当前位置:文档之家› 产黄原胶发酵培养基的优化工艺研究

产黄原胶发酵培养基的优化工艺研究

产黄原胶发酵培养基的优化工艺研究
产黄原胶发酵培养基的优化工艺研究

产黄原胶发酵培养基的优化工艺研究

杨健,姚笛,王颖,于长青,王长远,高玉荣

(黑龙江八一农垦大学食品学院,黑龙江大庆 163319)

摘要:本实验研究不同培养基成分及不同添加量的碳源、氮源等营养物质对黄原胶产量及其黏度的影响。在其他营养物质一定的情况下,利用单因素实验分别对培养基中碳源、氮源、无机盐等进行了初步筛选,得到的最佳碳源是玉米淀粉,氮源是豆饼粉,加入磷盐、镁盐、钙盐等有利于黄单胞菌的生长及其代谢产物-黄原胶的分泌。最后利用正交实验确定了碳源、氮源、碳酸钙的最佳添加量。结果表明:玉米淀粉5%,豆饼粉0.5 %,碳酸钙0.4%时,黄原胶产率可达3.44 %,黏度达19.26 mm2/s。

关键词:黄原胶;发酵;培养基;优化

文章篇号:1673-9078(2011)8-935-937

Optimization of the Fermentation Medium for Producting Xanthan Gum

YANG Jian, YAO Di, WANG Ying, YU Chang-qing, WANG Chang-yuan, GAO Yu-rong

(College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China) Abstract: The effects of different media composition and different amounts of carbon, nitrogen and other nutrients on the production of xanthan gum and viscosity were studied. The best carbon and nitrogen sources were corn starch and soybean powder, respectively. The addition of phosphate, magnesium and calcium enhanced the growth of Xanthomonas and the secretion of its metabolite-xanthan gum. The addition contents of carbon, nitrogen and CaCO3 were optimized by orthogonal experiment: cornstarch 5%, soybean powder 0.5%, CaCO3 0.4.%, under these conditions, Xanthan gum yield was 3.45 % and viscosity of fermentation broth was 19.26 mm2/s.

Key words: xanthan gum;fermentation; culture medium; Optimization;

黄原胶(Xanthan gum)又称黄胶、汉生胶,是一种自然多糖和重要的生物高聚物,它是由五糖单位重复构成,主链与纤维素相同,即以β-1,4糖苷键相连的葡萄糖构成,三个相连的单糖组成其侧链[1,2]。黄原胶具有良好的增粘性和悬浮能力,有很高的稳定性,耐酸碱、高盐环境,抗高温、低温冷冻,易生物降解,抗污染能力强;可同多种物质(酸、碱、盐、表面活性剂、生物胶等)互配,具有令人满意的兼性,并有良好的触变性和假塑性;有良好的分散作用和乳化稳定作用[2]。黄原胶已广泛用于食品、石油、陶瓷、纺织、印染、医药、造纸、地矿、灭火、涂料、牙膏、化妆品等20多个行业,是目前世界上生产规模最大且用途极为广泛的微生物多糖[4~5]。

上世纪50年代中期美国农业部北部研究中心Jeanne等人发现了黄原胶,它的生产菌是野油菜黄单胞杆菌NRRLB-1459,此后研究发现甘蓝黑腐病黄单胞杆菌、锦葵黄单胞杆菌、胡萝卜黄单胞杆菌、木薯萎蔫病黄胞菌、美人蕉枯叶黄单胞杆菌等都能产黄原胶。我国收稿日期:2011-04-20

基金项目:黑龙江省教育厅科技研究项目(11551324)

通讯作者:姚笛(1980-),女,硕士,讲师,研究方向为食品微生物与生物技术 黄原胶研究起步于20世纪70年代末,随着黄原胶工业化生产技术日趋完善,尤其是生物技术的发展使黄原胶的发酵产率、发酵液胶浓度等指标大大提高,发酵周期大大缩短。随着人们对黄原胶功效的深入了解,寻求有利于黄单胞菌生产高产量、高黏度黄原胶的培养基,就显得尤为重要[6]。黄原胶在工业上主要是以淀粉为碳源,以鱼粉、豆饼粉为氮源,由野油菜黄单胞杆菌经好氧深层发酵而得到含黄原胶的发酵液,发酵液可通过酶降解和硅藻土吸附提纯,用超滤技术浓缩提纯发酵液,然后用乙醇析出浓缩液中的黄原胶[7]。

发酵培养基不仅影响黄原胶的产量而且对产物的质量也有一定的作用[8]。本实验目的是确定产黄原胶发酵培养基的最佳碳源、氮源、无机盐等营养因素,然后优化各项营养物质的添加量以达到对产黄原胶发酵培养基的优化,通过小规模的发酵试验,以期达到对黄原胶的大规模工业化生产提供理论参考。

