定位;正、负方向分别有“+”和“-”标注。

●叶片与变桨轴承的连结是采用54个T型螺栓,规格M30×410mm。

● 1. 检查螺纹是否完好;

● 2. 均匀涂抹MoS2,润滑螺纹表面;

● 3. 首先使用700N.m力矩交叉拧紧螺母;

● 4. 其次使用900N.m力矩交叉拧紧螺母;

● 5. 最终使用1098N.m力矩交叉拧紧螺母;

● 6. 标出螺母的终端位置,完毕作防腐。

●附:叶片的修复工艺

●叶片在运输及使用的过程中可能的损伤包括:

●表面损伤(如擦伤、划槽、刻痕、刮痕等)

●结构损伤(如裂纹、洞、分层、脱胶、化学腐蚀等)

●※对于表面损伤的修复方法:

●1、对需修复的表面先用丙酮进行清洗;

●2、用80目砂纸打磨破损区域的涂漆层,再用丙酮清洗,然后用干布擦拭干

净;

●3、刮批腻子(见材料表),待腻子固化后,再打磨平整;

●4、最后涂面漆(见材料表)。

●※对于结构损伤的修复方法:

●1、先清理损伤表面,再用安装有36#(中粗)纸砂盘的角磨机打磨损伤区

域,将损伤区域的玻璃钢打磨成阶梯形,每层扩大20mm,打磨完成后用丙酮清洗,再按同等层数修补。

●2、根据叶片结构层破损情况,用环氧树脂(SZ1002)、加固化剂(SZ2003),

糊制与破损结构层层数相同的玻璃纤维布(XW1001),固化后打磨平整,再用腻子刮批,砂磨光滑;

●3、最后涂面漆。

●2、3工具与备料

●维护工具清单

2.3.2 修复材料及工具

风电在线监测系统介绍

风电在线监测系统介绍 来源:亚泰光电伴随着风能的快速发展和风电机组的广泛安装使用,风电机组的运行故障问题日益突出。风电机组的安全、稳定、无故障运转不仅可以提供稳定的电力供应,也可以大幅降低风电的成本,是整个产业链健康发展的关键环节。 据资料显示,20年间欧美风电行业中机组容量为1MW的风力发电机组,其总投资的65%~90%都消耗在运行、维护上,非计划停机又用去了其中的75%。国际工程保险协会在年报中介绍,支付给丹麦风电业的理赔费用的40%是由于机械故障,主要是齿轮箱和轴承的故障。而中国的风电设备的维护损耗更是惊人,甚至有一大批的风力发电机的正常累计工作时间都不超过l000小时。 由于风电机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,使得风电机组故障频发。近年来,国内外风力发电机故障率最高的部件当数齿轮箱。我国的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎达到100%。国外在对风力发电机各主要部件的故障统计中,齿轮箱的故障率也是居高不下,据西班牙纳瓦拉水电能源集团公司最近几年对风电机组主要部件的故障统计:由齿轮箱、发电机、叶片引起的故障是风电机组故障的主要原因,其中齿轮箱的故障发生率在逐年增高,故障百分比已超过60%,是机组中故障发生率最高的部件。我国已建成的风电场的风力机有相当部分是上世纪90年代中期由国外购进的,这些机组寿命为15、20年,保修期一般为2年,随着机组运行对间的加长,目前这些机组陆续出现了故障,(包括风轮叶片、电机、增速齿轮,及控制系统等等)导致机组停止运行,严重影响发电量,造成经济损失。而且,风电机组的费用非常高昂,在国内,中小型风电机的投入成本在一万元/每千瓦左右,或更高。在风能资源特别丰富地区的大型机组,初期建设投入成本一般在八千元/每千瓦左右,维护费列入电价中,使得风电的价格居高不下,而使风电成本比火电成本高出2/3,所以风电虽无污染,能再生是十分理想的清洁而又可持续发展的能源,却未普遍应用。 风电机组的主要部件造价昂贵而且更换非常困难,如果合理采用状态监测和故障预警的技术,通过实时状态检测和智能故障预警技术可以有效地发现事故隐患并实现快速准确的系统维护,保障机组安全运行,做到防范于未然,必能大大地降低风机的故障率,有效地减少维修费用,必能提高风电的竞争能力,推动风能行业的跨越式发展。 风电总投资的65%以上都消耗在运行维护上,其中齿轮箱维护约占一半以上。采用在

