当前位置:文档之家› Weinreb酰胺的制备及应用研究进展

Weinreb酰胺的制备及应用研究进展

Weinreb酰胺的制备及应用研究进展
Weinreb酰胺的制备及应用研究进展

学年论文

题目: Weinreb酰胺的制备及应用研究进展

学院:化学化工学院

专业: 11级化学(师范)

指导教师:

学生姓名

学号:

2014年 5月 30日

目录

摘要------------------------------------------------------------------------------第3页关键字---------------------------------------------------------------------------第3页

1.Weinreb酰胺简介------------------------------------------------------第3页

2.Weinreb酰胺的合成方法:-------------------------------------------第4页

2.1有机锌试剂制备weinreb酰胺的方法------------------------第4页

2.2以羧酸为原料的合成法-----------------------------------------第5页

2.3以羧酸酯为原料的合成法----------------------------------------第6页

2.4以酰氯为原料的合成法-------------------------------------------第6页

2.5以酰胺为原料的合成法-------------------------------------------第7页

3. weinreb酰胺的应用进展----------------------------------------------第7页

3.1用weinreb酰胺合成酮---------------------------------------------第7页

3.2weinreb酰胺还原反应--------------------------------------------第7页

3.3weinreb酰胺水解反应--------------------------------------------第8页

4.总结:-------------------------------------------------------------------------第8页参考文献:---------------------------------------------------------------------第8页

Weinreb酰胺的制备及应用研究进展

摘要:Weinreb酰胺是一类十分重要的酰基化试剂,在许多天然产物的合成中有着的广泛的应用,其合成的方法有很多种,在此介绍羧酸、羧酸酯、酰氯、酰胺为原料和用有机锌试剂制备weinreb酰胺的方法。并进行了Weinreb酰胺在其他化学反应中的应用研究。

关键词: Weinreb酰胺;有机锌试剂;应用研究

1.Weinreb酰胺简介

N-甲基-N-甲氧基酰胺(Weinreb酰胺)[1]是一类十分重要的酰基化试剂,这类酰胺与其它酰胺不同,它与金属试剂(如Grignard试剂)作用时,生成酮而不是醇.这是由于反应过程中形成了稳定的金属螯合物中间体2,此中间体在反应介质中不会解离产生羰基化合物,所以即使过量的金属试剂存在,也不会进一步反应,只有反应结束后进行酸解时才产生相应的产物酮3[2]反应方程式如下:(图一)。

(图一)

然而,具有光学活性的Weinreb酰胺与金属有机试剂或金属氢化物作用时,其构型不会发生转变.正由于Weinreb酰胺具有这个性质以至于使它成为研究的热点。例如:(-)Spinosyn[3],Pectenotoxin-4[4], Lyconadin[5],Apoptolidin [6], L-3-(o-Methoxybenzoy1)alaninet[7]等许多天然产物的合成中都利用了Weinreb酰胺的结构单元。

2.Weinreb酰胺的合成方法:

Weinreb酰胺在许多天然产物的合成中有着的广泛的应用,那么,如何、有效、快速、选择性的合成Weinreb酰胺也是引起了不少人的关注和兴趣。接下来我主要讲一下以羧酸、羧酸酯、酰氯、酰胺为原料和用有机锌试剂制备weinreb 酰胺的方法。

2.1有机锌试剂制备weinreb酰胺的方法

用带Weinreb酰胺官能团的有机卤化锌试剂合成[8] Weinreb酰胺,首先用活化的锌粉与N-甲基-N-甲氧基-3-碘丙酰4反应制得带Weinreb酰胺官能团的有机碘化锌试剂,再与CuCN,LiC1进行铜锌交换生成了反应活性较高的铜锌试剂[9],最后与酰氯反应高产率的得到了9种新的Weinreb酰胺类化合物,合成步骤如下:

带Weinreb酰胺官能团的有机锌试剂与酰氯的反应中,对于芳香族酰氯来说都能得到满意的结果,尤其是带有吸电子基的酰氯,产率较高;例如苯甲酰氯与有机锌试剂5反应的目标产物6a产率为64.3%,而对硝基苯甲酰氯反应的目标产物6g产率达70.5%.

脂肪族酰氯与有机锌试剂在上述条件下反应却未得到目标产物,主要是由于脂肪族酰氯易与溶剂THF开环生成酯,以丙酰氯为例,反应方程式如下:

该反应的生成物成分较复杂,未得到目标产物8,主要产物是化合物7,产率63%,其他成分的含量较少,未分离得到,有机锌在反应后分解.由于在天然产物的合成中脂肪族酰氯与有机锌反应的产物(如化合物8)有更广泛的用途,所以我们选择了较稳定的二氧六环为溶剂试图减少THF与丙酰氯的开环反应,但二氧六环体系在-30℃时结为固体无法溶解CuCN和LiC1,反应不能进行,未得到目标产物;我们利用苯甲酰氯与有机锌试剂5为标准底物对其他反应条件进行了筛选,用DMF作溶剂时反应较复杂,未得到目标产物;用2一甲基四氢呋喃作溶剂时也未得到目标产物6a.我们发现温度对该反应影响较大,当在0℃反应时反应较复杂,未得到目标产物;在- 40℃以下反应时6a的产率小于20%.同时我们发现当溶剂太多时,产率下降.

2.2以羧酸为原料的合成法

weinreb酰胺较理想的制备方法是直接从羧酸出发一部合成,但在该方应中的羧基不足以和N-甲氧基胺直接反应,羧基必须先被活化后才可与N-甲氧基胺反应生成weinreb酰胺。

DDC[10](1,3-二环乙基碳化二亚胺)是一种最常见的羧酸活化剂,在反应过程中首先羧酸与DDC作用生成O-酰基异脲中间体,该反应中间体有较高反应活化性,因此N-甲氧基胺可与该中间体反应产生weinreb酰胺。

2008年Joullie[11]等实用N-(3-二甲基丙胺)-N-乙基-二氯酰亚胺作为羰基活化剂,也可以有羧酸制得weinreb酰胺,产率可达到71%。

常用的所及火花机还有异丁基酰氯[12]、二乙基氰基磷酸酯(DEPC)[13]\1.1’-羰基二咪唑(CDI)[14]、聚灵酸酐(PPA)[15]等。在实际的反应中DDC常常与其他活化剂[如N,N-二甲基氨基吡啶(DMAP),N-羟基苯丙三唑(HOBT)等]一起使用,这样做的目的是为了加快反应的进行。

2.3以羧酸酯为原料的合成法

以羧基酯为原料来合成weinreb酰胺很早就被人们广泛的使用在有机合成领域中【16】。由于羧酸酯十分稳定,所以首先用N-甲基-N-甲氧基胺盐与金属有机试剂(一般为Me

