当前位置:文档之家› 用NE555与TDA1521设计的D类数字功放

用NE555与TDA1521设计的D类数字功放

用NE555与TDA1521设计的D类数字功放
用NE555与TDA1521设计的D类数字功放

用NE555与TDA1521设计的D类数字功放

作者:renlei 时间:2009-11-17 12:11:39 点击:1698

今天设计的这款开关型(D类)音频功率放大器采用时基电路NE555推动双声道功放TDA1521,在±16V供电时可以以高于85%的效率输出30W×2的功率。

电原理见图。NE555时基IC被接成振荡频率120kHz、占空比50%的方波振荡器。音频信号由⑤脚输入时,③脚的输出信号占空比就会随着输入音频信号的幅值高低而作线性变化。该信号经TDA1521功率放大后再经L1~L4、C1~C4构成的滤波电路还原音频信号。快恢复二极管D1~D4用以保护TDA1521免受L1~L4自感电势的损坏。由于IC都是工作于开关状态,因而可以高效率地输出大功率。

调试时先不输入音频信号,此时TDA1521的输出端对地电压应为0V,否则是时基电路静态输出非对称的方波,应调节RP预以校正。然后输入信号扬声器应发声。本装置在输入1kHz的音频信号而输出功率为30W×2时,实测效率达85%以上,谐波失真小于0.8%,效果是出入意料地理想。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音响课程设计报告(模板)

音响电路设计 课程名称:音响放大器设计 内容摘要:(1)了解音响放大器的基本组成和总体设计 (2)了解音响放大器各组成部分的具体设计 (3)了解其安装及调试过程 设计要求: 1设计一个音响放大器,要求具有音调控制、音量控制等功能,可接入电脑音频信号、录音机线路输出信号等扩音,或作为有源音箱等; 2电路基本要求内含前置放大、音调控制、功率放大等; 3画出音响放大器的电路原理图,分析各部分电路的工作原理; 4电路制作与调试; 5简易故障的判定及排除。 一、设计的作用和目的以及意义 在很多电气设备中都有音响功率放大器,集成音响功率放大器具有工作稳定、性能好、易于安装调试、成本低等优点。集成功放加上前置放大器、音调控制电路就可构成音响放大器。前置放大主要完成对输入信号的放大,一般要求输入阻抗高,输出电阻低,频带宽,噪声小;音调控制主要实现对输入信号高、低音的提升和衰减;功率放大器决定了整机的输出功率、非线性失真系数等指标,要求功率高、失真尽可能小、输出功率大。 目的: 1.通过多语音放大器的设计,掌握低频小信号放大电路的工作原理和设计方法。 2.进一步理解集成运算放大器和集成功放的工作原理,掌握有源滤波器和功放电路的设计过程。 3.了解一般电子电路的设计过程和装配与调试方法。 设计意义: 1. 音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。预计音响技术今后的发展主流为数字音响技术。 2. 通过音响放大器设计,使我们认识到一个简单的模拟电路系统,应当包括信号源、输入级、中间级、输出级和执行机构。信号源的作用是提供待放大的电信号,如果信号是非电量,还须把非电量转换为电信号,然后进入输入级,中间级进行电流或电压放大,再进入输出级进行功率放大,最后去推动执行机构做某项工作。

基于单片机的D类功放设计

编号: 毕业设计说明书 题目:基于单片机的D类功放设计 院(系):桂林电子科技大学职业技术学院 专业:电子信息工程 学生姓名: 学号:010********* 指导教师: 职称:讲师 题目类型:理论研究√工程设计软件开发 2013 年10 月25 日

