当前位置:文档之家› 流体力学期末复习,计算部分

流体力学期末复习,计算部分

流体力学期末复习,计算部分
流体力学期末复习,计算部分

α

O B O A H

p a

三计算题

一、粘性

1.一平板在油面上作水平运动,如图所示。已知平板运动速度V=1、0m/s,板与固定边界的距离δ=1mm,油的粘度μ=0、09807Pa ·s 。试

求作用在平板单位面积上的切向力。

2、 一底面积为2

cm 5045?, 质量为6kg 的木块,沿涂有润滑油的斜面向下作等速运动, 木 块运动速度s m 2.1=u

,油层厚度mm 1=δ,斜面角C 02ο=θ(如图所示),求油的动 力粘度μ。

δ

u

θ

二静力学

1.设有一盛水的密闭容器,如图所示。已知容器内点A 的相对压强为4、9×104

Pa 。若在该点左侧壁上安装一玻璃测压管,已知水的密度ρ=1000kg/m 3

,试问需要多长的玻璃测压管?若在该点的右侧壁上安装一水银压差计,已知水银的密度ρHg =13、6×103

kg/m 3

,h 1=0、2m,试问水银柱高度差h 2就是多大?

2.如图所示的半园AB 曲面,宽度m 1=b

,直径m 3=D ,试求曲AB 所受的静水总压力。

D

/2

A

B

D

3. 如下图,水从水箱经管路流出,管路上设阀门K,已知L=6m,α=30°,H=5m, B 点位于出口断面形心

点。假设不考虑能量损失,以O-O 面为基准面,试问:阀门K 关闭时,A 点的位置水头、压强水头、

测压管水头各就是多少?

4、 位于不同高度的两球形容器,分别贮有 2m kN 9.8=g

A ρ的 油 与2m kN 00.10=g

B ρ的盐水,差压

计内工作液体为水银。

m 21=h ,m 32=h ,m 8.03=h ,若B 点压强2cm N 20=B p ,求A 点压强

A p 的大小。

?

?