3

AlCl)作用,生成亲和能力较强的含M-N键的中间体,在于羧酸酯

发生亲核加成-消除反应,从而生weinreb酰胺。Me

3Al或Me

2

AlCl与N-甲基-N-甲氧

基胺盐酸盐作用分别生成N-甲基-N-甲氧基二甲基铝和N-甲基-N-甲氧基二氯化铝,该活泼中间体进一步与羧酸酯反应生成N-甲基-N-甲氧基酰胺。

Takeshi Shimizu[17]等适用Me

2AlCl代替Me

3

Al时,可以加快反应,提高产率。

这可能是由于参与亲和反应的中间体Cl

2Al-NMe(OMe)的体积小于Me

2

Al-NMe(OMe)

而造成的。例如内酯与Me

3Al-Me(MeO)NH

2

Cl是,生成的weinreb酰胺的产率仅为55%,

当采用Me

2AlCl-Me(MeO)NH

2

Cl时,餐率高达94%。

2008年,Simon Woodward等[18]发现N-甲基-N-甲氧基胺与酯在微波促进下也能很好的反应得到weinreb酰胺。反应方程式如下:

2.4以酰氯为原料的合成法

酰氯是最活泼的羧酸衍生物,它极易与N-甲基-N-甲氧基胺盐酸盐作用生成weinreb酰胺。例如0。C时,在碱(如三乙胺,吡啶)存在下,用二氯甲烷或氯仿做溶剂,酰氯和N-甲基-N-甲氧基胺盐酸盐生成目标产物[19],该方法后处理简单,产率高。

虽然酰氯制备weinreb酰胺的反应条件温和、高产率,但很多羧酸不易转化为酰氯,尤其是当羧酸分子含有敏感官能团时更是如此,因此,羧酸酯(包括内酯)是比酰氯等为常用的原料。

2.5 以酰胺为原料的合成法

虽然酰胺是羧酸衍生物中最为稳定的,但在金属有机试剂如Me

Al作用下也

3

与N-甲基-N-甲氧基胺盐酸盐反应可产生weinreb酰胺。Evans[20]在天然产物的合成中,利用酰胺制备了weinreb酰胺,例如下反应方程式中中间体27可由此法合成,产率可达100%。

3. weinreb酰胺的应用进展

活泼的有机金属试剂参加的反应往往难以控制,但格式试剂和有机理试剂等与N-甲基-N-甲氧基酰胺反应时,由于可以形成一个稳定的协和中间体,后者在反应体系中比较稳定,不与格式试剂和有机理试剂进一步反应,只有水解后才可以得酮。二异丁基铝氢(DIBAL-H),氢化铝锂等还原剂可以将weinreb酰胺还原成醛。因此,通过有机金属试剂与weinreb酰胺的反应是合成醛、酮的可靠方法[21]。

weinreb酰胺是许多羰基化合物合成子的等效合成试剂,例如尿素型的双weinreb酰胺相当于一个碳正离子,而邻位的双weinreb酰胺则可以提供相邻的两个碳正离子等,因此weinreb酰胺类的众多衍生物[22]可作为潜在的官能团,可根据需要转化为所需要的官能团,所以weinreb酰胺被广泛应用在复杂分子和天然产物的合成当中。

3.1用weinreb酰胺合成酮

weinreb酰胺在研究中首次发现了weinreb酰胺并高效的合成了酮,之后,weinreb酰胺就被广泛用来与许多活泼的金属试剂反应合成酮,它转换各种烷基酮[23]、α,β-不饱和酮[24]环丙烷基酮[25]、炔基酮[26]、芳香酮[27]、和各种不同性质的酮[28]等。近年来,在天然产物及复杂分子的合成中weinreb酰胺被转化成酮的反应应用十分广泛,报道较多。

3.2weinreb酰胺还原反应

通过查文献可以知道已有大量的文献报道[29]可以用一定量还原剂直接从羧

酸酰胺制备醛,但都存在同样的一根问题:还原反应可能由于反应力成不同而生成了胺,醛或醇。因此如何有选择性的将酰胺还原到醛受到化学家门的关注。N-甲基-N-甲氧基胺由于其独特的结构被作为醛基的等效实际使用。

由于weinreb酰胺在在还原过程中形成独特的五元环结构,使得他的狗行保持不变,因而被应用于许多天然产物的合成中,如(+)-Discodermolided[30]的合成中A、B、C三个片段,其反应的前体都是通过weinreb酰胺54合成的(图一)。

3.3weinreb酰胺水解反应

weinreb酰胺在一定条件下也可以发生水解生成相应的羧酸。Rodriques[31]

利用此条件合成了一系列的环丙基甲酸。该方法中由于使用了强碱因而它的应用范围受到影响。

4.总结:

本文主要介绍了几种常见的合成weinreb酰胺的方法,并对它们分别合成weinreb酰胺的原理和效率做出了分析,提出了一些快速、简便、高效的制取weinreb酰胺的方法。除了上述讲到的几种方法,还有很多从事化学工作者报道的其他合成方法(例如:还可以芳基溴、醛制备weinreb酰胺)。并介绍了weinreb 酰胺的一些weinreb酰胺在其他化学发应中的应用。

参考文献:

[1]Nahm,S.,Weinreb;S.M.Tetrahedron Lett.1981,22,3815.

[2]杨磊. 双有机卤化锌试剂的制备及其反应研究(硕士学位论文)[D]. 西北师范大学,2007:5-4.

[3]Winbush,S.M.;Mergott,D.J.;Roush,https://www.doczj.com/doc/b85633864.html,.Chen.2008,73,1818.

[4]Kolakowski,R.V. Williams,L.J.Tetrahedron Lett.2007, 8,4761.

[5]Beshore,;C.D.;Smith,A.B.J.Am.Chen.Soc.2008,130,1818.

[6]Handa,M;Scheidt,K.A.;Bossart,M.; Zhang,N.;Roush,https://www.doczj.com/doc/b85633864.html,.Chen.2008,73,1031

[7]Ma,X.-D.;Yao,Z.-J.Acta Chim.Sinica. 2006,64,2197.

[8] (b)Hu,Y.一L_;Yang,L.;Wu,J.一L.;Wang,J.-L.CN101029052,2007[Chem.Abstr.2007,147,406952]

[9]曹瑞雲.芳香族异硫氰酸酯与有机卤化锌试剂的反应研究[C].2011.

[10]Kim,S.W;Bauer,S.M.;Armstrong,R.W.Tetrahedron Lett.1998,39,317.

[11]Li,p.X.;Evans,C.D.;Wu,Y.Z等.J.Am.Chen.Soc.2008,130,2351.