1 材料与方法

1.1 实验材料

1.1.1 菌种

野油菜黄单胞杆菌(Xanthomonas campestris 10258),购自中国工业微生物菌种保藏管理中心。

935

936

1.1.2 主要试剂

牛肉膏、蛋白胨、酵母粉等购自青岛海博有限公司;玉米淀粉购自大庆展华生化科技有限公司;蔗糖、95%乙醇、KH 2PO 4、MgSO 4、CaCO 3等为天津市大茂化学试剂厂分析纯。 1.1.3 主要仪器

电子分析天平:JD100-3B ,沈阳龙腾电子有限公司;电热恒温培养箱:RP-9082型,上海森信实验仪器有限公司;电热手提式压力灭菌锅:YXCE.SG41.280A 型,上海医用核子仪器厂;电热恒温鼓风干燥箱:DGG-9070A 型,上海森信实验仪器有限公司;恒温震荡培养箱:HGCE-F160型,哈尔滨市东联电子技术开发有限公司;黏度计:DV-E ,欣锐仪器仪表有限公司。 1.2 实验方法

1.2.1 培养基[9,10]配制

(1)斜面培养基:蔗糖20 g ,牛肉膏5 g ,蛋白胨3 g ,酵母粉1 g ,琼脂20 g ,蒸馏水1 L 。

(2)种子培养基:蔗糖20 g ,牛肉膏05 g ,蛋白胨3 g ,酵母粉1 g ,蒸馏水1 L 。

(3)摇瓶发酵培养基:玉米淀粉45 g ,豆饼粉3 g ,碳酸钙3 g ,磷酸二氢钾5 g ,硫酸镁2.5 g ,硫酸亚铁0.25 g ,柠檬酸0.25 g ,蒸馏水1 L ,pH 值7.0。 1.2.2 菌种培养 1.2.2.1 斜面培养[11]

将保存的野油菜黄单胞杆菌转接到斜面培养基上进行活化,30 ℃恒温培养28 h ,取出后4 ℃冰箱保存。 1.2.2.2 液体种子培养

将活化的野油菜黄单胞杆菌接入装有50 mL 种子培养基的250 mL 摇瓶中,28 ℃、180 r/min 培养24 h ,刚起黏即停止,颜色黄棕色,无异味。 1.2.2.3 摇瓶发酵

将种子液以5 % (V/V )的接种量接入装有50 mL 发酵培养基的250 mL 三角瓶中,28 ℃、180 r/min ,发酵周期为72 h 。 1.2.3 单因素实验

分别选择不同的碳源(蔗糖、葡萄糖、淀粉),氮源(豆饼粉、蛋白胨、鱼粉蛋白胨)和无机盐作为变量因素,配制不同的摇瓶发酵培养基,将野油菜黄单胞杆菌的种子液接种于摇瓶发酵培养基中,28 ℃、180 r/min 发酵72 h 。测定各组发酵液粘度,提取黄原胶并称重,计算黄原胶产率,进行比较分析,初步筛选最优组分。 1.2.4 正交试验

在上述单因素法所得结果的基础上采用正交试验设计优化黄原胶发酵培养基配方。以优化的碳源(玉米淀粉)、氮源(豆饼粉)、无机盐(碳酸钙)三个因素为

发酵因素,每因素选3个水平,按照表1设计9组摇瓶

发酵培养实验,分别测定该9种不同培养基条件下黄原胶的产率和发酵液的粘度。正交试验的因素水平表见表1。

表1 因素水平编码表

Table 1 The code table of factor and level

水平

因素

A 玉米淀粉/%

B 豆饼粉/%

C 碳酸钙/%

1 4 0.4 0.

2 2 5 0.5 0.3

3 6

0.6 0.4

1.2.5 黄原胶的提取[12]及产量的测定

取发酵液50 mL ,加入2倍体积的95%乙醇,室温下搅拌30 min ,使二者充分混匀,过滤去除乙醇,再加入发酵液1倍体积的乙醇搅拌过滤,将得到的黄原胶置于烘箱中60 ℃烘至恒重,精密天平称量,得黄原胶的质量(g)。黄原胶产量的计算公式如下:

黄原胶产量=黄原胶质量(g)/发酵液体积(mL)×100%

1.2.6 黏度的测定

采用涂氏黏度计进行粘度的测定,测定发酵液流出的时间,其粘度计算公式为:

t = 0.154 μ+11 (t<23s)

式中:t-液体流出时间(s );μ-运动粘度(mm 2/s )

2 结果与分析 2.1

单因素实验结果

2.1.1 最佳碳源的选择

图1 不同碳源对黄原胶发酵的影响

Fig.1 Effect of different carbon source on xanthan gum

fermentation

不同碳源对黄原胶产率和粘度的影响如图1,由图1可知,该菌利用玉米淀粉的能力优于蔗糖和葡萄糖,产率达2.82%,粘度达16.96 mm 2/s 。以淀粉为碳源时,黏度与以蔗糖为碳源时发酵液的黏度相差不大,但以玉米淀粉为碳源时产率最高,对粘度和产率二项指标综合考虑,加之玉米淀粉来源广且价格低初步选择的玉米淀