M M

A B

h h h γγA

B

1

2

3

5、 球形容器由两个半球面铆接而成,有8个铆钉,球的半径m 1=R

,内盛有水, 玻璃管中液面至球顶的垂直距离2m . 1=H ,求每个

铆钉所受的拉力。

R

H

6.设有一盛静水的密闭容器,如图所示。由标尺量出水银压差计左肢内水银液面距A 点的高度h 1=0、46m,左右两侧液面高度差h 2=0、

4m,试求容器内液体中A 点的压强,并说明就是否出现了真空。已知水银的密度ρHg =13、6×103

kg/m 3

7.在储水容器垂直壁的下面,有一1/4圆柱面形的部件AB,该部件的长度L=0、8m,半径R=0、4m,水深H= 1、2m,试求水作用在部件AB 上的总压力。

8、 一矩形挡水平板如图所示,板宽5m ,板高6m,试求作用于平板上的静水总压力的大 小、方向及作用点。

o o o o o o o o o o o o o o o

o A

B

1m

6m

三、运动学

1.直径d 为100mm 的输水管中有一变截面管段,其最小截面的直径d 0为25mm,若测得管中流量Q =10L/s,求输水管的断面平均流速v 与

最小截面处的平均流速v 0 。

四、动力学

1.已知二维流动 t x u x +=,t y u y

+-=,试求0=t 时通过点(-1,-1)的流

线。

2.已知二维流动,Kx u x

=,Ky u y -=,式中K 为常数,试求流线方程

3、 设管路中有一段水平(xoy 平面内)放置的等管径弯管,如图所示。已知管径d=0、2m, 弯管与x 轴的夹角?=45α

, 管中过流断1

-1 的平均流速s m 41

=V ,其形心处的相 对压强Pa 1081.941?=p ,若不计管流的能量损失,试求水流对弯管的作用R 。

11

2

2

p 1V 1

V 2

p 2

R

R'x R'y

y

x α

o

4、 一水平放置的渐缩管,水从大直径d 1断面流向小直径d 2断 面。 已知

mm 2001=d ,,m kN 4021=p mm 100,m 221==d V ,不计摩擦,试求水流对渐缩管的轴向推力。

1

2

2

五、流体阻力与能量损失

1.设圆管直径d =200mm,管长L=1000m,输送石油的流量Q=0、04m 3

/s,石油运动粘滞系数s cm /6.12=ν

,试求该管段的沿程损失h f

2、 如图所示,水流由水箱经等直径管道恒定出流,d=5cm,H=5m,水箱至出口全部水头 损失

m 10=-B w h ,求管中流速与流量。

3、 通过水平圆管流出的液体流量为s m 10

1.033

-?,其装置如图所示。 试证明流动为层流(不计局部损失)。

一、 明渠水流.

1、 有一梯形断面粘土渠道,已知底宽B=10米,均匀流水深H=3米,边坡系数m=1、0,土壤的粗糙系数n=0、02,通过的流量Q=39m 3

/s,

试确定每公里长度上的沿程损失h f 、

解: A=(b+mh)h=39, χ=b+2

h m 21+=18、5,

R=

χA =2、11, V=A

Q

=1、0m/s C=6

1

1R n

=56、63 , h f =R c lv 2

2=0、148m

2.有一矩形断面混凝土渡槽,糙率n =0、014,底宽b =1、5m,槽长L =120m 。进口处槽底高程Z 1=52、16m,出口槽底高程Z 2=52、04m,

当槽中均匀流水深h 0=1、7m 时,试求渡槽底坡i 与通过的流量Q 。 3.某矩形断面渠道,渠宽b =1、0m,通过的流量Q =2、0m 3

/s,试判别水深各为1、0m 与0、5m 时渠中水流就是急流还就是缓流? 七有压管流

1.设有一管路,如图所示,已知A 点处的管径d A =0、2 m,压强p A =70 kPa;B 点处的管径d B =0、4 m,压强p B =40 kPa,流速V B =1 m/s; A 、

B 两点间的高程差Z ?=1 m 。试判别A,、B 两点间的水流方向,并求出其间的能量损失w h 。

2、 用直径cm 5=d

的虹吸管从水箱中引水,虹吸管最高点距水面m 5.21=h , 上升段损 失

m 2.01=w h ,下降段损失m 5.02=w h 。若虹吸管允许的最大真空度 为O mH 76.72, 那么

该管最大流量就是多少?

h h d

1

1

33

2

2

1

2

31. 油管的直径d=8mm,通过流量

s cm 773=Q ,在长度 l=2m 的管段两段,水银压差计读值cm 6.9=p h ,油的密度

33m kg 109.0?=ρ,水银的密度33m kg 106.13?=p ρ,求断面 平均流速与沿程损失。

h p

34.已知二维流动,Kx u x =,Ky u y -=,式中K 为常数,试求流场的加速度。

35.一圆弧闸门,宽度m 4=b

,圆心角045=?, 半径m 2=R ,闸门转轴恰与水面齐平(如图示),求水对闸门的总压力的大小与方向。

?

B

R

O

A

36.设有一密闭容器,液面上的压强为0、5工程大气压,现在容器底部接一段管道,管长l 为4、0m,与水平面成30°,出口断面直径d 为

50mm,若管道进口断面中心位于水下深度H 为5m,管道系统总水头损失m h w

3.2=,求管道的出流量Q 。

37.有一管道,已知半径r 0=15cm,测得其流动时水力坡度J =0、15,试求管壁处与离管轴r =10cm 处的切应力τ。

39.有一梯形断面渠道水流为均匀流,已知通过的流量Q =39m 3

/s,边坡系数m=1、0,底坡i=0、0002,底宽b=10m,水深h=3m,试求粗糙系数n(用曼宁公式计算)。

40.如图所示,一水平管路突然扩大,已知直径d1=5cm,d 2=10cm ,管中通过的流量Q

=0、02m 3

/s,试求该突然扩大管段的局部水头损失h j 。

41.试求图中A 、B 、C 三点的相对压强及绝对压强大小,已知当地大气压强为2

m kN 98。

42、 水箱真空M 的读数为2m kN 98.0,水箱与油箱的液面差H =15

.m ,水银柱液面差m 2.02=h ,油的比重3 m kN 85.7=g ρ,求1h 为多少米?