[12]Goel,O.P.;Krolls,U.;Sterr,M;Kesten,https://www.doczj.com/doc/b85633864.html,.Synth.1989,67,69.

[13]Yokokawa,F.;Sameshima,H.;Shioiri,T Synlett.2001,968.

[14]Jones,T.K.;Mills,S.G.等。Shinkai,L J.Am.Chen.Soc.1989,111,1157.

[15]Woo,J.C.;Fenster,E.;Dake,G.R. https://www.doczj.com/doc/b85633864.html,.Chen.2004,69,8984.

[16]Beshore,D.C.;Smith III,A.B. J.Am.Chen.Soc.2008,130,13778.

[17]Martin,E.M.Kevin,G.R.Bioconjugate Chen.2008,19,370.

[18]Daniel,G.;David,B.;Simon,W.Tetrahedron Lett.2008,49,5687.

[19]Martinelli,J.R.;Frickmann,D.M.;;Buchwald,S.L. Org. Lett.2006,8,4843.

[20] 权峰.有机锌试剂制备Weinreb酰胺及温和条件下Weinreb酰胺分解反应研究(硕士学位论文)[D].西北师范大学,2009.

[21]徐长明,杨磊,黄丹凤等.双有机碘化锌试剂与苯甲酰氯反应制备二酮类化合物的反应[J].有机化学,2010,第8期.

[22]Prand,C.;Venturello,P.J .Org.Chen.2008,73,1941.

[23]Harit,U.V.;Rovis,T, J.Am.Chen. Soc.2007,129,13796.

[24]Lee,G.M.;Weinreb,S.M. https://www.doczj.com/doc/b85633864.html,.Chen.1990,55,1282.

[25]Corey,E.J.;Canales,E. J.Am.Chen.Soc.2007,129,12686.

[26]马向东,姚祝军.有机化学合成[J].化学学报,.2006,21,2197.

[27]Hisler,K.;Tripoli,R.;Murpophy,J.A. Tetrahedron Lett.2006,47,6293.

[28]Handa,M.;Scheidt,K.A.;Bossart,M.;Zheng,N.;Roush,https://www.doczj.com/doc/b85633864.html,.Chen.2008,70,1031

[29]Singh,J.;Aidhen,I.S.J.Prakt.Chen.2000,342,340.

[30]Ruzi,J.;Sotomayor,N.;Lete,E. Org. Lett.2003,5,1115.

[31]Perez,M.;Pozi,C.;Reyes,F.等.Cuveas,C.Angew.Chen.Int.Ed.2004,43,1724.

谷氨酰胺的研究新进展

免疫营养:谷氨酰胺的研究新进展 自此Dudrick和Wilrmore [1]于1967年由小狗的实验证实,经腔静脉输高热量与氮源可获得动物生长发育的结果,并在小儿外科临床应用获得成功后,临床营养开始有了广泛的应用和研究。传统营养支持的基本目的是:提供充足的能量和氮源,以适应机体的代谢需要,保持瘦肉体,维持生理内稳态,促进病人康复。为达到一目的,在营养支持的发展过程中.曾先后出现静脉内高营养(intravenous hyper-alimentation)、全肠外营养(total parenteral nutrition)、肠内营养(enteral nutrition)、人工胃肠(arti ficial gut)、代谢支持(metabol-ic support)等概念.每一新概念的问世与研究,都推动着临床营养向高水平的领域发展,使之成为现代医学中不可缺少的技术,营养支持已成为提高危重病人救治成功率的关键之一。 20世纪90年代以来,一系列的相关研究表明,营养支持可以改变疾病的治疗效果,不仅仅是由于纠正和预防了治疗对象的营养不足,更重要的可能是通过其中特异营养素的药理学作用达到治疗目的。某些营养物质不仅能防治营养缺乏,而且能以特定方式刺激免疫细胞增强应答功能,维持正常、适度的免疫反应,调控细胞因子的产生和释放,减轻有害的或过度的炎症反应,维持肠屏障功能等。这一新概念最初被称之为营养药理学(nutritional pha rmacology),近年来更多的学者称之为免疫营养(immunonutrition)以明确其治疗目的。即将某些特异性营养物添加于标准肠内营养或肠外营养中,可以达到增强免疫功能和调节炎性反应,保护胃肠黏膜屏障功能等作用[2]。有关这方面的研究是现代外科的发展方向之一,具有免疫药理作用的营养素亦随着研究的进展日趋增多, 研究较多并已开始应用于临床的营养素包括谷氨酰胺、精氨酸、ω-3脂肪酸.核苷酸、膳食纤维等。 1 作用机制 谷氨酰胺(Gln)是血循环和体内游离氨基酸池中含量最丰富的氨基酸,Gln所含的酰胺氮是所有细胞的生物合成所必需,体内细胞利用Gln可合成嘌呤、嘧啶、氨基糖及其它氨基酸。因此,Gln是蛋白质代谢的重要调节因子,被认为是机体在应激状态下的条件必需氨基酸。体内以快速增殖为特征的细胞对Gln具有很高的摄取率,如肠黏膜细胞、免疫细胞、成纤维细胞等。最初的研究认为,Gln参与免疫营养是作为 营养物质来修复肠上皮,维持肠屏障功能,防治肠道细菌和毒素易位,减少肠源性感染。免疫营养的研究进展表明,Gln可被不同的免疫组织利用。在创伤和脓毒血症时,淋巴细胞、巨噬细胞等对Gln的需求增加,致使机体对这一营养素的需求量超过其产出量,血和组织