摘要 数字功放由于其效率高、易与数字音源对接等优点而在现实生活中具有越来越广泛的应用。本设计基于单片机制作了一款D类功放。功放系统利用单片机的AD转换功能将输入的音频信号转换为占空比随模拟信号电压变化的PWM信号,经功率放大器放大随输入音频变化的PWM信号,再由低通滤波器把PWM波形中的声音信息解调出来。系统以内带AD转换器的8051内核单片机STC12C5410AD为音频采集核心,由单片机内部算法转换成SPWM信号。系统的放大部分采用功率型高速MOSFETD开关管组成推挽放大电路,主要用来PWM信号放大,最后利用LC低通滤波器对脉冲信号进行平滑处理,还原出声音电信号,最后通过扬声器来转换输出放大了的声音信号。经试验验证,本文制作的D类功放,具有功耗低、成本低、电路简单、音质较好等优点。 关键词:数字功放;STC12C5410AD;推挽放大;PWM;低通滤波器

Abstract Digital power amplifier because of its advantages of high efficiency, easy to dock with the digital audio source and has more and more widely used in real life. This design based on single chip microcomputer made a class D power amplifier. Power amplifier system using MCU AD conversion function converts input audio signal duty cycle change with analog signal voltage PWM signal, the PWM power amplifier amplification change with the input audio signal, and then by the low-pass filter demodulation of the PWM waveform sound information. System with the AD converter within 8051 kernel microcontroller STC12C5410AD as the core audio collection, internal algorithm converts the SPWM signal by single-chip microcomputer. Amplification part of the system of using power type high-speed MOSFETD switching tube push-pull amplifier circuit, mainly used for PWM signal amplification, finally using LC low pass filter to smooth the pulse signal, the reduction of noise signals, finally through the speaker to the transformation output amplified voice signal. Verified by test, this paper made of class D power amplifier, has low power consumption, low cost, simple circuit, good sound quality, etc. Key words:Digital power amplifier; STC12C5410AD; Push-pull amplifier; PWM. Low pass filter

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

数字功放电路设计

数字功放电路设计 在很多个人计算机或小家电音响数字功放设计中,电源部分由市电经整流、滤波和稳压电路等处理后供给,电路复杂,而且体积大而重。本方案音响功放采用了SWITCH-MODE POWER SUPPLY,使得供电变的简单灵活更实用,且低成本,低功耗,体积小,效率高,设计灵活使用方便的数字功率放大技术。 图1 1、方案设计 图1是功放电路原理图,功能模块上主要有:供电部分,信号输入部分、信号处理功率放大部分、输出部分最后由扬声器或喇叭输出的解决方案。为实

现上述目的,本方案提出用9v或1 2 V直流稳压电源即通用的S W I T C H-MODE POWER SUPPLY供电。输入端是直接从数码信号源如PC音频输出端、CD唱机、DVD影碟机、DVD Audio以及LCD或DTV数码电视等输入的数码音频信号,而不是经过ADC模数转换或DAC数模转换处理的音乐模拟信号。所述功率放大电路主要由,供电电路、信号输入、功放IC处理以及信号输出组成。 输出部分由扬声器或喇叭组成。本方案所要达到的效果是:通过电路分析信号输入与数字音源的无缝结合、能有效降低信号间传递干扰,由于采用无负反馈的放大电路、低通滤波器等处理,可以将输出滤波器的截止频率设计得较高,从而保证在20Hz-20kHz内得到平坦的幅频特性和很好的相频特性,使得整个频段内无相对相移,声场定位准确。另外,由于它不需传统音响功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之无模拟放大、无负反馈的牵制,故具有更好的“动力”特征,即"动态特性"好。除此之外,如附图2所示:LC滤波器的差分实现,它们为滤波器提供相反极性的脉冲,其中滤波器包含两个电感器、两个电容器和扬声器。 2、具体实施方式及应用 如附图1所示:本方案的音响功放的信号流向如下所述:右声道信号(SP_IN_R)由R5,C2的RC串联电路送入功放IC的RINP脚,经IC处理一路由BSRP脚输出给由C13,L2,C17组成的LC低通滤波电路,最后输出给终端SP_OUT_R+;另一路由BSRN脚输出给由C16,L3,C18组成的LC低通滤波电路,最后输出给终端SP_OUT_R-;右声道地信号由RINN脚进入。左声道信号(SP_IN_L)由R6,C4的RC串联电路送入功放IC的LINP脚,经IC处理一路由BSLP脚输出给由C6,L6,C10组成的LC低通滤波电路,最后输出给终端SP_OUT_-;另一路由BSLN脚输出给由C9,L7,C11组成的LC低通滤波电路,最后输出给终端SP_OUT_L+;右声道地信号由RINN脚进入。图2是功放的低通滤波器电路图。