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

风机叶片原理和结构

风机叶片的原理、结构和运行维护 潘东浩 第一章风机叶片报涉及的原理 第一节风力机获得的能量 一.气流的动能 1 2 i 3 E= 2 mv =2 p Sv 式中m——气体的质量 S——风轮的扫风面积,单位为m2 v 气体的速度,单位是m/s p ------空气密度,单位是kg/m3 E 气体的动能,单位是W 风力机实际获得的轴功率 P=2 p sJc p 式中P----- 风力机实际获得的轴功率,单位为W; p ------空气密度,单位为kg/m3; S ----- 风轮的扫风面积,单位为m2; v ----- 上游风速,单位为m/s. C p ---------- 风能利用系数 三.风机从风能中获得的能量是有限的,风机的理论最大效率

n Q 0.593 即为贝兹(Betz)理论的极限值。 第二节叶片的受力分析 一.作用在桨叶上的气动力 上图是风轮叶片剖面叶素不考虑诱导速

度情况下的受力分析。在叶片局部剖面上,W是来流速度V和局部线速度U的矢量和。速度W在叶片局部剖面上产生升力dL和阻力dD,通过把dL和dD分解到平行和垂直风轮旋转平面上,即为风轮的轴向推力dFn和旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用的旋转力矩,驱动风轮转动。 上图中的几何关系式如下: W =V U ①=0 + a dFn=dDs in ① +dLcos ① dFt=dLs in ①-dDcos ① dM=rdFt=r(dLsin ①-dDcos①) 其中,①为相对速度W与局部线速度U (旋转平面)的夹角,称为倾斜角;0为弦线和局部 线速度U (旋转平面)的夹角,称为安装角或节距角; a为弦线和相对速度W的夹 角,称为攻角。 ?桨叶角度的调整(安装角)对功率的影响。(定桨距) 改变桨叶节距角的设定会影响额定功率的输出,根据定桨距风力机的特点,应当尽量提高低 风速时的功率系数和考虑高风速时的失速性能。定桨距风力发电机组 在额定风速以下运行时,在低风速区,不同的节距角所对应的功率曲线几乎是重合的。但在 高风速区,节距角的变化,对其最大输出功率(额定功率点)的影响是十分明显的。事实 上,调整桨叶的节距角,只是改变了桨叶对气流的失速点。根据实验结果,节距角越小,气 流对桨叶的失速点越高,其最大输出功率也越高。这就是定桨距风力机可以在不同的空气密 度下调整桨叶安装角的根据。 不同安装角的功率曲线如下图所示: 750KW国产桨叶各安装角实际功率Illi线对比图 ! --------- ——B ----------------! *pitchy—00 P itch=-3. 00 pitcta-L T5 pi 75 ―*—pitch=-Q. 00 * 1 -------- piteh=l.00——= ---------------- i

风电叶片气动噪声数值模拟研究

风电叶片气动噪声数值模拟研究 摘要:为降低风电叶片气动噪声,运用耦合计算流体力学(Computational fluiddynamics,CFD)方法对风电叶片进行气动噪声数值模拟。本文运用流体动力学软件STAR-CCM+得到叶片表面压力分布。 研究发现: 叶轮旋转过程中,叶片表面声功率最大值主要靠近叶尖后缘区域。叶片加降噪结构后,其表面声功率最大值为96.33db,原叶片表面声功率为98.1db。此外,叶片加降噪结构后,其表面声功率最大值出现的区域比原叶片小。因此,在叶尖后缘处加降噪结构可以有效降低叶片表面声功率,同时大幅减小表面声功率最大值的分布区域。 关键词:风电叶片,气动噪声,CFD

目录 1. 前言 (3) 2. 风电叶片气动噪声分析模型 (3) 3. 风电叶片气动噪声分析 (4) 3.1. 风电叶片气动噪声分析 (4) 3.2. 风电叶片气动噪声计算 (5) 4. 结论 (6)