粉为最佳碳源。

2.1.2 最佳氮源的选择

图2 不同氮源对黄原胶发酵的影响

Fig.2 Effect of different nitrogen source on xanthan gum

fermentation

不同氮源对黄原胶产率和粘度的影响如图2,由图2可知,当氮源为豆饼粉时,摇瓶培养液的黏度和黄原胶的产率均高于其它两种氮源,产率达2.63%,粘度达16.24%。因此,该菌利用豆饼粉的能力高于蛋白胨和鱼粉蛋白胨,初步确定豆饼粉作为该菌的最优氮源。

2.1.3 无机盐对黄原胶生产的影响

图3 不同CaCO3含量对黄原胶发酵的影响

Fig.3 Effect of different CaCO3 contents on xanthan gum

fermentation

将菌液分别接种于不加或添加0.5% KH2PO3及0.25%的MgSO4培养基中发酵,观察到黄原胶产率自2.03%提高到2.53%,发酵液粘度从13.78 mm2/s增至15.24 mm2/s,说明加入磷盐和镁盐有利于黄单胞菌的生长及其代谢产物的分泌。

CaCO3的含量对黄原胶产率的影响见图3。由图3可知,培养基中添加CaCO3使产胶率增加,且对黄原胶粘度影响较大,通过研究不同量的CaCO3对黄原胶产率的影响,初步确定CaCO3的最佳含量为0.3%。

2.2 正交实验优化发酵培养基配方

采用正交试验设计优化产黄原胶发酵培养基,对培养基中的碳源、氮源、碳酸钙含量三个因素进行分析,试验结果表3。

表3 正交试验结果分析

Table 3 Results of orthogonal experiment

试验号A碳源/%B氮源/%C碳酸钙/% 产率/%粘度/(mm2/s)

1 4 0.4 0.

2 2.46 14.2

2 4 0.5 0.

3 2.6 15.78

3 4 0.6 0.4 2.74 15.25

4 5 0.4 0.3 2.96 16.04

5 5 0.5 0.4 3.45 19.26

6 5 0.6 0.2 2.91 18.32

7 6 0.4 0.4 2.93 15.12

8 6 0.5 0.2 3.2 17.82

9 6 0.6 0.3 2.52 14.33 K1 7.8(45.23)8.35(45.72) 8.57(50.34)

K2 9.32(53.62)9.25(52.86) 8.08(45.15)

K3 8.65(47.27)8.17(44.95) 9.12(47.63)

k1 2.6(13.74)2.78(14.12) 2.86(15.8)

k2 3.11(17.22)3.08(17.62) 2.7(15.05)

k3 2.88(15.76)2.72(14.98) 3.04(15.88)

R 0.51(3.48)0.36(3.5)0.34(0.83)

注:表中K值和R值分析结果中未加括号的数据为对黄原

胶产量的分析,括号中数据为对发酵液粘度的分析结果。

通过正交试验结果分析得知:在黄原胶发酵培养基中,碳源(A)、氮源(B)、CaCO3(C)三项因素中,

对黄原胶产率影响的顺序为:A>B>C;对于发酵液粘度

的影响顺序为:B>A>C,碳源和氮源是黄原胶发酵培养

基中的主要影响因素。

经过单因素实验和正交实验的综合分析,优化后的

最佳培养基配方是A2B2C3,即玉米淀粉5%,豆饼粉

0.5%,CaCO3 0.4%,此时黄原胶的产率达3.45%,发酵

液粘度达19.26 mm2/s。通过正交试验结果分析显示:在

碳源、氮源和碳酸钙三个因素中,最主要的影响因素是

碳源、氮源,其次是碳酸钙。

3 结论

发酵培养基不仅影响黄原胶的产量而且对产物的

质量也有一定影响。本实验通过单因素实验选出产黄原

胶发酵培养基的最佳碳源、氮源、无机盐等营养因素,

然后通过正交试验确定以上各项营养物质的添加量以达

到对产黄原胶发酵培养基的优化,结果得出碳源、氮源

对黄原胶发酵影响较大,确定了黄原胶的最优发酵培养

基成分为:玉米淀粉5%、豆饼粉0.5%、CaCO30.4%,

在此发酵条件下产量达到3.45%,黏度达19.26 mm2/s。

(下转第890页)

937

890

参考文献

[1]. Nokes C Bosch, C Bundy D A. The effects of iron deficiency

and anemia on mental and motor performance, educational achievement, and behavior in children. An Annoatated Bibliography [A]. A Report of the International Nutrition Anemia Consulative Groups [C]. University of Oxford, 1996 [2]. 王劼,孙静,李文仙,等.乙二胺四乙酸铁钠强化酱油改善贫血