谷氨酰胺转氨酶的研究进展 - 资料中心 - 生物在线

万方数据

万方数据

万方数据

万方数据

谷氨酰胺转氨酶的研究进展 作者:陶红军, 邵虎, 黄亚东, 孔令伟, TAO Hongjun, SHAO Hu, HUANG Yadong, KONG Lingwei 作者单位:陶红军,黄亚东,TAO Hongjun,HUANG Yadong(常州红梅乳业有限公司,江苏,常州,213023),邵虎,SHAO Hu(江苏食品职业技术学院,江苏,淮安,223003), 孔令伟,KONG Lingwei(淮安快 鹿牛奶有限公司,江苏,淮安,223001) 刊名: 中国酿造 英文刊名:CHINA BREWING 年,卷(期):2010(6) 参考文献(38条) 1.黄六容;何冬兰微生物谷氨酰胺酶的研究进展 2004(02) 2.王灼维;王璋土壤分离转谷氨酰胺酶生产菌株 2004(04) 3.MOTOKIM;OKIYAMA A;NONAKA M Novel transglutaminase manufacture for praparation of protein gelling compounds 1989 4.MOTOKI M;SEGURO K Transglutaminase and its use for food processing 1998 5.唐名山;王树英;陈坚Streptovcrticillinm mobaraense 谷氨酰胺转胺酶的表达、纯化和复性[期刊论文]-食品与发酵工业 2004(04) 6.鲁时瑛;岗楠迪;堵国成谷氨酰胺酶的分离纯化及酶学性质[期刊论文]-无锡轻工大学学报 2002(06) 7.崔艳华;张兰威谷氨酰胺转氨酶研究进展[期刊论文]-生物技术通报 2009(1) 8.姜燕;温其标;唐传核谷氨酰胺转移酶对食物蛋白质成膜性能的影响[期刊论文]-华南理工大学学报 2006(08) 9.丁克毅;刘军;EleanorM.Brown转谷氨酰胺酶(MTCrase)改性明胶可食件薄膜的制备[期刊论文]-食品与生物技术学报 2006(04) 10.丁克毅轻谷氨酰胺酶改性明胶高强度薄膜的制备 2006(01) 11.张春红;陈海英;车晓彦谷氨酰胺转氨酶改性谷朊粉的研究[期刊论文]-食品科学 2006(12) 12.KURAISHI C;SAKAMOTO J;YAMAZAKI K Production of restructured meat using microbial transglutaminase without salt or cooking[外文期刊] 1997(3) 13.田少君;梁华民转谷氨酰胺酶对大豆分离蛋白凝胶性的影响[期刊论文]-中国油脂 2005(08) 14.熊晓辉;王晓丽;束长丰谷氨酰胺转氨酶对内酯豆腐品质的影响[期刊论文]-食品研究与开发 2007(05) 15.田少君;梁华明转谷氨酰胺酶对大豆分离蛋白的改性研究[期刊论文]-粮油加工与食品机械 2005(06) 16.陈义华;陆兆新;尤华灰色链轮丝菌产转谷氨酰胺酶发酵条件的优化[期刊论文]-食品科学 2003(09) 17.王璋;刘新征;王亮"神舟"4号空间飞行对搭载的转谷氨酰胺酶链霉菌选育的影响[期刊论文]-航天医学与医学工程 2004(04) 18.陈国娟;张春红;刘长江谷氨酰胺酶的分离纯化及酶学性质的研究[期刊论文]-食品工业科技 2007(01) 19.LEE H G;LANIER T C;HAMANN D D Transglutaminase effects on low temperature gelation of fish protein sols[外文期刊] 1997(1) 20.ANDO H;ADACHI M;UMEDA K Purification and characteristics of a novel transglutaminase derived from microrganisms 1989 21.江波;周红霞谷氨酰胺转氨酶对大豆7S蛋白质及肌球蛋白质胶凝性质的影响[期刊论文]-无锡轻工大学学报2001(02) 22.江新业;宋钢以鱼类下脚料制备风味蛋白粉的研究[期刊论文]-中国酿造 2007(12)

有机添加剂 SEED 在聚酰胺 6 改性中的应用

有机添加剂SEED 在聚酰胺6 改性中的 应用 摘要: 在己内酰胺水解聚合时加入一定量的有机添加剂 N ,N′- 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 - 苯二酰胺(SEED) ,合成出含有添加剂 SEED的改性聚酰胺 6 树脂 ,研究了改性聚酰胺6 的流变性、热稳定性及染色性。实验表明:当 SEED添加量为 0. 2 %时 ,聚酰胺 6 熔体表观粘度随剪切速率的升高而下降的趋势变慢 ,熔体加工稳定性提高;与空白试样相比 ,改性聚酰胺 6 的初始热分解温度提高约 3 ℃,高温(170 ℃、 190 ℃)老化 1 h后纤维的断裂强度保留率可达80 %以上 ,热稳定性改善;且改性树脂的端氨基含量可高达45 mmol/ kg ,为空白试样的1. 7 倍 ,纤维的酸性染料染色上染率明显提高。改性聚酰胺 6 稳定性、染色性的改善 ,是有机添加剂 SEED 中特有的芳胺基和受阻哌啶基结构综合作用的结果。 关键词: N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基- 4 - 哌啶基) - 1 ,3 - 苯二酰胺; 聚酰胺6 ; 末端氨基; 热稳定性; 染色性聚酰胺 6 由于具有拉伸强度高、自润滑性良好、冲击韧性好、耐磨性、耐化学性、耐油性优异等突出优点 ,在工程塑料及功能化塑料领域得到迅速发展 ,但也存在着耐光性、耐热性、染色性 (尤其是染色深度) 较差等缺点 ,需要加以改进 ,以适应各种用途的要求。而聚酰胺所存在的不足一般可通过加入适当的添加剂来抑制。Malik 等研究了在聚酰胺树脂中直接加入有机添加剂 SEED 后的改

性效果,本研究则通过在己内酰胺水解开环聚合中加入一定量的SEED ,以合成出含有一定 SEED 含量的改性聚酰胺 6 树脂 ,并探了有机添加剂 SEED 在改善聚酰胺 6 的流变性、热稳定性及染色性等方面的作用效果。 1 实验部分 1. 1 原材料及配方 1. 1. 1 原材料 己内酰胺(LA) ,日本东丽公司; 蒸馏水(H2O) ,开环剂 ,实验室自制; 间苯二甲酸( IPA) ,相对分子质量调节剂 ,化学纯 ,上海润捷化学试剂有限公司; 苯甲酸(BIA) ,相对分子质量调节剂 ,分析纯 ,湖南湘中精细化学品厂; N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 -苯二酰胺,有机热稳定剂,汽巴精化(中国)有限公司。 1. 1. 2 配方 LA 100 份; H2O 7. 5 份; IPA 0. 2 份; BIA 0. 1 份; SEED 0~0 . 2 份。 1. 2 实验仪器及设备

聚酰胺特性

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的 差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑 性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般 为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好, 有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易 增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。

1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊 接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、 储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而 尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、 焊接、粘接。 应用:与尼龙6基本相同,还可作把手、壳体、支撑架等。

聚酰胺工程塑料应用领域之简析

聚酰胺工程塑料应用领域之简析 聚酰胺由于其生产性能上的特点,在国民生产的众多领域如汽车制造、机械设备生产、电子电器行业、化工设备生产等方面,都得到了较好的应用。 (1)聚酰胺在汽车制造中的应用由于近年来汽车轻量化和降低成本的要求,工程塑料在汽车制造业中的应用越来越广泛。车用零件要求能够耐高低温、耐油、耐化学药品和耐侯,而聚酰胺能满足上述性能要求,因而得到广泛应用。聚酰胺在汽车制造业中主要作为一下零部件使用。 散热箱器是用玻璃纤维增强聚酰胺得到的大型制品。用聚酰胺代替原来的金属材料后,能大幅度降低产品的重量。υ 皮带轮是用添加石墨的玻璃纤维增强聚酰胺制得的制品。代替原来的铸铁件后,能降低重量并减少工时。υ 吸附罐用聚酰胺制成的吸附罐耐油、耐热性和耐震动性较好。υ 油泵齿轮用PA66制得的油泵齿轮具有较好的可靠性,能作为结构零件在汽车制造中使用。υ