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

数字功放原理

数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质差,音频放大中一般都不用,这几种模拟放大电路的共同的特点是晶体管都有工作在线性放大区域中,它按照输入音频信号大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗。所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高。 图1是数字D类功放的工作原理框图。D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中。 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低。双向信号可用其它方式调制,如占空比50%,即脉冲

宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负。因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制。 音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频。二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码。获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码。输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定。功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便。由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠。 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确。

双声道音频功放的设计

双声道音频功放的设计 1引言 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术 的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发 展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电 子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响 应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常

很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。 高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或;宽带高频功率放大器的输出电路则是或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于

功放供电电路设计

射频功放设计规范和指南

II

目录 前言 ...........................................................................................................................错误!未定义书签。第一章射频功放设计步骤 (5) 1.1定设计方案 (5) 1.1.1 GSM及PHS基站系统 (5) 1.1.2 CDMA及WCDMA基站系统 (7) 1.2选择确定具体线路形式及关键器件 (9) 1.2.1射频放大链路形式与关键器件选择及确定 (9) 1.2.2控制电路的确定 (12) 1.3进行专题实验或一板实验 (13) 1.4结构设计及PCB详细设计 (13) 1.5进行可生产性、可测试性的设计与分析 (13) 第二章功放设计中的检测及保护电路 (14) 2.1引起功放失效的原因 (14) 2.2功放保护电路设计类型 (15) 2.3功率放大器的保护模型 (16) 2.4功放的状态监测 (17) 2.5状态的比较判断 (18) 2.6保护执行装置 (19) 2.7保护电路举例分析 (19) -1-

第三章功放中增益补偿电路的实现 (21) 3.1模拟环路增益控制 (21) 3.2数字环路增益控制 (21) 3.3温度系数衰减器 (22) 第四章功放供电电路设计 (23) 4.1功放电路的供电形式 (23) 4.1.1 LDMOS器件供电电路 (23) 4.1.2 GaAs器件供电路。 (25) 4.2电源偏置 (26) 4.3布局 (26) 4.4电容的选用 (26) 第五章输入输出匹配及功率合成技术 (28) 5.1用集总参数元件进行阻抗匹配电路的原理及设计实例 ............................ 错误!未定义书签。 5.1.1输入阻抗中含感性特性的匹配设计.................................................. 错误!未定义书签。 5.1.2输出阻抗中含容性特性的匹配设计.................................................. 错误!未定义书签。 5.2用分布参数来进行阻抗匹配........................................................................ 错误!未定义书签。 5.3功率合成技术................................................................................................ 错误!未定义书签。 5.3.1功率分配和合成单元。...................................................................... 错误!未定义书签。第六章功放设计中的前馈技术 .. (40) 6.1前馈技术 (40) 6.2实现方案 (43) 6.2.1方案介绍 (43) 6.2.2主功放模块(MAM) (45) 6.2.3误差放大器模块 (46) -2-

音频功率放大器课程设计报告

课程设计报告 设计题目:音频功率放大器系别:电子工程系 专业:信息工程 班级:09信工班 学生姓名: 2011年09月29日 课程设计任务书

目录 一、设计要求 二、设计总体方案 2.1设计思路 2.2 音频功放各级的作用和电路结构特征 2.3简要原理分析 三、选择器件及参数计算 3.1电路元件参数及介绍 3.2参数计算 3.2.1参数计算 3.2.2功率的计算 四、用multisim仿真音频功率放大器 五、实物电路安装调试及使用 5.1电路调整与测试 5.2通电观察 六、设计体会与总结 七、参考文献