1.前言 近年来,风能在世界可再生能源中的比重日渐增长,成为各国能源工业关注的焦点。但是,随着人们环保意识的不断增强,以及风电场距离居民区越来越近,风力机气动噪声问题日益凸显,亟待有效的风力机气动噪声抑制技术。 风力机噪声主要来自于叶片气动噪声,叶片气动噪声是由于气流流经叶片界面产生分裂导致形成附面层及漩涡分裂脱离引起的一种非稳定流动噪声。通过在叶片靠近叶尖后缘处加降噪装置(锯齿)可以降低叶片气动噪声[1]。降噪结构可以改变各截面尾迹涡的脱落位置,从而增大了涡心之间的距离,抑制了脱落涡对尾迹流动的扰动,进而减小叶片表面的非定常压力脉动和尾迹涡引起的气动噪声。 目前,风电叶片气动噪声研究主要包括CFD方法和试验方法。许影博等运用低速开口风洞研究了采用锯齿型翼型尾缘来控制翼型噪声的方法[2-4]。Carlos A运用Proudman andLilley声学模型对锯齿尾缘的声学特性进行仿真分析[5]。试验方法需要较大的人力、物力,而数值模拟方法相对于试验方法其优点在于可以比较快速地进行噪声计算,有效缩短噪声计算周期,并且能够预测不同来流条件、不同参数下的噪声。 为确定风电叶片噪声源,运用CFD方法对风电叶片开展气动噪声分析,确定叶片气动噪声分析流程,为风电叶片气动噪声设计提供依据。 2.风电叶片气动噪声分析模型 风电叶片气动噪声分析计算模型如图1所示。将叶片三维模型导入CFD分析软件,在CFD软件中完成叶轮的装配,并建立流体分析静止域和旋转域。

风电叶片监控系统解决方案

风电叶片监控系统解决方案

为什么要对叶片进行状态监测? ?叶片是风机中受压最大的部件之一 -面临着极端的外部条件,而且动态载荷大。 ?叶片更换费用非常昂贵 ?在极端损坏情况下,风机必须立刻停机减少直接或二次损害。 ?如果能提早发现损伤,叶片可以很好地被修复。 ?目前,主要检测手段是视觉,但这种方法时间间隔长,非实时,且花费巨大。 →完全不适用于海上风机 ?状态监测系统的两大功能 -提高可利用小时数 ?覆冰检测 ?静态和动态载荷评估 -叶片损伤检测 ?雷击检测 ?叶片内部和外部损伤

损伤检测 ?更早检测到叶片的损伤 →降低维修成本 ?严重损伤给出自动停机信号→安全操作,避免灾难?经过DNV GL认证 →得到官方认可 覆冰检测 ?精确检测叶片覆冰 →安全操作 ?自动重启 →可获得更高收益 ?经过DNV GL认证 →得到官方认可 改善运营 ?检测动态不平衡 →提高收益 →降低载荷 ?动态载荷配准 →预防过载 ?显著的运行状态检测 →避免额外支出

覆冰检测DNV-GL证书/ 叶片状态监测系统DNV-GL 证书 ?BLADE control?覆冰检测,2008年获得了DNV-GL 的认证。 ?含自动启机功能的认证 ?BLADE control?在2013年获得了首个风机叶片状态监测 系统的GL认证。

BLADEcontrol?检测的叶片故障类型 ?气动表面壳体损伤 -裂痕和分层,尤其是前缘和尾缘 -雷击导致的叶尖开裂 ?结构支撑件的损伤(致命) -腹板分层或断裂 -梁/ 翼梁分层或断裂 -叶片轴承损伤 腹板 翼梁 气动表面 前缘 尾缘 ?松动部件 -叶片内 -轮毂内 -叶片外部 (防损保护层,扰流器)?气动不平衡 -变桨偏差 -变桨传感器故障