学生注意力和学习成绩效果研究[J].食品与机械, 2009, 25(2): 38-41

[3]. WHO/UNICEF/UNU, et al. Iron deficiency anaemia,

assessment, prvention and control: a guide for programme managers. Geneva: WHO: WHO/NHD /01. 3, 2001. www.who.int/entity/nutrition/publications/ micronutrients/ anaemia iron deficiency/ WHO NHD 01. 3 /en/index. html) [4]. Laifer S A, Kuller J A, Hill L M. Rapid assessment of fetal

hemoglobin concentration with the HemoCue system [J]. Obstet Gynecol, 1990, 76(4): 723-724

[5]. Idris M, Anis-ur-Rehman. Iron deficiency anaemia in moderate

to severely anaemic patients [J]. J. Ayub. Med. Coll Abbottabad, 2005, 17(3): 45-47

[6]. 崔伟历,石凌波,江悦华,等.三种诊断缺铁性贫血检测指标的

诊断价值比较[J].人民军医,2004,47(8):452-454

[7]. 李晓春.表面活性剂稀释火焰原子吸收法测定钙镁铜锌铁[J].

广东微量元素科学,1996,3(8):12-15 [8]. 殷恒婵,张峰周,宋湘勤,等.优秀运动员注意力测量与评价研

究[J].体育科学,2006,26(3):58-63

[9]. 殷恒婵.青少年注意力测验与评价指标的研究[J].中国体育科

技,2003,39(3):51-53

[10]. 张曼华,刘卿,杨凤池.注意力品质研究现况[J].健康心理学杂

志,1999,7(2): 221-224

[11]. 程华山,陈惠芬.儿童注意广度与智力的关系[J].心理科学通

讯,1990,2:148-154

[12]. 李洪曾,等.中小学生注意稳定性的研究[J].心理科学通讯,

1987,6:13-17

[13]. Soemantri A G, Pollitt E, Kim I. Iron deficiency anemia and

educational achievement [J]. Am J Clin Nutr, 1985, 42(6): 1221- 1228

[14]. Seshadri S, Gopaldas T. Impact of iron supplementation on

cognitive functions in preschool and school-aged children: the Indian experience [J]. Am J Clin Nutr, 1989, 50(3 Suppl): 675- 684

[15]. Soemantri A G, Pollitt E, Kim I. Iron deficiency anemia and

educational achievement [J]. Am J Clin Nutr, 1985, 42(6): 1221- 1228

[16]. Haas J D, Brownlie T 4th.Iron deficiency and reduced work

capacity: a critical review of the research to determine a causal relationship [J]. J Nutr, 2001, 131(2S-2): 676S-688S

[17]. Cook J D, Lynch S R. The liabilities of iron deficiency [J].

Blood, 1986, 68(4): 803-809

(上接第937页)

参考文献

[1] 赖富饶,吴晖,牛晨艳,等.黄原胶的流变特性及其在食品工业

中的应用[J].现代食品科技,2006,22(4):274-276

[2] 黄成栋,白雪芳,杜昱光.黄原胶的特性、生产及应用[J].微生物

学通报,2005,32(2):91-98

[3] 娄在祥,王洪新.黄原胶特性及生产[J].粮食与油脂,2006,11:

44-47

[4] Riseiro J C, et al. Medium development for xanthan production

[J]. Progress Biochemistry, 1992, 27: 167-175

[5] 张国英,罗国华,秦彩云.黄原胶的发酵生产和提纯[J].现代化

工,2000,20(12):32-34

[6] 肖宵.黄原胶的应用[J]日用品化工,2008,1:24-28 [7] 邓凡,赵玉凤,樊庆春,等.黄原胶的生产与应用[J]化学与生物

工,2008,10: 18-21

[8] Tom Fraser, Sam Mugford, Gary Dobson. Rheological property

of xanthan gum and its application in food industry [J]. For a Science Magazine, 2002, 24(2): 34-36