一、设计要求 音频功率放大器具体要求: 功率5W到10W。 电源电压20V以下。 最后一级功率放大级必须采用三极管电路,中间级可以采用运放等集成电路。(可选功能)加分频器,输出高频低频两路信号(用于接高音喇叭和低音喇叭)。最后要算出功耗、输出功率和频率响应曲线。 二、设计总体方案 2.1设计思路 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;加入输入信号的幅值过大,功率放大器的输出信号将严重过载失真。这样就失去了音频放大的意义了,所以一个实用音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。最后音频放大器由前置放大器和音调控制电路和功率放大器三部分组成。 组成框架如下图: 2.2 音频功放各级的作用和电路结构特征 本次设计是基于10瓦音频放大器,由于时间有限,上网找了一些电路图,下幅电路图稍微修改后是最合适的。由于电路采用NE5532芯片,芯片内部已包含

D类音频功放设计

D类音频放大器的设计与制作 摘要:本项目涉及高效节能、数字化、体积小、重量轻等特点的D类功率音频放大器。适应便携设备高效及节能的客观要求。顺应了市场的客观要求。从而在音频集成领域具有很大的优势。随着设计技术不断进步D类功率放大器的要求也在不断提高本文通过基于CMOS工艺的D类功率音频放大器构成,驱动实现、失真度等方面的特性来进行电路的设计。本课题的目标是设计一个D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~10000Hz,输出功率IW,输出信号无明显失真。根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H桥互补对称输出及低通滤波模块等。其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET管,滤波器采用Butterworth低通滤波器。 关键词:D类功率放大器H桥驱动脉宽调制 目录 1. 引言 (1) 2. 系统方案 (1) 2.1 总体方案设计 (1) 2.2 三角波模块设计方案 (2) 2.3高速开关电路设计方案 (3) 3. 硬件电路设计 (4) 3.1 三角波发生器 (4) 3.2 放大电路 (5) 3.3脉宽调制比较器 (5) 3.4驱动电路、H桥 (6) 4. 测试方案与测试结果: (7) (1)列出主要的测试仪器、仪表; (7) (2)系统测试: (7) (3)测试结果分析: (7) 5. 设计总结: (7) 参考文献: (7) 附录: (8) 系统原理图; (8)

1.引言 近几年,国际上加进了对D类音频功率放大器的研究与开发,并取得了一定的进展,各项实用性指标和可靠性指标都有很大改善,并不断在向更大的输出功率,更小的体积,更轻的重量,更多的功能和智能化方向发展。20世纪80年代初,欧洲有些专业公司开始研究晶体管功放与电子管功放之间的性能差异及解决办法。电子管是一种电压控制器件,需要的控制功率极微,开关速率很快。晶体管是一种电流控制器件,需有较大的控制电流,转换速率较慢,这是最基本的差别。数字功放的概念早在20 世纪60年代就有人提出了,由于当时技术条件的限制,进展一直较慢。 这一技术一经问世立即显示出其高效,节能,数字化的显著特点,引起了科研,教学,电子工业,商业界的特别关注。不久的将来,D类音频功率放大器必然取代传统的模拟音频功率放大器。 2.系统方案 2.1总体方案设计 D类功放是放大元件处于开关状态时的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状体,晶体管相当于一个接通的开关,把电源与负载直接接通。 D类音频功放按其结构可以分为三个部分。 2.1.1调制器 最简单的只需要用一个运放构成的比较器即可完成。把原始的音频信号加上一定的直流偏置后放在运放的正输入端,在将一个有自激震荡生成的三角波添加到运放的负输入端。当正向输入端上的电位高于负端三角波的电位时比较器输出为高电平,反之则输出低电平,当音频输入信号输入时,正半轴期间,比较器输出高电平的时间比低电平的时间长,方波的占空比大于1山负半轴期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波的占空比小于1:10这样,比较器输出的波形就是一个脉冲宽度被音频信号輻度调制后的波形,成为PWM (Pulse Width Modulation脉宽调制)或者(I)M (Pulse Duration Modulation脉冲持续时间调制)波形。音频信号被调制到脉冲波形中