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

风力发电机在线监测系统

风力发电机在线监测系统 引言 在线监测系统是近20年来在大型机组上发展起来的一门新兴交叉性技术,这是由于近代机械工业向机电一体化方向发展,机械设备高度的自动化、智能化、大型化和复杂化,在许多的情况下都需要确保工作过程的安全运行和高的可靠性,因此对其工作状态的监视日益重要[1] 。随着大型风力发电机容量的迅猛增加,现在风力发电机正从百千瓦级向兆瓦级发展,机械结构也日趋复杂,不同部件之间的相互联系、耦合也更加紧密,一个部件出现故障,将可能引起整个发电过程中断。另外,近年来随着风力发电机的快速发展,其技术的成熟度跟不上风力发电机的发展速度,在媒体上出现了大量关于风力发电机齿轮箱、主轴、叶片的损坏,甚至有风力发电机倒塌的报道。保险公司非常抱怨其高损坏率,因此在保险合同中加入了维修条款:保证其风力发电机能够正常运转40000h或者至少运行5年,除非装上在线监测设备,接受保险公司的定期监测。在这种环境下,在线监测在风力发电机行业得到了飞速的发展。国外在线监测技术发展得比较成熟,有专门用于风力发电机的监测设备[2] ,例如德国的普鲁夫公司(pruftechnik);在监测服务方面,国外有专门的风力发电机监测服务公司,例如德国的flender公司等[3] 。而国内由于风力发电机行业本身起步较晚,因此在线监测系统在国内风力发电机上的运用还处于起步状态。 1 在线监测系统的工作原理 风力发电机监测系统最重要的工作是通过对设备运行过程中所表现出的各种外部征兆及信息,提取反映状态的正确信息并进行分析和识别其内涵故障。因此在开始设计和建立系统前,必须对监测对象的结构与工作过程有充分的了解。由于风力发电机设备结构及工作过程复杂,对其进行深入分析和深层故障诊断,不仅要依靠一定的理论和方法,而且更重 要的是必须了解、熟悉具体设备的结构与运行机理,并取得维护人员的经验和技巧。 如图1风力发电机在线监测流程图所示,风力发电机监控任务主要由3部分组成:信号拾取、信号处理和监控决策。信号拾取主要由主轴传感器、齿轮箱传感器和定子传感器来采集风力发电机的基本运行状况。 信号处理是将各传感器所采集到的信号经过信号处理转换成数字信号,通过网络传输到监控 室。由于风力发电场一般建设在岛屿、农田等边远地区,通讯设施相对比较差,因此网络传输可以使用CDMA ,GSM 等无线传输方式,从而省去了铺设光缆等昂贵设备。 监控决策就是计算机将传送的信号数据与风力发电机数据库中的数据进行比较,监控人员根据比较的结果最终给出风力发电机的运行状况分析表。计算机的数据比较过程主要是辨别3 类过程状态(正常、预警、异常),如使用G表示传感器信号,Y表示风力发电机预警值,R表示风力发电机异常值。 当G<Y风力发电机运行正常;Y<G<R监控设备发出警报,监控人员必须密切关注运行状况;G>R风力发电机自动停机, 等待工作人员的检修。 2 风力发电机工作特性及在线监测的必要性 现在大多数风机上运用的通用监测程序叫风场监测,这种方法主要监测输出电量同时也包含部分故障信息的存储。通常控制系统的状态信息、输出电量以及风速情况将被存储,并且将其传送给制造商和运营商。但是只有通过详细的记录才有可能观察到故障。在大多数的情况下,当控制系统发出警报的时候故障已经发生了,然而整个系统能做的只是自动的使风力发电机停机以防止故障的进一步恶化。风场监测通常与周期点相连,这些周期测试点

风电叶片设计流程

叶片设计流程 一. 空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 .风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1 IEC61400-1标准规定的载荷情况 2.2 风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M Xb、挥舞方向的剪力Q b和弯矩M Jb以及与变浆距力矩平衡的叶片俯仰力矩M b。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct,通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷 (4)操纵载荷

2 )轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等) 的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2 风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法 是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后稳定性判别归结为状态转移矩阵的特征值 计算。 1.风力机气动弹性模型 1)结构模型