[9] 陈琛.黄原胶生产工艺的研究[J]安徽农学通报,2008,11:36-52 [10] 陈超,王君高,周喜燕,等黄原胶发酵条件优化研究[J].中国酿

造,2009,4:12l-123

[11] 杨攫,张学欢,汪智姝,等.黄原胶发酵及提取工艺的优化研究

[J].食品工业,2008,6:20-23

[12] Seiki Takeno, Eiji Sakuradani, Shoichi Murata. Xanthan gum

fluid nature of research [J]. Food additives Weekly: 2005, 23: 12-17

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

微生物发酵工艺优化研究进展

龙源期刊网 https://www.doczj.com/doc/b83368750.html, 微生物发酵工艺优化研究进展 作者:张锐 来源:《海外文摘·学术》2017年第03期 摘要:近些年,在有关技术领域中微生物的发酵技术已得到了非常广泛的应用,特别在医药行业内应用此种技术十分普遍。微生物科技发展非常快,因此,人们也有不断深入的研究微生物的发酵工艺。为此,本文对影响微生物发酵的培养条件和培养基进行了分析,又对优化微生物发酵工艺的办法进行了讨论研究,为微生物工程的发展提供参考价值。 关键词:发酵工艺;微生物;培养条件;工艺优化;培养基 中图分类号:TQ920.6 文献标识码:A 文章编号:1003-2177(2017)03-0058-02 1 微生物发酵受培养基的影响 微生物在进行生长、代谢时,培养基能供给微生物发酵所需要的能量与营养物质,对合成发酵产物的效率和产品的质量保障来讲有着重要意义。在进行微生物发酵时,因其发酵条件与菌种的差异和不同的发酵阶段,需要培养基的成分也不同。一般情况下,微生物生长需要的营养要素有生长因子,碳源,无机盐和氮源四类。 1.1 选择氮源与碳源作发酵的培养基 氮源为微生物提供含氮的有机物与蛋白质,并且,还是合成含氮产物的参与者。氮源主要是有机氮源与无机氮源两种,如豆粉,氨盐,蛋白胨与硝酸盐等。碳源能够为微生物提供能量来源,形成产物和构建细胞。碳源的形式有油脂,多糖,单糖,天然复合物,双糖等,如豆油,葡萄糖,淀粉与蔗糖等。选择发酵的培养基中要有均衡的碳源与氮源比,确保其菌体能够正常生长,而且还有利于合成产物的速率。 1.2 无机盐对发酵培养基的影响 微生物的生长和生成的代谢产物都与无机盐有关重要关系。微生物在进行生长代谢时,构成的辅酶中有磷的参与,它是构成微生物生长,代谢的重要因素。有些菌种的发酵产物中包含磷酸根,因此在进行培养基发酵时,添加很多的磷酸盐,这利于产物快速合成。在微生物发酵中钙离子对细胞的生理状况起到了调节作用,例如,使细胞膜的通透性降低,维持细胞状态等。很多酶都用镁来作催化剂。微生物生长所需微量元素有很多,如,钴,铁,锌,锰等。经研究证明,枯草芽孢杆菌的生长中需要锰离子的参与,在发酵培养基中添加适量的氯化锰,可以提升枯草芽孢杆菌生成的发酵物中抑菌物质的活性。 2 微生物发酵受培养条件的影响

枯草芽孢杆菌发酵培养基的优化

枯草芽孢杆菌发酵培养基优化 作者姓名 专业 指导教师姓名 专业技术职务

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1枯草芽孢杆菌简介 (3) 1.2枯草芽孢杆菌的应用 (3) 1.2.1枯草芽孢杆菌在工业酶生产中的应用 (3) 1.2.2枯草芽孢杆菌在生物防治领域中的应用 (3) 1.2.3枯草芽孢杆菌在微生物添加剂领域中的应用 (4) 1.2.4 枯草芽孢杆菌在医药方面的应用 (4) 1.2.5 枯草芽孢杆菌在水产中的应用 (4) 1.2.6枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材 料 (5) 1.2.7枯草芽孢杆菌在环境保护方面的应用 (5) 1.3 国内外的研究现状与发展趋势 (6) 1.4研究的思路、目的及意义 (7) 第二章材料与方法 (7) 2.1实验材料 (7) 2.1.1 菌株鉴定 (7) 2.1.2 培养基 (7)

2.1.3 主要设备 (8) 2.2 培养基的优化 (9) 2.2.1 培养方法 (9) 2.2.2实验流程 (9) 2.2.3实验方法 (10) 2.2.4正交试验 (11) 第三章结果和分析 (11) 3.1 鉴定结果如下 (11) 3.2 枯草芽孢杆菌最优化培养基正交实验结果 (16) 3.3 pH变化曲线(以G18为例) (19) 3.4 实验总结 (25) 致谢 (27)

摘要 枯草芽孢杆菌是主要的饲用益生菌菌株,本论文以两株枯草芽孢杆菌G18和G21培养的延滞期和倍增时间为评价指标,通过三角瓶摇床培养,进行了两因素三水平的正交试验,对发酵培养基主要组分进行了优化,豆粕处理的蛋白酶加量2u/g 豆粕、5u/g豆粕、10u/g豆粕和玉米浆添加量0.5%、1.0% 、1.5% 做两个因素三水平的正交实验,研究表明:G18最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.0%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量10u/g豆粕。G21的最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.5%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量5u/g豆粕。[关键词] 枯草芽孢杆菌培养基优化正交试验