(2)聚酰胺在机械设备生产中的使用 由于具有强韧、耐磨、自润滑、高刚性、耐热等一系列优良性能,因而被广泛用于制造机械零件,如齿轮、涡轮、密封件、轴承等。υ 通用机械制造聚酰胺可代替金属材料制造各种类型的机械零件,其有点在于提高耐磨性而增加寿命、降低成本、减轻重量。υ 轴承聚酰胺作为轴承材料,广泛应用与汽车、船舶、冶金、纺织、造纸等领域。聚酰胺轴承减轻了制品重量,并且耐磨性和可靠性好,同时取代传统工艺,大大节省工时。υ 齿轮用注射或浇铸成型的聚酰胺齿轮,不仅具有生产工艺和设备简单、性能可靠、耐磨等优点,而且由于聚酰胺齿轮的弹性能补偿加工和装配误差,还可相应降低制造和装配的技术要求。υ (3)聚酰胺在电子电器行业的使用聚酰胺的电性能较好,可广泛用于通用电子电器零部件的制造。 线圈绕线器制造线圈绕线器的有PA6、PA66等。因为制品要求高强度和高刚性,因而多用玻璃纤维增强聚酰胺,同时要求制品有较好

高分子论文综述(聚酰胺)

摘要 聚酰胺6的结构与性能之间存在相互关系,其加工方式多种多样,成型方式也多种多样,其加工工艺有六个方面需要注意。聚酰胺主要采用注塑和挤出。由于聚酞胺具有机械强度高、耐热性、耐磨性和耐油性优异等特点,已广泛应用于国民经济的许多领域。但由于其尚存在吸水性大、干态和低温冲击强度低等缺陷而限制了它在某些方面的应用。为此,国内外广泛开展了PA6的改性研究。 目前增强改性PA6主要研究有玻璃纤维、晶须、碳纳米管和热致液晶高分子材料增强改性聚酰胺6(PA6)的方法,并对其影响因素进行了分析。结果表明:4种增强材料均可提高PA6的力学性能;玻璃纤维是最常用的PA6增强材料,而短切玻纤因其易加工、成本低及良好的力学性能而被广泛应用。 PA6的应用市场广泛,未来PA6的研究方向将围绕低成本和高性能化、功能化不断发展。 关键词:聚酰胺6(PA6);加工工艺;增强改性;玻璃纤维;晶须;碳纳米管;热致液晶高分子材料;应用;低成本;功能化

目录 摘要 (2) 绪论 (4) 引言 (4) 一、PA6的结构与性能 (4) 二、PA6的加工 (6) 三、PA6的改性研究 (7) (一)改性研究的背景与意义 (7) (二)改性方向 (10) (三)增强改性PA6的研究进展 (11) 四、PA6的应用市场 (18) 五、PA6的发展展望 (21) 参考文献 (22)

绪论 引言 聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。是美国DuPont 公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等新品种。 而聚酰胺 6 ( PA6) 是由德国 Farben 公司的 P.Schlack 开发,并于 1943 年实现工业化生产的,因其具备优良的耐热性、机械性、耐磨性、耐化学性、易加工等特点,被普遍用于机械设备、化工设备、航空设备、冶金设备等制造业中,成为工程塑料中用量最大的材料。 一、PA6的结构与性能 聚酰胺PA6是部分结晶性聚合物。PA6的结晶密度1.24g/cm3,结晶度约20%一30%,Tg约48℃。聚酰胺分子间通过酰氨基形成氢键,这是其物性优秀的重要因素。PA6化学结构式如图1-1.

聚酰胺改性的意义

聚酰胺改性的意义,现状与发展趋势 摘要:聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。 关键词:聚酰胺树脂综合性能加工增强改性性能 引言 聚酰胺是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。 正文 聚酰胺由二元酸与二元胺或由氨基酸经缩聚而得,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时,我国称为锦纶。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。 未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA 最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性,PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