宁夏关于成立风电叶片生产制造公司可行性分析报告

宁夏关于成立风电叶片生产制造公司 可行性分析报告 规划设计/投资分析/实施方案

报告摘要说明 风力发电行业主要由上游原材料生产、中游零部件制造和风力机组制造、以及下游风电场运营和电网运营等环节构成。风力发电机主要由叶轮、机舱、塔筒三部分构成。由于风电场招标时塔筒一般单独招标,风力机组 此时即指叶轮和机舱两部分。 xxx实业发展公司由xxx有限责任公司(以下简称“A公司”)与xxx集团(以下简称“B公司”)共同出资成立,其中:A公司出资410.0万元,占公司股份76%;B公司出资130.0万元,占公司股份24%。 xxx实业发展公司以风电叶片产业为核心,依托A公司的渠道资源 和B公司的行业经验,xxx实业发展公司将快速形成行业竞争力,通过 3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx实业发展公司计划总投资12239.85万元,其中:固定资产投 资10808.63万元,占总投资的88.31%;流动资金1431.22万元,占总投资的11.69%。 根据规划,xxx实业发展公司正常经营年份可实现营业收入13527.00万元,总成本费用10387.39万元,税金及附加206.07万元,利润总额3139.61万元,利税总额3778.73万元,税后净利润2354.71万元,纳税总额1424.02万元,投资利润率25.65%,投资利税率

30.87%,投资回报率19.24%,全部投资回收期6.70年,提供就业职位187个。 风电作为可再生资源,节能环保,是未来能源的重要发展方向。风电的应用推广,经济性和市场化是重要影响因素。

第一章总论 一、拟筹建公司基本信息 (一)公司名称 xxx实业发展公司(待定,以工商登记信息为准) (二)注册资金 公司注册资金:540.0万元人民币。 (三)股权结构 xxx实业发展公司由xxx有限责任公司(以下简称“A公司”)与xxx集团(以下简称“B公司”)共同出资成立,其中:A公司出资410.0万元,占公司股份76%;B公司出资130.0万元,占公司股份24%。 (四)法人代表 段xx (五)注册地址 xx产业示范基地(以工商登记信息为准) 宁夏回族自治区,简称宁,是中国5个自治区之一,首府银川。位于中国西北内陆地区,界于北纬35°14'-39°14',东经104°17'-109°39'之间,东邻陕西,西、北接内蒙古,南连甘肃,宁夏回族自治区总面积