菌株MY02发酵培养基的优化设计

菌株MY 02发酵培养基的优化设计 Ξ 刘 秋,闫建芳,艾 勇,于基成,杨宝灵,范圣第 (大连民族学院生物工程研究中心,大连116600) 摘 要:以龟裂链霉菌MY 02菌株为试材,采用单因子试验与均匀试验相结合的方法,通过二次多项式回归分析,筛选出活性组分S N06最佳发酵培养基配方,并建立了多元二次回归数学模型。菌株MY 02优化发酵培养基的最佳配方:淀粉质量分数为2169%,花生饼粉质量分数为1139%,(NH 4)2S O 4质量分数为0118%,CaC O 3质量分数为0114%,NaCl 质量分数为0116%。根据回归模型计算出S N06理论效价与实测效价相比较,二者非常接近,拟合误差小。 关键词:龟裂链霉菌;农用抗生素;均匀设计试验;发酵条件 中图分类号:Q932335 文献标识码:A 文章编号:100025684(2006)0420361204 Optimization of Fermentation Culture Medium of Isolate MY02 LI U Qiu ,Y AN Jian 2fang ,AI Y ong ,Y U Ji 2cheng ,Y ANG Bao 2ling ,FAN Sheng 2di (Research Center o f Biotechnology ,Dalian Nationalities Univer sity ,Dalian 116600,China ) Abstract :Active com ponents S N06in fermentation of Streptomyces rimosus MY 02show antag onism a 2gainst pathogen 1It is a basic im plementation for production of S N06that screens medium ingredients and corresponding dosage 1In this study ,the optimum medium ingredients and dosage of Streptomyces rimosus MY 02were determined using uniform design combined with regression analysis 1A regression m odel was developed 1The optimum medium was starch 2169%,peanut steep powder 1139%,(NH 4)2S O 40118%,CaC O 30114%and NaCl 0116%1The regression m odel was tested with titre of S N06.The tested result fitted well with those calculated with the m odel 1The results confirmed the applicability of uniform design for screening the best medium ingredients for S N061 K ey words :Streptomgces rimosus ;agricultural antibiotic ;uniform design experiment ;fermentation con 2 dition 新型农用抗生素S N06是由龟裂链霉菌(Streptomyces rimosus )MY 02菌株产生的一种多烯大环内酯类抗生素[1]。该抗生素对多种蔬菜真菌病害(如番茄叶霉病、灰霉病、黄瓜枯萎病、茄子黄萎病等)都有较好的防治效果[2]。目前对龟裂链霉菌报道较多的是其能够产生抑制各种细菌生长的重要抗生素———土霉素,但土霉素对真菌的生长没有抑制作用。目前关于龟裂链霉菌能够产生抑制植物病原真菌生长的代谢产物的报道较少[3]。筛选龟裂链霉菌产生的抗真菌活性组分S N06的优化发酵培养基是高效、大量生产S N06 的基础。本试验拟通过单因子及均匀试验对S N06的摇瓶发酵条件进行优化,为进一步的中试 放大及大规模生产提供必要的前提。 1 材料与方法 111 菌种 试验用菌株为大连民族学院微生物工程实验 室自番茄保护地分离的1株链霉菌菌株,经鉴定为龟裂链霉菌(Streptomyces rimosus )MY 02菌株。活性检测指示菌为番茄叶霉病菌(Fulvia f ulva )。 Ξ基金项目:辽宁省自然科学基金资助项目(20022085),辽宁省教育厅高等学校科学研究项目(2004F079) 作者简介:刘 秋(19692),女,博士,副教授,主要从事植物病原微生物研究。收稿日期:2005207207 修回日期:2005212210  第28卷第4期吉 林 农 业 大 学 学 报V ol 128N o 14   2006年8月Journal of Jilin Agricultural University August 2006

黄原胶发酵及提取工艺的优化研究

黄原胶发酵及提取工艺的优化研究 张学欢张永奎 摘要黄原胶(Xanthan Gum)是由黄单胞菌属菌分泌的酸性胞外杂多糖,因其具有良好的稳定性和流变性,因而被广泛用于多种行业。本实验在前人研究成果的基础上,以提高黄原胶的产量为目的,通过单因素实验确定了:在30℃,180r/min的条件下摇床培养72h,初始碳源浓度为6%(蔗糖:淀粉=1:2),接种量为6%,;提取黄原胶时,加入2%(w/w)的硅藻土,充分震荡10min后离心30min(4000r/min),加入1%(w/v)的KNO3以及3倍体积的混醇(乙醇:异丙醇=3:1)能有效的提高提取率。在10L发酵罐中进行了小试,产胶率为3.21%。 关键词黄原胶;发酵;提取 The optimal control of the xanthan gum production and extraction Abstract:Xanthan Gum(XG) is a kind of acidic extracelluar carbohydrate by Xanthomonas campestris. This polysaccharide is used in many professions due to its characteristic. In order to improve the production rate of XG, the following studies were done. At the condition of 30 and 180r/min, The ℃ proper concentration of the carbon source is 6%,the composition of sucrose and starch is optimum carbon source and the optimum inoculum size is 10%. For the conditions of extraction XG, adding diatomite of 2%, agitation for 10 min, centrifugalization for 30min(4000r/min), adding KNO3 of 1% and alcohol for 3 times volume(ethyl alcohol: dimethyl carbinol=3:1) could improve the extraction effectively. Finally, the study in the fermentation tank were done, the viscosity of the final fermentation broth is 9320mPa?s, the production rate is 3.21%. Keywords:Xanthan gum; Fermentation; Extraction 引言 黄原胶(Xanthan gum)是由野油菜黄单胞菌或其它黄单胞菌属的菌株以碳水化合物为主要原料经发酵产生的一种胞外酸性水溶性多糖[1]。因其具有优良的理化性质[2],从本世纪50年代后期发现以来,到60年代初就开始进行商业性生产。本课题主要是在前人研究的基础上,以提高黄原胶的产量为目的,通过对培养基中碳源的组成,过程参数进行比较实验和控制的研i究,对黄原胶提取过程进行优化,并且通过在小型发酵罐中进行小试,为黄原胶的大规模工业生产提供参考,也为以后类似的研究打下一定基础。 1实验材料 1.1细菌 从龙泉驿区十陵镇菜园中采得十字花科植物油菜病变组织中筛选、诱变、驯化后得到的野油菜黄单胞菌UV。 1.2基础培养基 表1 基础培养基 Table1 Basic medium