发酵法生产 L 谷氨酰胺研究进展

发酵法生产L 谷氨酰胺研究进展 L-谷氨酰胺(L-glutamine, L-Gln)是L-谷氨酸的γ - 羧基酰胺化的一种条件性必需氨基酸(图1),相对分子质量146.15,熔点185℃(分解),晶体呈白色斜方或粉末状,结晶状态下稳定,无臭,稍有甜味,溶于水( 水溶液呈酸性) ,等电点 5 . 6 5 ,几乎不溶于乙醇和乙醚. L-Gln 属中性氨基酸,在偏酸,偏碱及较高温度下易分解成谷氨酸或环化为吡咯烷酮二羧酸. O H 2N C CH2 CH2 N H 3+ CH COO- L-Gln是人体血液中浓度最高(500~900 mol/L)的游μ 离氨基酸,所占比例高达61%.L-Gln 在肾脏是肾小管泌氨作用的主要氮源,在肝脏是糖异生和尿素合成的原料,在神经组织又是神经递质的前体物质,在血液中有暂时解除氨毒的作用,现已普遍认为L - G l n 是一种"条件性必需"氨基酸. L-Gln 主要生理功能如下: 治疗胃肠溃疡[1].因外源L-Gln 能促使胆汁分泌和正常排粪,故L-Gln 已用于临床治疗腹部溃疡,节段性回肠炎和过敏性肠炎.如日本寿制药株式会社生产的"麦滋林" ,为L - G l n / 萸磺酸钠颗粒剂,该胃药制剂现已进入我国市场.缓解运动综合症或运动疲劳[2].L-Gln可以调节蛋白质合成,抑制蛋白质降解,糖原合成,细胞生长,激活免疫,提高生长激素水平.让成年人喝下一瓶含有2g L-Gln 的饮料,90min 内,其血液样品中生长激素最高可增长4 3 0 % .目前已大量用于治疗运动员的运动综合症和高强度劳动或运动后的疲劳恢复. 调节机体免疫力[3-4].外源L-Gln 会刺激免疫球蛋白分泌,促进免疫系统重建,如: 烧伤,艾滋病,关节炎等免疫系统的恢复. 增强脑神经机能[5] .L-Gln 可被用作中枢神经抑制剂,在大脑中被转化成谷氨酸,与葡萄糖一起参与脑代谢,以平衡脑内电流脉冲,有利于人脑的清醒和情绪稳定,是少数几种能克服血脑屏障和参与大脑化学反应的物质之一,被称为"大脑燃料" . L-Gln 在癌症治疗上的潜在价值[6], 减少癌症治疗中化疗和放疗的副作用. 1 L- 谷氨酰胺的生产方法由于L-Gln 重要的生理功能和临床治疗作用,如何实现L-Gln 的工业化生产越来越受到关注.L-Gln 的生产方法主要有化学合成法,酶促合成法和发酵法. 1.1 化学合成法 经L-Gln 合成酶(GS)催化而成,如图 3 所示. 与化学合成法相比,酶促合成法反应步骤相对简单,其中三磷酸腺苷( A T P ) 是必需的.A T P 价格昂贵, 同时酶促反应底物NH 4 + ,副产品二磷酸腺苷(ADP)都明显抑制L-Gln 的生成,因此该生产方法不能满足大规模工业化生产的需要. 1.3 发酵法发酵法是目前最常用的L-Gln 生产方法,具有原料 来源广泛,生产成本低,产品质量可控,产物单一等优点,适宜于大规模工业化生产.1 9 6 1 年,T s u n o d a 等[ 7 ] 首先发现 除了谷氨酸以外,在谷氨酸发酵液中还有L-Gln;1963 年,Oshima 等[8] 通过改变谷氨酸微球菌的发酵条件使谷氨酸发酵转向L-Gln 发酵;七十年代, Nakanishi 等[9-11]进一步证实了,改变发酵条件可以使谷氨酸产生菌从谷氨酸发酵转向L - G l n 发酵.八十年代后,我国在实验室小试或中试规模中进行了L-Gln 发酵法生产,但是L-Gln 产量低[12-13] ,至今未能进行大规模工业化生产. 本文对发酵法生产L-Gln 的关键技术环节(如菌种选育,发酵工艺和分离纯化) 的研究进展进行综述,并详细阐述L-Gln生物合成代谢调控和新型过滤及其藕联技术在下游分离纯化过程中的应用. 2 2.1 发酵法生产L- 谷氨酰胺菌种选育L-Gln 生产菌种主要来自谷氨酸生产菌,如棒杆菌 C H 3O H CS2 NH3 C 5 H 9 NO 4 (Glu)—————→ C 6 H 11 NO 4 —————→ C 7 H 20 N 4 O 4 S 2 —————→ H 2S O 4 NH 3 HOAC C 7 H 18 N 4O 3 S 2 ————→ C 5 H 10 N 2 O 3 (L-Gln) C H 3O H N H 2N H 2 Raney 镍C 5 H 9 NO 4 (Glu)—————→ C 6 H 11 NO 4 —————→ C 6 H 13 N 3 O 3 —————→ H 2S O 4 C6H 10 N2O 3(L-Gln) 图2 化学法合成L-Gln 流程图Fig.2 Chemical synthetic pathway for production of L -Gln (Corynebacterium sp.)[9-11], 短杆菌(Brevibacterium sp.) [7,14] ,微球菌(Micrococcus sp.)[8].此外,还有非谷氨酸生产菌, 如产黄菌(Flavobacterium rigense)的一些变[15-18] 异菌种. 目

聚酰胺-胺(PAMAM)树状大分子的应用

聚酰胺-胺(PAMAM)树状大分子的应用 陈谡 (02300002) 摘要:聚酰胺-胺(PAMAM)树状大分子是目前树状大分子化学中研究较为成熟的一类,是三种已经商品化的树状大分子之一,其功能化和应用是目前树状大分子领域的热点。PAMAM已在多个领域显示出良好的应用前景。本文主要对PAMAM在表面活化、载体、膜材料、絮凝剂等方面的应用进行阐述。 关键词:聚酰胺-胺(PAMAM);树状大分子;功能化;应用。 树状大分子(Dendrimer) 是当前正在蓬勃发展的新型合成高分子。近年来,随着对树枝状大分子各方面研究的不断深入,其许多独特的性质引起相关领域普遍关注。由于这类化合物研究的迅猛发展,美国化学文摘从第116 卷起在普通主题索引中新设专项标题(Den2drimic Polymers) 。在1993 年美国丹佛召开的美国化学会全国会议上和在2002 年北京召开的国际纯粹和应用化学联合会( IUPAC) 的世界高分子会议上,树枝形大分子被列为五大主题之一。 聚酰胺胺(PAMAM)树状大分子是目前研究最广泛,最深入的树状大分子之一,它既具有树状 大分子的共性,又有自身特色.聚酰胺胺(PAMAM)树状分子的特点是:精确的分子结构,大量的表 面官能团,分子内存在空腔,相对分子质量可控性,分子量分布可达单分散性,分子本身具有纳米尺寸,高代数分子呈球状.聚酰胺胺(PAMAM)树状分子的结构特点使其具有独特的性质:良好的相容性,低的熔体粘度和溶液粘度,独特的流体力学性能和易修饰性。 自1985 年PAMAM 树状分子首次出现以来,有关PAMAM 树状分子的研究工作十分活跃,尤其 是近10 年来,关于PAMAM 树状分子合成和应用研究的报道更是快速增长。PAMAM 树状大分子在药物载体、纳米复合材料、纳米反应器、毛细管气相色谱固定相、废水处理、乳化炸药稳定剂、催化剂、高分子材料的流变学改性剂、光电传感、液晶、单分子膜、基因载体等多方面已显示出广阔的应用前景。本文主要对PAMAM在表面活化、载体、膜材料、絮凝剂等方面的应用进行阐述。 1,表面活化 1.1表面活性剂 聚酰胺胺(PAMAM)树状分子中碳氢链是亲油性的基团, 而羧基和胺基是亲水性的基团,所以聚酰胺胺(PAMAM)树状分子具有增溶,破乳,稳定等表面活性剂所具有的作用.但是聚酰胺胺(PAMAM)树状分子作为表面活性剂与传统的表面活性剂在结构上是不一样的,随着代数的增多,它接近于球形,而传统的表面活性剂多为线形.因而,聚酰胺胺(PAMAM)树状分子作为表面活性剂又有其自身的特点. 叶玲[1]等报道了聚酰胺胺(PAMAM)树状分子可作为亲油性药物的增溶剂,研究了第一代到第六代的聚酰胺胺(PAMAM)树状分子浓度和水溶液的pH值对烟酸增溶效果的影响. 结果发现,随着聚酰胺胺(PAMAM)树状分子浓度的增加,对烟酸的增溶能力也提高;当烟酸处在高的pH值和完全处于离子状态时,增溶效果变好.王俊等合成了聚酰胺胺(PAMAM)树状分子,并用三羟基氨基甲烷进行端基改性,研究了它们对布洛芬的增溶能力,结果表明,两类树状大分子对布洛芬的增溶量