2MW风电机组叶片气动性能计算方法的研究_刘勋

新能源专题 2009年第8期 68 2MW 风电机组叶片气动性能计算方法的研究 刘 勋 鲁庆华 訾宏达 孙伟军 (北京北重汽轮电机有限责任公司,北京 100040) 摘要 本文以某2MW 风电机组的叶片为实例,总结出一套工程上实用的叶片气动性能分析的方法。使用XFOIL 和Fluent 软件,对叶片不同截面的翼型计算了小攻角范围内的气动性能,并对两种计算结果进行对比分析;在翼型小攻角气动性能的基础上,利用Viterna-Corrigan 修正将翼型的气动性能扩展到±180°全攻角范围。使用这些全攻角翼型气动性能数据,在Bladed 软件中建立风电机组的叶片模型,分析计算该叶片的气动性能、整机功率曲线等性能。通过最终计算结果与原设计值对比,表明采用该方法分析风电机组叶片的气动性能是可行的。 关键词:风力发电机;叶片;气动性能 The Research of Aerodynamics Performance Calculation Method of 2MW Horizontal Wind Turbine Blades Liu Xun Lu Qinghua Zi Hongda Sun Weijun (Beijing Beizhong Steam Turbine Generator Co., Ltd, Beijing 100040) Abstract A suit of aerodynamics performance analyses method in the practical engineering calculation is obtained by research the blade of a 2MW horizontal axis wind turbine. With the software of XFOIL and Fluent, the aerodynamic performances of airfoil in the small angle of attack arrange are calculated in the different radial location. The XFOIL and Fluent calculation results are compared. On the base of the small angle of attack arrange, using the Viterna-Corrigan post stall modified, the aerodynamic performances of the airfoil are extended from -180°to +180°angle of attack range. With the XFOIL calculation data of all angle of attack range, the blade models of this wind turbine are founded in the software of bladed. The simulation results of the blade root load and the power curve of aerodynamic performance on the wind turbine are obtained. The Comparison between simulation results and original design shows the aerodynamics performance analyses method is viable. Key words :wind turbine ;blade ;aerodynamics performance 1 引言 风能是一种清洁、用之不竭的能源。风能不仅储量丰富,而且分布广泛。2006年国家气候中心对我国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下,全国陆地上离地面10m 高度层风能资源技术可开发量为25.48 亿kW [1] 。此外,风能的开发相较与其他新能源也更为容易。因此,近年来,风力发电得到了国家、社会、各投资研发机构的高度关注,而风电产业也进入了高速发展的时期。 风力发电机组通过叶片吸收风能,将其转化为传动链的机械能。风机叶片的设计是兆瓦级大型风电机组的最为重要的关键技术之一。而叶片气动性能计算是风机叶片及风电机组设计和校核中的重要环节。目前比较成熟叶片气动分析方法是基于叶素动量理论(BEM ),并针对风机叶片特点在该理论 上作了相应的经验修正。而Bladed 软件正是以该方 法为基础开发的风机性能计算商用软件,已广泛用于风机叶片及风机机组的设计、认证。 通过这些方法及软件作风机叶片的气动性能分析,都需要获得叶片所用翼型的气动特性曲线,如 升力、阻力系数曲线等。通常,各类翼型的这些气动特性都是在风洞中实验获得,其实验过程需要专业的设备,且周期长费用高。此外,风机专用低速翼型,如DU 系列、FFA-W 系列、Ris?-A1系列, 其气动特性通常是不公开的。 本文以某2MW 变速变桨风电机组为实例,通过数值模拟的方法得到该机组叶片所用翼型的气动特性曲线,弥补了实验方法的不足。在此计算结果的基础上,通过Bladed 软件建模分析,获得该风电

风力发电叶片制作工艺介绍

风力发电叶片制作工艺介绍 风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型

3.0MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型2.0MW发电机且为39m长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节

风电叶片在线检测技术研究进展

南?京?工?业?职?业?技?术?学?院?学?报Journal?of?Nanjing?Institute?of?Industry?Technology 第18卷第2期2018年6月Vol.18,No.2Jun.,2018 风电叶片在线检测技术研究进展 吴国中,李?镇?,宋增禄 (南京工业职业技术学院?电气工程学院,江苏?南京?210023)? 摘?要:就风电设备运行过程中风机叶片的在线检测技术进行了讨论。叶片在线检测主要有两大类,分别是以应变、声发射等传感器检测为核心的侵入式检测和以图像检测为代表的非侵入检测,探讨了这两种检测模式中风电叶片损伤检测的实验手段以及损伤特征提取和识别的算法。关键词:风电;叶片;在线检测 中图分类号:TP273 文献标识码:A 文章编号:1671-4644(2018)02-0004-05 风电技术在展现出其独特优势的同时也存在一些问题。由于风力发电场通常位于较偏远的陆地、海岸或者海上,环境恶劣且无人值守,其运行状态的监测面临较大挑战。目前已有的在线监测、控制、调度技术为风电场的正常平稳运行提供了一定的保障,但是由于风电系统的复杂性、可靠性以及环境等各方面因素的影响,现有在线监控系统在风机状态信息检测的实时性、完备性、准确性等方面仍显不足,其中一个突出问题表现在风电叶片状态检测方面。 风电叶片是风力发电机的关键部件,叶片状态的检测以及寿命预测对提高风机工作效率、保障风机正常工作具有重要意义。本文将集中讨论风机叶片部分在线检测技术的研究进展。 1?侵入式检测技术 叶片在线检测主要分为两类,一类是侵入式的检测,即传感器网络需要内嵌在叶片中;另一类是非侵入式的检测,即采用光学或图像等方式实现非接触式的检测。 1.1?基于应变的检测 应变片在风电叶片在线检测中有较多应用。风电叶片在实际运行过程中会承受不同方向的载荷,导致叶片产生应变,应变的累积可能会导致叶片的宏观形变和开裂,因此在叶片的脆弱部位以及容易产生应力集中的部位,可以设置应变传感器以检测叶片的应变,从而可以直接反应叶片状态。 Jargensen?等人在2004年曾采用上百片应变传感器检测长达25米的叶片轴向应变。应变检测是一项比较成熟的技术[1] ,可以用于叶片的离线和在线测试,但是也有一些局限性。应变传感器容易失效,容易受到环境的影响甚至引起雷击,并且有的情况下不能准确反映叶片失效状况。 FBG传感器是针对传统应变传感器的不足,在风电叶片检测中引入的光纤传感器,以检测叶片的应变。较常用的是布拉格光纤光栅,其原理是利用纤芯内空间相位周期性分布的光栅形成一个窄带滤波器或反射镜,滤波器或反射镜中心频率会随外部应变而产生漂移,将频率漂移转换为应变可以准确、稳定、可靠地检测叶片的应变和疲劳状态。2007年郭等人最早利用FBG传感器网络检测叶片状态数据并应用无线技术上传[2] ,这种技术逐步发展并在一些大型风机上得到应用。FBG传感器稳定性对于叶片状态的长期检测是很有优势的,其不足在于成本高而且设备体积大,一定程度上限制了其在叶片在线检测中的应用。 1.2?基于声发射的检测 基于声发射检测叶片失效的研究已经比较广泛。声发射是材料中局域源快速释放能量产生瞬态弹性波的现象,叶片在外部载荷作用下产生形变,使结构内部形成应力,由于叶片应力集中而产生各种失效,如纤维断裂、微裂纹等,从而导致局域快速释放能量。用于声发射检测的传感器由压电传感器、放大器和数模转换器以及信号处理单 收稿日期:2018-04-23 基金项目:?江苏风力发电工程技术中心2016年度开放基金(编号:ZK16-03-05);江苏省品牌专业资助项目(编号:PPZY2015B189)作者简介:吴国中(1974-),男,南京工业职业技术学院副教授,工学硕士,研究方向:自动化控制及检测技术。