γ

44.图示平面闸门AB ,宽1m,倾角045=α,左侧水深3m,右侧水深

2m,试求静水总压力大小、方向与作用点。

45、为了收集某渠道糙率n 的资料,今测得流量Q=9、45m 3/s,水深h 0=1、20m 。在长为L=200m 的渠段内水面降落Δz=0、16m,已知渠

道断面尺寸底宽b=7、0m,边坡系数m=1、5。求n 值。

3108.0-?=i

46.设不可压缩流体平面无旋流动的流速势为φ=-x y xy 33

, 它就是否满足流体的连续性条 件。 48、 输水管道直径d=50mm,流s m 1034.333-?=Q

,水银压差计读值m m 150=?h 汞柱,沿程损失不计。试求阀门k 的局部阻力系

数。

49.一自重为9N 的圆柱体,

直径d =149

、4mm,在一内径D=150mm 的圆管中下滑,若圆柱高度h =150mm,均匀下滑的速度v =46mm/s,求圆柱体与管壁间隙中油液的粘滞系数μ的值。

50.如下图,为测盛水密封容器中液面压强0p ,在A 点装一U 型测压管,已知A 点位于液面之下1、5米,H=2米。试求液面的压强p 0

,

并说明就是否出现真空。

51.在水渠中放置一水平底边的矩形闸门,如图所示。已知闸门宽度b =5m,闸门高度H =2、0m,闸门前水深H 1=3m,闸门后水深H 2=2、

5m,求作用在闸门上的静水总压力的大小、方向与作用点。

52.图示一跨河倒虹吸圆管,管径d =0、8m,长 l =50 m,两个 30。

折角、进口与出口的局部水头损失系数分别为 ζ1=0、2,ζ2=0、5,ζ3=1、0,沿程水头损失系数λ=0、024,上下游水位差 H =3m 。若上下游流速水头忽略不计,求通过倒虹吸管的流量Q 。

53.已知二维流动 t x u x +=,t y u y

+-=,试求1=t 时流体质点在(-1,-1)处的加速度。

54.设石油在圆管中作恒定均匀流,已知管径d =10cm,流量Q =500cm 3

/s,石油密度

3

/850m kg =ρ,运动粘滞系数

s m /108.125-?=ν,确定每米管长的沿程损失f

h 。

55.混凝土矩形渠道,已知水深h =0、8m,底宽b =1、2m,粗糙系数n =0、014,通过的流量Q =1、0m 3

/s,试求渠道的坡度。 56、 图示有一水平放置的三通水管, 干管mm 12001=d ,两支管mm 80032==d d ,045=θ

, 干管s m 231=Q ,支管流量32Q Q =,

断面1-1处的动水压强21m kN 100=p ,断面1-1到2-2( 或3-3)的水头损失g

V h w 221=

,求水流作用于支墩的力。

Q 1

11

Q 3x

R Q 22

2

3

3

θθ

57.有一过水断面为矩形的人工渠道,其宽度B 为1m,测得断面1-1与2-2处的水深h 1、h 2分别为0、4m 与0、2m,若断面2-2的平均流速为5m/s,试求通过断面1-1的平均流速V 1与流量。

58、 有一圆柱形容器,内盛三种液体,上层为γ1=7、84KN/m 3的油,中层γ2 =9、8KN/m 3的水, 下层为γ3 =133、28KN/m 3 的 汞。已知各层高度h 均为1m ,容器直d=1、0m ,当地大气 压强p a =98KN/m 2 ,试求: A 、B 点的相对压强 (用KN/m 2表示)

p 0

A ?

p a

H

?

?

h/2

A

B

h

h

h

d

γ

γ

γ

1

2

3

59、用m

1

4m?的矩形闸门垂直挡水,水压力对闸门底部门轴的力矩等于多少?