二聚酸型聚酰胺热熔胶的应用与改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

二聚酸型聚酰胺热熔胶的应用与改性研究进展 作者:祝爱兰, 孙静, 施才财, ZHU Ai-lan, SUN Jing, SHI Cai-cai 作者单位:上海轻工业研究所有限公司研发中心,上海,200031 刊名: 中国胶粘剂 英文刊名:CHINA ADHESIVES 年,卷(期):2008,17(12) 被引用次数:4次 参考文献(32条) 1.殷锦捷;马海云聚酰胺热熔胶牯剂的应用及发展趋势[期刊论文]-中国胶粘剂 2003(01) 2.高国生改性010聚酰胺树脂合成聚酰胺热熔胶的研究 2004 3.钟明强;徐立新;王先进热熔胶的开发与应用进展[期刊论文]-浙江化工 2000(04) 4.潘耀民二聚酸聚酰胺树脂的合成及其在制鞋工业中的应用 1997(01) 5.曹建平二聚酸聚酰胺包头胶的研制[期刊论文]-中国胶粘剂 1997(05) 6.杜郢改性聚酰胺树脂的合成及其在热熔胶领域的应用[期刊论文]-江苏石油化工学院学报 2002(01) 7.杜郢;蔡华兵;杨恩华废弃PET聚酯/二聚酸聚酰胺共聚物的合成及过程分析[期刊论文]-化工进展 2007(12) 8.金旭东;杨云峰;胡国胜聚酰胺热熔胶性能研究及其应用[期刊论文]-中国胶粘剂 2007(11) 9.牛丽红;王桂香;李春归汽车灯用热熔胶的研究及性能表征[期刊论文]-粘接 2005(01) 10.杨秀云;刘晓秋新型车灯热熔胶的研制[期刊论文]-长春理工大学学报 2007(03) 11.张彰热熔胶在电缆和光缆中的应用[期刊论文]-现代有限传播 1997(02) 12.孟宪铎热熔胶在油气管道接头密封上的应用[期刊论文]-粘接 1999(06) 13.李(足翟)亨;杨燕龙;吴宏聚酰胺与聚脂酰胺热熔胶及其制造方法 2002 14.LEONI R;GRUBER W;ROSSINI A Polyamide resin from dimer/trimer acid and N-alkyl diamine 1988 15.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising thermoplastic polyamide from dimer acid and N-substituted aliphatic diamine 1990 16.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising polyamide from dimer acid and Nalkyl diamine 1989 17.LEONI R;GRUBER W;ROSSINI A Polyamide of dimerized fatty acids and polyether urea diamines and their use as adhesives 1990 18.陈续明;贾兰琴;李瑞霞用于热熔胶的聚酰胺树脂合成组成与性能关系的研究[期刊论文]-中国胶粘剂 2000(01) 19.梁子材;李(足翟)亨;杨燕龙具有聚酰胺或聚酯酰胺结构的热态高强度热熔胶 1999 20.HEUCHER R;WICHELHAUS J;SCHUELLER K Hotmelt adhesive 1996 21.WICHELHAUS J;GRUBER W;ANDRES J Polymeric hotmelt adhesive 1988 22.DOUCET JOS Adhesive composition 1983 23.MATSUBA Y;TERADA N;OSAKO T Hot-melt polyamide adhesive and polyamide resin sheet-shaped molded product 2002 24.张华明;罗顺忠;赵鹏骥耐温保气型热熔胶的研制[期刊论文]-中国胶粘剂 1995(04) 25.张秀斌油气管道接口热收缩带用固定片及热熔胶的研制[期刊论文]-沈阳化工学院学报 2001(03) 26.陈续明;钟华;贾兰琴聚酯酰胺/EEA共混体组成与性能[期刊论文]-高分子材料科学与工程 2001(06) 27.陈续明;贾兰琴;李瑞霞聚酯酰胺/SIS共混体系的组成与性能[期刊论文]-石油化工 2001(01)

聚酰胺特性

聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是P A11、P A12、P A610、PA612,另外还有P A10、P A46、P A7、P A9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括: 增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为 1.5-3万。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良

好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。表1给出了聚酰胺主要品种的技术性能指标。 性能特点与用途 PA6 物性乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工成型加工性极好: 可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 PA66 物性半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。 应用与尼龙6基本相同,还可作把手、壳体、支撑架等。

聚酰胺改性研究进展

聚酰胺改性研究进展 摘要:聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。 关键词:PA6 聚酰胺-胺聚酰胺石墨N -甲基吡咯类聚酰胺 1. PA6的增容改性 聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。 2.OMMT改性PA6制备纳米复合材料 周雪琴等人采用环氧树脂改性MMT ,得到有机化改性的OMMT ,然后通过熔融插层法制备PA6/ OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1. 22 nm 增加到 5. 13 nm ,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/ OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa ,弯曲模量达到 3.462GPa,热变形温度为134 ℃;PA6/OMMT复合材料失重10%时的温度为422℃,比纯PA6 提高16 ℃,提高了PA6 的热稳定性。 3.改性聚酰胺-胺树枝状高分子 用乙二醇改性王持等人合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%) PEG 改性的效果更为显著。王持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇