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

大学生音频功率放大电路课程设计报告

课程设计 课程名称_____________________ 题目名称______________________ 学生学院______________________ 专业班级______________________ 学号______________________学生姓名______________________ 指导教师______________________ 20119年 5 月13 日

目录 一、前言 3 二、课程设计 11 三、课程设计题目 12 四、设计任务和要求 12 五、原理电路设计 12 六、电路调试过程与结果 16 七、总结 21 八、参考文献 22 九、实物图23

一、前言 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。 音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常很高(至少 40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪声,所以经常采用反馈

.音频放大器是在产生声音的输出元件上重建输入的音频信号的设备,其重建的信号音量和功率级都要理想——如实、有效且失真低。 音频范围为约20Hz~20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV 或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。 简介 音频放大器是多媒体产品的重要组件之一,广泛应用于消费类电子领域。线性音频功放因失真小、音质好,在传统的音频放大器市场上一直占主导地位。近年来,随着MP3、PDA、手机、笔记本电脑等便携式多媒体设备的普及,线性功放的效率和体积已不能满足市场的要求,而D 类功放以效率高、体积小等优点越来越受到人们的青睐。因此,高性能的D类功放具有十分重要的应用价值及市场前景。 音频放大器的发展先后经历了电子管(真空管)、双极型晶体管、场效应管三个时代。电子管音频放大器音色圆润、甜美,然而它体积庞大、功耗高、工作极不稳定,且高频响应不佳;双极晶体管音频放大器频带宽、动态范围大、可靠性高、寿命长,且高频响应好,然而它的静态功耗、导通电阻都很大,效率难以提高;场效应管音频放大器具有与

数字功放的设计概要

本科生毕业论文(设计) 题目: 数字功放的设计 姓名: 江丹 学院: 专业: 班级: 学号: 指导教师: 2014 年5月 25 日

目录 引言 (2) 1功放简介与发展现状 (3) 1.1 功放的种类 (3) 1.1.1 A类功率放大器 (3) 1.1.2 B类功率放大器 (3) 1.1.3 AB 类功率放大器 (3) 1.1.4 D类功率放大器 (4) 1.2数字功放的发展现状 (4) 2 数字功放的基本原理及电路组成 (5) 2.1 数字功放的工作原理 (5) 2.2 数字功放的电路组成 (6) 3 各模块电路设计 (7) 3.1 前置放大电路 (7) 3.2 三角波产生电路 (8) 3.3 比较器电路 (9) 3.4 驱动电路 (10) 3.5 功放与低通滤波电路 (11) 3.6 直流稳压电源 (13) 4 功能仿真与数据分析 (12) 4.1各电路仿真结果 (12) 4.1.1前置放大信号 (12) 4.1.2 三角波信号 (13) 4.1.3 PWM码 (13) 4.1.4 经过功放管的PWM码 (13) 4.4.5还原出的音频信号 (14) 4.2 数据计算与分析 (14) 4.2.1 电压放大倍数 (14) 4.2.2 效率 (14) 4.2.3 通频带宽度 (15) 5数字功放干扰抑制 (15) 6 D类功放的发展与技术展望 (16) 6.1 D类功放的不足 (16) 6.2 D类功放的最新发展——T类功率放大器 (16) 结论 (17) 致谢 (18) 参考文献 (18) 附录 (19)