4m

60、有一梯形断面的渠道,其宣泄流量Q=2、28m3/s,渠道底宽b=2、5m,正常水深h=1、0m,边坡系数m=1、0,壁面n=0、025,试确定

渠道的底坡i=?

62、某速度场可表示为

=

+

-

=

+

=

z

y

x

u

t

y

u

t

x

u

试求:t=0时,通过点A(-1,-1)的流线。

63、水流从水箱经水平管路流出,管道上设有一阀门K。已知H=2、0m,水平管路长20m,直径d=20mm,管路进口处的局部阻力ξ1=0、

5,阀门处ξ2=2、0,沿程阻力系数λ=0、04,确定管路的流量。

64.如图所示串联供水管路,各段管长l AB=500m,l BC=400m,l CD=300m;管径d AB=400mm,d BC=300mm,d CD=200mm;流量q1=50 l/s,q2=40

l/s,q3=30 l/s;若管路的沿程摩阻系数λAB=0、03,λBC=0、035,λCD=0、04;D点所需的自由水头为25m,试求水塔的供水高度H。

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

流体力学基本公式

1流体中稳定流动和均匀流动的区别 (1)①根据当地加速度是否为0,即流体运动要素是否随时间变化,流体分为 稳定流动和不稳定流动。 ②根据迁移加速度是否为0,即流体运动要素是否随空间参数变化,流体 分为均匀流和非均匀流。(非均匀流又分为缓变流和急变流) (2)稳定流动是流场中流体质点通过空间点时所有的运动要素都不随时间改变 的流动。 (3)均匀流动是指流场中同一直线上的各流体质点的运动要素沿程不变(不随 空间参数变化)的流动。 (4)稳定流的流线可以为曲线。均匀流的流线不能为曲线,只能是一元流动。 2迹线方程最后是写成多个还是整合成一个? 答:如果迹线方程可以合并为一个,尽量合并为一个,并且尽量消掉参数t 。如果不能合并,就不用合并。理论上说都是可以的,但是从考试的答案来说,基本上都是合并的。 流体力学基本公式 1.牛顿内摩擦定律 (1)表达式: dy du μτ±=。 (2)内摩擦定律与三个因素相关,粘性切应力与流体粘度和速度梯度有关,与 压力的大小关系不大。 (3)适用条件:牛顿流体的层流运动。 2.欧拉平衡微分方程 (1)01=??-x p X ρ,01=??-y p Y ρ,01=??-z p Z ρ (2)适用于绝对静止状态和相对静止状态,可压缩流体和不可压缩流体。 3.静力学基本方程式 (1) g p z g p z ρρ2 211+=+ (2)适用条件:重力作用下、静止的、连通的、均质流体。 (3)几何意义:静止流体中,各点的测压管水头为常数。 (4)物理意义:静止流体中,各点的总比能为常数。 4.连续性方程

(1)适用于系统的质量守恒定律在控制体上的应用。 (2)三种形式:一般形式,恒定流,不可压缩流。 ①一般形式:0)()()(=??+??+??+??z u y u x u t z y x ρρρρ ②恒定流:0)()()(=??+??+??z u y u x u z y x ρρρ ③不可压缩流体:0=??+??+??z u y u x u z y x 5.欧拉运动方程 (1) dt du z p Z dt du y p Y dt du x p X z y x =??-=??-=??-ρρρ1,1,1 (2)适用条件:所有理想流体。 6.理想流体的伯努利方程 (1)2211221222p u p u z z g g g g ρρ++=++ (2)适用条件:理想流体;不可压缩流体;质量力只有重力;沿稳定流的流线 或微小流束。 (3)几何意义:沿流线总水头为常数。 (4)物理意义:沿流线总比能为常数。 7.实际流体总流的伯努利方程 (1)221112221222w p v p v z z h g g g g ααρρ++=+++ (2)适用条件:实际流体稳定流;不可压缩流体;质量力只有重力;所取断面 为缓变流断面。 (3)动能修正系数α:总流有效断面上的实际动能与按平均流速算出的假想动 能的比值。1α>,由断面上的速度分布不均匀引起,不均匀性越大,α越大。 8.动量方程 (1)() 21=Q F v v ρ-∑