常用尼龙性能及应用

尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。温度一旦达到就出现流动。 除透明尼龙外,其它尼龙都属于结晶性塑料,有较高的熔点,熔融温度范围较窄,热稳定性不好。PA较易吸湿,潮湿的尼龙在成型过程中,表现为粘度急剧下降并混有气泡制品表面出现银丝,所得制品机械强度下降,所以加工前材料必需干燥处理,可在80-110℃干燥6小时,成型时允许含水量尼龙6和尼龙66为0.1%,尼龙11为0.15%,尼龙610为0.1-0.15%,最高不得超过0.2%。注意,PA类塑料在90℃以上干燥易引起变色。 PA流动性好,易溢料,宜用自锁时喷嘴,并应加热。同时由于溶体冷凝速度快,应防止物料阻塞喷嘴、流道、浇口等引起制品不足现象。模具溢边值0.03,而且熔体粘度对温度和剪切力变化都比较敏感,但对温度更加敏感,降低熔体粘度先从料筒温度入手。成型收缩范围及收缩率大,方向性明显,易发生缩孔,变形等。 PA再生料的使用最好不超过三次,以免引起制品变色或机械物理性能的急剧下降,应用量应控制在25%以下,过多会引起工艺条件的波动,再生料与新料混合必须进行干燥。 开机时应首先开启喷嘴温度,然后再给料筒加温,当喷嘴阻塞时,切忌面对喷孔,以防料筒内的溶体因压力聚集而突然释放,发生危险。在停机时要清空螺杆,防止下次生产时,扭断螺杆。 使用少量的脱模剂有时对气泡等缺陷有改善和消除的作用。尼龙制品的脱模剂可选用硬脂酸锌和白油等,也可以混合成糊状使用,使用时必须量少而均匀,以免造成制品表面缺陷。 尼龙制品的后处理是为了防止和消除制品中的残留应力或因吸湿作用所引起的尺寸变化。后处理方法有热处理法和调湿法两种。 a).热处理常用方法在矿物油、甘油、液体石蜡等高沸点液体中,热处理温度应高于使用温度10-20℃,处理时间视制品壁厚而异,厚度在3mm以下为10-15分钟,厚度为3-6mm时间为15-30分钟,经热处理的制品应注意缓慢冷却至室温,以防止骤冷引起制品中应力重新生成。 b).调湿处理调湿处理主要是对使用环境湿度较大的制品而进行的,其办法有两种:一沸水调湿法,二醋酸钾水溶液调湿法(醋酸钾与水的比例为1.25:1,沸点121℃),沸水调湿法简便,只要将制品放置在湿度为65%的环境下,使其达到平衡吸湿量即可,但时间较长,而醋酸钾水溶液调湿法的处理温度为80-100℃醋酸钾水溶液调湿法,处理时间主要取决制品壁厚,当壁厚为1.5mm时约2小时,3mm 为8小时,6mm为16-18小时. 常用尼龙介绍 1、尼龙6 学名:聚已内酰胺{[NH(CN2)5CO]n},英文名polycaprolactam,简称PA6。化学和物理特性 PA6是半透明或不远明乳白色结晶形聚合物。燃烧成蓝底黄火焰,烧植物味。熔融温度较PA66低,加工性能比其他PA好。制件有较高冲击强率,载荷分散性、柔软性好,热塑性、轻质、韧性好、耐耐环己酮和芳香溶剂和耐久性好工作温度

谷氨酰胺制剂的研究进展_于健春

谷氨酰胺制剂的研究进展 于健春 =摘要>目的谷氨酰胺这种条件必需氨基酸是营养支持领域研究最热门的营养素之一。经肠内或肠外添加谷氨酰胺可改善动物的器官功能和生存率。由于谷氨酰胺水溶性差及其在水溶液、热消毒及长期储存时在化学上不稳定,长期以来一直没有静脉药用标准的谷氨酰胺制剂。针对谷氨酰胺制剂的研究和临床应用作一探讨。方法通过合成谷氨酰胺双肽作为谷氨酰胺的供体,具有稳定、水溶性强、能耐受热消毒及作为肠外营养应用的谷氨酰胺所必需的全部生化和生理特性,达到国内外的静脉药用标准。结果应用谷氨酰胺双肽在氮平衡、免疫状况、肠道完整性、并发症、康复及预后等方面带来了有益影响,且有肯定的量效关系。结论应用谷氨酰胺双肽改善病人的预后,确定适应证、应用方法及疗效监测,还需进一步的临床研究。 =关键词>谷氨酰胺双肽制剂 80年代以来,人们逐步认识到谷氨酰胺(glu-tam ine,GLN)对机体维持正常生理功能的重要性,并进行了广泛和深入的研究,使谷氨酰胺成为近年来国内外营养支持领域研究最热门的营养素之一[1,2]。 一、谷氨酰胺 谷氨酰胺,一种非必需氨基酸,在许多代谢途径中起着重要作用。它在机体游离氨基酸库中占50%~60%以上,是合成核酸和谷胱苷肽的前体物质。谷氨酰胺是体内的氮源运载工具,它在不同器官组织间流动,并被称为运送燃料的/载氮车0,穿梭于组织与小肠细胞、结肠细胞、淋巴细胞及再生细胞之间。一方面清除氨等代谢废物,另一方面为蛋白质和DNA的合成提供氮源。谷氨酰胺缺乏时造成肠功能和免疫功能等受损,特别是防御肠道内细菌和内毒素进入门静脉血循环的能力下降。在应激、感染及创伤等高分解代谢的情况下,血浆及细胞内的谷氨酰胺浓度下降,机体依靠分解自身的肌肉组织来产生大量的谷氨酰胺供机体利用。如果输入外源的谷氨酰胺则会减轻肌肉的分解[3~5],这与病人的预后及存活相关。故谷氨酰胺又被认为是/条件必需氨基酸0,即在正常情况下,体内能合成足量的谷氨酰胺,而在发热、创伤和手术等应激状态,体内合成不能满足代谢需要;若无外界补充,将导致机体持续的谷氨酰胺耗竭和长期的分解代谢状态。 最初的谷氨酰胺的研究源于处于分解代谢应激状况下的大鼠等动物模型。经肠内或肠外添加谷氨酰胺可改善这些研究动物的器官功能和生存率,如:维持肠粘膜结构和功能,支持肝脏和免疫细胞的功能等[6~9]。这些研究支持谷氨酰胺是胃肠粘膜和免疫细胞重要的营养素这一概念。近十几年的研究结果表明,谷氨酰胺是一种重要的膳食营养素,当摄入这些营养素超过日需量时,可以调节免疫、代谢及炎症过程。这种氨基酸可对治疗重症病人起着重要作用,也是人体在特定分解代谢状况下的条件必需氨基酸[10]。 二、谷氨酰胺制剂的研究 尽管有口服的谷氨酰胺制剂,但由于其谷氨酰含量少,或胃肠道功能障碍的病人吸收差,不能满足病人机体对谷氨酰胺的需要。因此,临床上需要静脉用谷氨酰胺制剂。然而,由于谷氨酰胺水溶性差及其在水溶液、热消毒及长期储存时在化学上不稳定,在加热过程中易降解为氨和焦谷氨酸,限制了其作为静脉营养制剂的制备。因而,长期以来一直没有静脉药用标准的谷氨酰胺制剂。为此,Peter Furst教授提出了双肽的概念[11],即通过合成的甘氨酰-谷氨酰胺双肽(gly-gln)或丙氨酰-谷氨酰胺双肽(ala-gln)作为谷氨酰胺的供体。这种合成的双肽中含有稳定、水溶性强的谷氨酰胺,具有作为肠外营养基质-谷氨酰胺应用时所必需的全部生化和生理特性[12]。它可在水中自然溶解,并能耐受121e热消毒而不分解,达到中国、日本和欧洲等国家食品和药物管理局的标准,也达到中国卫生药政局(DAB)的要求。静脉输入的谷氨酰胺双肽在谷氨酰双肽酶的作用下迅速水解为甘氨酰和谷氨酰胺、或丙氨酰 作者单位:100730中国医学科学院北京协和医院外科

相关主题
文本预览
相关文档 最新文档