风机叶片原理和结构

风机叶片得原理、结构与运行维护 潘东浩 第一章风机叶片报涉及得原理 第一节风力机获得得能量 一.气流得动能 E=mv2=ρSv3 式中m—--———气体得质量 S-—-—--—风轮得扫风面积,单位为m2 v--—---—气体得速度,单位就是m/s ρ------空气密度,单位就是kg/m3 E—-———-—-—-气体得动能,单位就是W 二、风力机实际获得得轴功率 P=ρSv3C p 式中P--—----—风力机实际获得得轴功率,单位为W; ρ-———-—空气密度,单位为kg/m3; S————-—--风轮得扫风面积,单位为m2; v------——上游风速,单位为m/s、 Cp -—----—-—风能利用系数 三。风机从风能中获得得能量就是有限得,风机得理论最大效率 η≈0。593 即为贝兹(Betz)理论得极限值。 第二节叶片得受力分析 一。作用在桨叶上得气动力 上图就是风轮叶片剖面叶素不考虑诱导 速度情况下得受力分析。在叶片局部剖面 上,W就是来流速度V与局部线速度U得矢量 与。速度W在叶片局部剖面上产生升力dL 与阻力dD,通过把dL与dD分解到平行与垂直风轮旋转平面上,即为风轮得轴向推力dFn与旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用得旋转力矩,驱动风轮转动。 上图中得几何关系式如下: Φ=θ+α

dFn=dDsinΦ+dLcosΦ dFt=dLsinΦ-dDcosΦ dM=rdFt=r(dLsinΦ-dDcosΦ) 其中,Φ为相对速度W与局部线速度U(旋转平面)得夹角,称为倾斜角; θ为弦线与局部线速度U(旋转平面)得夹角,称为安装角或节距角; α为弦线与相对速度W得夹角,称为攻角。 二。桨叶角度得调整(安装角)对功率得影响。(定桨距) 改变桨叶节距角得设定会影响额定功率得输出,根据定桨距风力机得特点,应当尽量提高低风速时得功率系数与考虑高风速时得失速性能、定桨距风力发电机组在额定风速以下运行时,在低风速区,不同得节距角所对应得功率曲线几乎就是重合得。但在高风速区,节距角得变化,对其最大输出功率(额定功率点)得影响就是十分明显得。事实上,调整桨叶得节距角,只就是改变了桨叶对气流得失速点。根据实验结果,节距角越小,气流对桨叶得失速点越高,其最大输出功率也越高。这就就是定桨距风力机可以在不同得空气密度下调整桨叶安装角得根据、 不同安装角得功率曲线如下图所示: 第三节 叶片得基本概念 1、叶片长度:叶片径向方向上得最大长度,如图1所示。 图1 叶片长度 2、叶片面积