流体力学知识点总结55410

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) ΔF ΔP ΔT A ΔA V τ 法向应力 周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =2m s

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 3 /1000m kg =ρ3 /2 .1m kg =ρdu T A dy μ=? h u u+du U y dy x dt dr dy du ?=?=μμτdu u dy h =ρμ ν=

流体力学计算题及答案

流体力学计算题及答案

第二章 例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z 0=3m, 压差计各水银面的高程分别为z 1=0.03m , z 2=0.18m , z 3=0.04m, z 4=0.20m, 水银密度 3 /13600m kg ρ=',水的密度3 /1000m kg ρ= 。试求水面的相 对压强p 0。 解: a p z z γz z γz z γp =-----+)(')(')(3412100Θ ) ()('1034120z z γz z z z γp ---+-=∴ 例2:用如图所示的倾斜微压计测量两条同高 程水管的压差。该微压计是一个水平倾角为θ的

Π形管。已知测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30°,试求压强差p 1 – p 2 。 解: 2 24131 )()(p z z γz z γp =-+--Θ θ L γz z γp p sin )(4321=-=-∴ 例3:用复式压差计测量两条气体管道的压差(如 图所示)。两个U 形管的工作液体为水银,密度为ρ2 ,其连接管充以酒精,密度为ρ1 。如果水银面的高度读数为z 1 、 z 2 、 z 3、 z 4 ,试求压强差p A – p B 。解: 点1 的压强 :p A )(21 2 2 2 z z γp p A --=的压强:点 ) ()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 ) ()(32134122z z γz z z z γp p B A ---+-=-∴

流体力学概念总结

第一章绪论 1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观 的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 第二章流体的主要物理性质 1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。 2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。 3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是: 1)由无数连续分布、彼此无间隙地; 2)占有整个流体空间的流体质点所组成的介质。 4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。 5.重度:单位体积的流体所受的重力称为重度,以γ表示。 6.比体积:密度的倒数称为比体积,以υ表示。它表示单位质量流体所占有的体积。 7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。 8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。 9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。 10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。 11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。 12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。 13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变 化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。这个关系式称为牛顿内摩擦定律。 14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随dυ/d n而变化,否则称 为非牛顿流体。 15.动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的 大小。 16.运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。 17.实际流体:具有粘性的流体叫实际流体(也叫粘性流体), 18.理想流体:就是假想的没有粘性(μ= 0)的流体 第三章流体静力学 1.★流体的平衡:(或者说静止)是指流体宏观质点之间没有相对运动,达到了相对的平衡。 2.★绝对静止:流体对地球无相对运动,也称为重力场中的流体平衡。 3.★相对平衡:流体整体对地球有相对运动,但流体对运动容器无相对运动,流体质点之间也无相 对运动,这种静止或叫流体的相对静止★:体积力:作用于流体的每一个流体质点上,其大小与流体所具有的质量成正比的力。在均质流体中,质量力与受作用流体的体积成正比,因此又叫。 4.★表面力:表面力是作用于被研究流体的外表面上,其大小与表面积成正比的力。 5.★压强:在静止或相对静止的流体中,单位面积上的内法向表面力称为压强。 6.等压面:在静止流体中,由压强相等的点所组成的面。 7.★位置水头(位置高度):流体质点距某一水平基准面的高度。 8.压强水头(压强高度):由流体静力学基本方程中的p/(ρg)得到的液柱高度。 9.★静力水头:位置水头z和压强水头p/(ρg)之和。 10.压强势能:流体静力学基本方程中的p/ρ项为单位质量流体的压强势能。

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

流体力学知识点大全

流体力学-笔记参考书籍: 《全美经典-流体动力学》 《流体力学》张兆顺、崔桂香 《流体力学》吴望一 《一维不定常流》 《流体力学》课件清华大学王亮主讲 目录: 第一章绪论 第二章流体静力学 第三章流体运动的数学模型 第四章量纲分析和相似性 第五章粘性流体和边界层流动 第六章不可压缩势流 第七章一维可压缩流动 第八章二维可压缩流动气体动力学 第九章不可压缩湍流流动 第十章高超声速边界层流动 第十一章磁流体动力学 第十二章非牛顿流体 第十三章波动和稳定性