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

黄原胶的生产

黄原胶(Xanthan Gum)的特性、生产及应用 许多微生物都分泌胞外多糖,它们或附着在细胞表面,或以不定型粘质的形式存在于胞外介质中,这些胞外多糖对于生物体间信号传递、分子识别、保护己体免受攻击、构造舒适的体外环境等方面都发挥着重要的作用。这些分泌的多糖结构各异,其中一些有着优良的理化性质,已为人类广泛应用。对于仍不为人类所知的绝大多数多糖,人们试图通过相关的多糖结构问的相互比较,推断出构效关系,从而人为地主动修饰、构造多糖,以满足应用的需要。其中,黄原胶是人类研究最为透彻、商业化应用程度最高的一种。. 1 黄原胶的结构 黄原胶(xanthan gum)是20世纪50年代美国农业部的北方研究室(Northern Re. gional Research Laboratories,NRRL)从野油菜黄单孢菌(Xanthomonas campestris)NRRLB一1459发现了分泌的中性水溶性多糖,又称为汉生胶。黄原胶由五糖单位重复构成,如图1,主链与纤维素相同,即由以13—1,4糖苷键相连的葡萄糖构成,三个相连的单糖组成其侧链:甘露糖一葡萄糖一甘露糖。与主链相连的甘露糖通常由乙酰基修饰,侧链末端的甘露糖与丙酮酸发生缩醛反应从而被修饰,而中间的葡萄糖则被氧化为葡萄糖醛酸,分子量一般在2×10。~2×10 D之间。黄原胶除拥有规则的一级结构外,还拥有二级结构,经x一射线衍射和电子显微镜测定,黄原胶分子问靠氢键作用而形成规则的螺旋结构。双螺旋结构之间依靠微弱的作用力而形成网状立体结构,这是黄原胶的三级结构,它在水溶液中以液晶形式存 在¨。 2 黄原胶的性质 黄原胶的外观为淡褐黄色粉末状固体,亲水性很强,没有任何的毒副作用,美国FDA于1969年批准可将其作为不限量的食品添加剂,1980年,欧洲经济共同体也批准将其作为食品乳化剂和稳定剂。由其二级结构决定,黄原胶具有很强的耐酸、碱、盐、热等特性。黄原胶最显著的特性是其控制液体流变性质的能力,它即便在低浓度时也可形成高粘度的、典型的非牛顿溶液,具有明显的假塑性(即随着剪切速率的增大,其表观粘度迅速降低)。溶液粘度的影响因素还包括溶质浓度、温度(既包括黄原胶的溶解温度,又包括测量 时的溶液温度)、盐浓度、pH值等,现分别简述之。 2.1 温度的影响黄原胶溶液的粘度既受测量时溶液温度的影响,也受溶解温度的影响。如下图2a所示,像大多数溶液一样,(在同平剪切力下测定)黄原胶溶液的粘度随溶液的温度(T )的升高而降低,且此变化过 程在10"C~80T:完全可逆。