风力发电机叶片结构设计及其有限元分析(精品doc)

风力发电机叶片结构设计及其有限元分析 摘要 为了更好地发展我国的风力发电事业,实现风力发电机的国产化,必须深入开展风力机设计、分析方面的研究。本文根据传统的 的叶片设计方法设计了2MW 风力机叶片,并生成三维几何模型, 然后利用有限元模拟对叶片进行了振动模态分析,得到各阶振动频 率和振型,为防止结构共振提供了依据。 关键词:风力机,叶片,有限元模拟,优化 THE FE SIMULATION AND OPTIMAL DESIGN OF WIND TURBINE COMPONENTS ABSTRACT In order to promote the capability of design and manufacturing of wind turbine in China, more study should be done in the field of wind turbine design and analysis. In this paper, a blade for 2MW wind turbine is designed according to the traditional design procedure and the 3D geometrical model is created. Then the modal analysis is done through the FE simulation to get the frequency and mode shape, which provides the theoretic basis to prevent resonance.

防止风电机组严重损坏专项措施

龙源电力集团股份有限公司风电企业 防止风电机组严重损坏专项措施 一、防止火灾措施 1.禁止风电机组机舱内壁粘贴海绵。对降噪或保温等有特殊要求的机组,机舱内所使用的降噪或保温材料必须采用阻燃材料。 2.机组检修工作结束后,应做到工完、料净、场地清,控制柜、机舱内部及塔筒平台处不得留有工具、废弃的备件、易耗品等杂物。 3.对风电机组机舱内及塔筒各层平台的渗漏油必须及时进行彻底清理,并查堵渗漏点;机组内部严禁存留易燃易爆物品及沾油废弃物。 4.风电机组内部严禁吸烟,火种不得带入风电机组;机组内动火必须开动火工作票,动火工作间断、终结时,现场人员必须停留观察至少15分钟,确认现场无火种残留后方可离开。 5.风电机组底部和机舱均应按照国家标准配置出厂检验合格的干粉灭火器,单个灭火器容量不小于2公斤,按要求固定在容易发现和取到的位置。新购买的干粉灭火器换充

粉期限为2年,自第一次换粉起以后每年换粉一次。灭火器在更换及检测期间,应保证留有备用。 6.禁止使用电感式镇流器的照明灯具,灯具外壳严禁采用可燃材料(可燃材料指GB 8624-2012《建筑材料及制品燃烧性能分级》规定的B2、B3类材料)。 7.风电机组照明电源回路必须安装漏电保护器,漏电保护器应按国家标准进行定期测试,做好记录,保护动作不可靠的要立即更换。 8.在定期维护和点检中必须检查机组内的电缆外套有无破损和绝缘老化,电气元件及控制柜内部有无积灰、污损腐蚀、过热变色、放电、异物进入等问题,发现异常立即处理。 9.风电机组所有电气回路电缆的走线应使用电缆支架或布置在专用电缆槽内,并可靠固定;机舱内机械刹车、联轴器和滑环等旋转部件周边的各类电缆、油管,应根据条件在其周围增加隔离、阻燃措施。 10.风电机组内所有电缆的保护外套必须选用阻燃材料,对不符合要求的保护外套应进行更换,如保护外套出现绑扎松动、磨损和老化情况,应立即检查电缆绝缘并进行处理。 11.对于机舱至底部控制柜采用导电轨连接或采用中间接线盒连接的机组,每次登塔时必须对导电轨接线盒外观进

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

相关主题
文本预览
相关文档 最新文档