数字功放的设计 电子信息工程专业学生 摘要:在日常生活中,我们已经感受到了电子技术给我们带来的便捷。在我们使用的各类电子设备中,数字功放正发挥着其不可替代的作用。所以设计出功能优异的数字功放已经是各大电子器件制造商的迫切任务。本文从数字功放的基本原理出发,着重介绍了它的各个电路组成部分。利用Multisim软件对所设计的电路进行功能仿真,并且达到了预期的效果。在实际电路中,针对其产生的电磁干扰提出了一些抑制方法。最后数字功放的发展趋势进行了简要描述。 关键词:PWM码门驱动电路滤波电路电磁干扰 引言 随着科学技术的不断发展,各种各样的电子产品层出不穷,例如笔记本电脑、移动通信终端、音箱等。这些事物的出现极大的丰富了我的日常生活,给我们的工作带来了很多便捷。然而,要使这些产品正常工作,数字功放是不可或缺的。数字功放其功放管的工作在导通和截止状态,如果输入信号使功放管处在导通状态,此时在理想状态下晶体管的内阻近似为零,所以管子两端没有压降,自然就不会产生功率消耗;如果输入信号使晶体管处在截止状态,那么晶体管的内阻就为无穷大,流经管子的电流就为零,也没有功率消耗。所以,晶体管在控制电路工作时是不会消耗功率的,这正是功放管能够达到比较高的效率的原因之一。正是由于数字功放的优越性能,所以它被广泛应用于电子设备中。因此,设计出符合要求的数字功放就显得格外重要。 1功放简介与发展现状 1.1 功放的种类 1.1.1 A类功率放大器 A类功放又称为甲类功放,如图1.1(a),对于此放大器的功率输出管,必须将其Q值设置在直流负载线的中点部分,因为这部分的线性最佳。这样输人信号在正负两个半周期内都能够使放大管在线性放大状态下工作,这时其导通角为360°。随之带来的问题就是能量转换效率很低,电路的最高效率也只有25%,并且需要两种晶体管交替互补才能使整个周期都处在放大状态,也不可避免地产

电子技术课程设计报告2009(音响放大器)

湖州师范学院求真学院课程设计总结报告 课程名称电子技术课程设计 设计题目音响放大器 专业 班级 姓名 学号 指导教师 报告成绩 求真学院信息与工程系

二〇一〇年十二月二十九日

《电子技术课程设计》任务书 一、课题名称 音响放大器设计 二、设计任务 1、设计一个音响放大器,要求具有音调控制、音量控制等功能,可接入电脑音频信号、录音机线路输出信号等扩音,或作为有源音箱等; 2、电路基本要求内含前置放大、音调控制、功率放大等; 3、画出音响放大器的电路原理图,分析各部分电路的工作原理; 4、电路制作与调试,测试直流工作点,关键点的波形; 5、简易故障的判定及排除。 三、技术指标 a)要求输出额定功率为≥1W,无明显失真,音调调节与音量调节作用明显; b)负载阻抗(扬声器阻抗)4-8欧,输入信号约为几十mV至100mV; 四、设计报告 根据要求撰写设计报告

《音响放大器的设计》 课程设计总结报告 目录 一、引言 二、任务分析 2.1 放大器的发展 2.2放大器的分类 2.2.1甲类放大器 2.2.2乙类放大器 2.2.3甲一名类放大器 三、设计方案 3.1工作原理 3.2不同方案的比较: 3.3 TDA2030参数,特点及典型应用 3.3.1引脚情况: 3.3.2电路特点: 3.3.3极限参数 3.3.4主要性能指标

3.3.5 注意事项 3.3.6.理想运算放大器特性 3.3.7.理想运放在线性应用时的两个重要特性: 四、电路设计及元器件清单 4.1主体OTL功率放大器图 4.2、手持式扩音器附加图 4.3在protel 99 SE中作出相关的原理图 4.4在protel 99 SE中作出相关的PCB图 4.5元器件清单 五、焊接及调试 5.1 焊接 5.1.1焊接技术 5.1.2焊接的注意事项 5.2焊后处理 5.3导线焊接 5.4常用连接导线 5.5调试 5.5.1主体OTL功率放大器调试 5.5.2手持式扩音器调试 六、展望 七、感想 八、参考文献 附:电源电路图

数字功放

数字功放 数字功放概述 ?·数字功放简介 ?·数字功放原理 ?·数字功放制作方法 ?·数字功放中音质和载波频率... 数字功放的应用 ?·DDX的数字功放解决方案 ?·基于德仪音频的高保真数字功放 数字功放简介 数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。 数字功放原理 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗; 而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高. 图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中. 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.

音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠. 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确. 数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起. 从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低. 利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.

相关主题
文本预览
相关文档 最新文档