第一章 绪论 1、牛顿流体: 剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。 2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。此时,流体内部没有内摩擦,也就没有内耗散和损失。 层流:纯粘性流体,流体分层,流速比较小; 湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。因 为流速增加导致层流出现不稳定性。 定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变, 3、欧拉描述:空间点的坐标; 拉格朗日:质点的坐标; 4、流体的粘性引起剪切力,进而导致耗散。 5、无黏流体—无摩擦—流动不分离—无尾迹。 6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dt ρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。是一个过程方程。 7、流体的几种线 流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ??=

迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=????= 涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团 准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。 第二章流体静力学 1、压强:0lim A F dF p A dA ?→?==? 静止流场中一点的应力状态只有压力。 2、流体的平衡状态: 1)、流体的每个质点都处于静止状态,==整个系统无加速度; 2)、质点相互之间都没有相对运动,==整个系统都可以有加速度; 由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有: 体积力(重力、磁场力)和表面力(压强和剪切力)存在。 3、表面张力:两种不可混合的流体之间的分界面是曲面,则在曲面两边存在一 个压强差。 4、正压流场:流体中的密度只是压力(压强)的单值函数。() dp p ρ? 5、涡量不生不灭定理 拉格朗日定理:理想正压流体在势力场中运动时,如某一时刻连续流场无旋,则 流场始终无旋。0,,ndA U ωω?==??? 有斯托克斯公式得:00,A l U x ndA δωΓ=?=?=??

流体力学计算题及答案.docx

例 1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程 z0=3m,压差计各水银面的高程分别为z1=0.03m, z 2=0.18m, z 3=0.04m, z 4=0.20m,水银密度ρ13600kg / m3,水的密度ρ 1000kg / m3。试求水面的相对压强p0。 解: p0γ(z0 z1 ) γ'( z2z1) γ'(z4z3 ) p a p0γ'(z2z1 z4z3 ) γ(z0 z1 ) 例 2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为 θ的Π形管。已知测压计两侧斜液柱读数的差值为L=30mm,倾角θ=30 °,试求压强差p1– p2。 解:p1γ(z3z1 )γ(z4z2 ) p2p1p2γ(z3z4 )γL sinθ 例 3:用复式压差计测量两条气体管道的压差(如图所示)。两个U形管的工作液体为水银, 密度为ρ2,其连接管充以酒精,密度为ρ 1 。如果水银面的高度读数为z1、 z 2、 z 3、z4,试求压强差p A– p B。

解:点 1 的压强: p A点2的压强: p2p Aγ2( z2z1 ) 点 3的压强: p3 p Aγ2( z2z1 )γ1( z2 z3 ) p4p Aγ2( z2z1 ) γ1(z2z3 ) γ2( z4z3 ) p B p A p Bγ2(z2 z1 z4z3 ) γ1( z2z3 )例 4:用离心铸造机铸造车轮。求A-A 面上的液体总压力。 解:p 1 2r2gz C p 1 2r2gz p a 22 在界面 A-A 上: Z = - h p 1 2r2gh p a F( p p a ) 2 rdr 21 2 R41 ghR2 R 2082 例 5:在一直径 d = 300mm,而高度 H= 500mm的园柱形容器中注水至高度h1 = 300mm, 使容器绕垂直轴作等角速度旋转。如图所示。 (1) 试确定使水之自由液面正好达到容器边缘时的转数n1; (2)求抛物面顶端碰到容器底时的转数 n2,此时容器停止旋转后水面高度 h2将为多少? 解: (1)由于容器旋转前后,水的体积不变( 亦即容器中空 气的体积不变 ) ,有:图1d 2L1 d 2 (H h1 ) 424 L 2( H h1 ) 400 mm0.4 m 在 xoz 坐标系中,自由表面 2 r 2 1 的方程:z0 2g 对于容器边缘上的点,有: d 0.15m z0 r 2 2gz0 2 9.80.4 r 20.152 ∵ 2 n / 60L0.4m 18.67( rad / s) n1 606018.67 2 178.3 (r / min) 2 (2) 当抛物面顶端碰到容器底部时,这时原容器中的水将被甩出一部分,液面为图中2

流体力学总结

流体力学总结 第一章 流体及其物理性质 1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用, 流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。 4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和 激波情况下不适合。 5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4C 时纯水的密度(1000)之比 w w S ρ ρρ= 为4C 时纯水的密度 13.6Hg S = 7. 混合气体密度1 n i i i ρρα == ∑ 8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数 为体积模量1 P P K β= 1p V p V δβδ=- 1 1 0 1.4p p T Q p p βγβγ→= === 9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。 1T V T V δβδ= 1 T p T β→= 10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不 可压缩流体。气体流速不高,压强变化小视为不可压缩流体

11. 牛顿内摩擦定律: du dy τμ = 黏度du dy τ μ= 流体静止粘性无法表示出来,压强对黏 度影响较小,温度升高,液体黏度降低,气体黏度增加 μ υρ = 。满足牛顿内摩擦定律的流体为牛顿流体。 12. 理想流体:黏度为0,即0μ=。完全气体:热力学中的理想气体 第二章 流体静力学 1. 表面力:流体压强p 为法向表面应力,内摩擦τ是切向表面应力(静止时为0)。 2. 质量力(体积力):某种力场对流体的作用力,不需要接触。重力、电磁力、电场力、 虚加的惯性力 3. 单位质量力:x y z F f f i f j f k m ==++ ,单位与加速度相同2m s 4. 流体静压强: 1)流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向 2)在静止流体内部任意点处的流体静压强在各个方向都是相等的。 x y z n p p p p === 5. 流体平衡微分方程式(欧拉平衡方程) 101010 x y z p f x p f y p f z ρρρ?- =??-=??-=? 10 p p p f p p i j k x y z ρ???-?=?= ++??? 6. 压差方程 ()x y z dp f dx f dy f dz ρ=++ 7. 势函数 ()()() ,,x y z f f f x y z πππ?-?-?-= ==??? ()dp d ρπ=-

47全国自考流体力学知识点汇总

3347流体力学全国自考 第一章绪论 1、液体和气体统称流体,流体的基本特性是具有流动性。流动性是区别固体和流体的力学特性。 2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。 3、流体力学的研究方法:理论、数值和实验。 4、表面力:通过直接接触,作用在所取流体表面上的力。 5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。重力是最常见的质量力。 6、与流体运动有关的主要物理性质:惯性、粘性和压缩性。 7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。 8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。粘性是流体的内摩擦特性。粘性又可定义为阻抗剪切变形速度的特性。 9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。 10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。 11、压缩性:流体受压,分子间距离减小,体积缩小的性质。 12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。 13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。 14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。 第二章流体静力学 1、精致流体中的应力具有一下两个特性: 应力的方向沿作用面的内法线方向。 静压强的大小与作用面方位无关。 2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。 3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、 4、相对压强是以当地大气压强为基准起算的压强。 5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个·又称负压,这种状态用真空度来度量。 6、工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。因此,先跪压强又称为表压强或计示压强。 7、z+p/ρg=C: z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。 p/ρg=h p,称为测压管高度或压强水头,其物理意义是单位重量的液体具有的压强势能,简称压能。 z+p/ρg称为测压管水头,是单位重量液体具有的总势能,其物理意义是静止液体中各点单位重量液体具有的总势能相等。 第三章流体动力学基础 1、描述流体运动的两种方法:拉格朗日法和欧拉法。 2、拉格朗日法:从整个流体运动是无数个质点运动的综合出发,以个别质点为观察对象来描述,再讲每个质点的运动情况汇总起来,就描述了流体的整个流动。 3、欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个时刻的情况汇总起来,就描述了整个运动。

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)

流体力学题及答案

C (c) 盛有不同种类溶液的连通器 D C D 水 油 B B (b) 连通器被隔断 A A (a) 连通容器 1. 等压面是水平面的条件是什么 2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面哪个不是等压面为什么 3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。 4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。求A 、B 两点的静水压强。

答:与流线正交的断面叫过流断面。 过流断面上点流速的平均值为断面平均流速。 引入断面平均流速的概念是为了在工程应用中简化计算。8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问: (1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流是均匀流还是非均匀流

(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流 (3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系 9 水流从水箱经管径分别为cm d cm d cm d 5.2,5,10321===的管道流 出,出口流速s m V /13=,如图所示。求流量及其它管道的断面平 均流速。 解:应用连续性方程 (1)流量:==33A v Q s l /10 3 -?

(2) 断面平均流速s m v /0625.01= , s m v /25.02=。 10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化 解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。 (4)流量不变则流速不变。 11. 说明总流能量方程中各项的物理意义。 12. 如图所示,从水面保持恒定不变的水池中引出一管路,水流在管路末端流入大气,管路由三段直径不等的管道组成,其过水面积分别是A 1=,A 2=,A 3=,若水池容积很大,行近流速可以忽

流体力学总结

流体力学总结 [题型]:简答题 流体静压强实验的操作步骤, 答案:(1)搞清仪器组成及其用法;(2)检查仪器是否密封,将阀门关闭,加压后检查测管液面高程是否恒定,若下降,表明漏气,应查明原因并加以处理;(3)量测点静压强(各点压强用厘米水柱高表示);(4)打开排气阀,记录水箱液面标高?0和各测压管液面标高?H (?H =0);(5) 关闭排气阀,用加压器缓慢加压,U形管出现压差?h。在加压的同时,观察左侧? A1、A2、B1、B2管的液柱上升情况,由于水箱内部的压强向各个方向传递,在左侧的测压管中,可以看到由于A、B两点在水箱内的淹没深度h不同,在压强向各点传递时,先到A点后到B点。在测压管中反应出的是A1管的液柱先上升,而B1管的液柱滞后一点也在上升,当停止加压时,A1、B1两点在同一水平面上, A2、B2两点与水箱内液面在同一水平面上,测记?0及各?H(此过程反复进行3 次;(6)打开排气阀,使液面恢复到同一水平面上。关闭排气阀,打开密闭容器底部的水门,放出一部分水,造成容器内压力下降,观察U形管中液柱的变化情况,测记?0及各?H(此过程反复进行3次)。 难度:1 分数:100 所属知识点: 知识体系/建筑系/土木专业/《流体力学》/流体动力学 [题型]:简答题 雷诺方程演示实验的操作步骤, 答案:(1)测记本实验的有关常数;(2)观察两种流态;(3)打开开关3使水箱充水至溢流水位,经稳定后,微微开启调节阀9,并注入颜色水于实验管内,使颜色水

流成一直线。通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征,待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征;(4)测定下临界雷诺数;(5) 将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小。当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态;(6)待管中出现临界状态时,用体积法或重量法测定流量;(7)根据所测流量计算下临界雷诺数,并与公认值(2320)比较,偏离过大,需重测;(8)重新打开调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次;(9)同时用水箱中的温度计测记水温,从而求得水的运动粘度。难度:1 分数:100 所属知识点: 知识体系/建筑系/土木专业/《流体力学》/流体动力学 [题型]:简答题 流体力学综合实验的操作步骤, 答案:(1)测记本实验的有关常数;(2)打开电子调速器开关,使恒压水箱充水,排除实验管道中的滞留气体,待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平;(3)打开泄水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法测记流量;(4)改变泄水阀开度3,4次,分别测记测压管读数及流量;(5) 实验完成后关闭泄水阀,检查测压管液面齐平后再关闭进水阀。 难度:2 分数:100 所属知识点: 知识体系/建筑系/土木专业/《流体力学》/流体动力学 [题型]:简答题 能量方程演示实验的操作步骤,

流体力学计算题

水银 题1图 高程为9.14m 时压力表G 的读数。 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

相关主题
文本预览
相关文档 最新文档