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

黄原胶生产工艺1

黄原胶生产工艺 黄原胶是由D 一葡萄糖、D 一甘露糖、D 一葡萄糖醛酸、乙酸和丙酮酸组成“五糖重复单元”, 结构聚合体, 分子摩尔比为28 : 3 : 2 : 17: 0 .5 1 一0. 63 。黄原胶分子一级结构由p 一1, 4 键连接的D 一葡萄糖基主链与三糖单位侧链组成, 其侧链由D 一甘露糖和D 一葡萄糖醛酸交替连接而成。黄原胶分子侧末端含有丙酮酸, 其含量对黄原胶性能有很大影响, 在不同溶氧条件下发酵所得黄原胶, 其丙酮酸含量有明显差异。一般,溶氧速率小, 其丙酮酸含量低 生产工艺 工艺流程为: 菌种摇瓶扩大培养发酵罐发酵提取干燥粉碎成品包装 1. 1 生产菌株 黄原胶生产菌株为黄单抱菌属几个种, 目前工业化生产用菌株主要是甘蓝黑腐病黄单孢杆菌(亦名野油菜黄单胞菌) , 直杆状,宽0. 4 林n l ~ 0. 7 林m ,有单个鞭毛, 可移动,革兰氏阴性, 好氧。19 61 年Je an e S 等首先从甘蓝黑腐病斑中分离出甘蓝黑腐病黄单抱杆菌, 赵大建等在19 8 6 年也得到编号为N . K 一01 甘蓝黑腐病黄单抱杆菌。此外, 菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌亦可作为发酵菌种。 1. 2 培养基组成及优化 1.2.1 培养基 固体培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,琼脂2g,水100mL。 种子培养基:蔗糖2g,蛋白胨0.5g,酵母粉0.2g,水100mL。 发酵培养液:蔗糖5g,蛋白胨0.5g,0.3g,碳酸钙0.3g,磷酸二氢钾0.5g,硫酸镁0.25g,硫酸亚铁0.025g,柠檬酸0.025g,水100mL。 1.3 试验方法 1.3.1 平皿培养 取Φ9cm的培养皿,倒入25mL固体培养基,30℃培养4d~8d。 1.3.2 啤酒糟处理 啤酒糟(取自江苏食品职业技术学院啤酒实训中心)用自来水洗涤2次,烘干

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

黄原胶介绍

水溶性优良增稠剂-黄原胶 黄原胶是一种微生物多糖,亦称黄单胞多糖,也称汉生胶。黄原胶是国际上新近发展起来的一种新型发酵产品。英文名称为Xanthan Gum商品名有Kelzan(工业级,美国)、Keltrol (食品级,美国)、Xc-Polymer(石油用)等。黄原胶是以淀粉为主要原料,经微生物发酵及一系列生化过程,最终得到的一种生物高聚物。其主要成分为葡萄糖、甘露糖、葡萄糖醛酸等。分子量达数百万。它具有突出的高粘性和水溶性,独特的流变学特性,优良的温度稳定性和PH稳定性,令人满意的兼容性。 1. 黄原胶的结构 黄原胶分子由D-葡萄糖、D-甘露糖、D-葡萄糖醛酸、乙酸和丙酮酸构成的“五糖重复单元”结构聚合体,分子量在2×106~20×106之间[2],所含乙酸和丙酮酸的比例取决于菌株和后发酵条件。黄原胶聚合物骨架结构类似于纤维素,但是黄原胶的独特性质在于每隔一个单元上存在的由甘露糖醋酸盐、终端甘露糖单元以及两者之间的一个葡萄糖醛酸盐组成的三糖侧链。侧链上的葡萄糖醛酸和丙酮酸群赋予了黄原胶负电荷。带负电荷的侧链之间以及侧链与聚合物骨架之间的相互作用决定了黄原胶溶液的优良性质。黄原胶高级结构是侧链和主链间通过氢键维系形成螺旋和多重螺旋。黄原胶的二级结构是侧链绕主链骨架反向缠绕,通过氢键维系形成棒状双螺旋结构。黄原胶的三级结构是棒状双螺旋结构间靠微弱的非极性共价键结合形成的螺旋复合体。 在低离子强度或高温溶液中,由于带负电荷侧链间的彼此相互排斥作用,黄原胶链形成一种盘旋结构。然而即使电解质浓度的少量增加也会减少侧链间的静电排斥,使得侧链和氢键盘绕在聚合物骨架上,聚合物链伸展成为相对僵硬的螺旋状杆。随着电解质浓度的增加,这种杆状结构在高温和高浓度的状态下也能稳定存在。在离子强度高于0.15mol/L 时,此结构可维持至100℃而不受影响。 一般水溶性聚合物骨架被化学药品或酶攻击、切断后,会丧失其增稠能力。而在黄原胶溶液中,聚合物骨架周围缠绕的侧链使它免于被攻击,所以黄原胶对化学药品和酶攻击的降解具有良好的抵抗性。 2.黄原胶的性能 黄原胶是一种类白色或浅黄色的粉末,是目前国际上集增稠、悬浮、乳化、稳定于一体,性能较为优越的生物胶[3]。分子侧链末端含有丙酮酸基团的多少,对其性能有很大影响[4]。黄原胶具有长链高分子的一般性能,但它比一般高分子含有更多的官能团,在特定条件下会显示独特性能。它在水溶液中呈多聚阴离子且构象是多样的,不同条件下表现出不同的特性,具有独特的理化性质。具体表现为: 2.1 悬浮性和乳化性 黄原胶因为具有显著的增加体系粘度和形成弱凝胶结构的特点而经常被使用于食品或其它产品,以提高O/W乳状液的稳定性。但麻建国[5]等的研究发现,只有黄原胶的添加量达到一定量后,才能得到预定的稳定作用。在黄原胶质量分数小于0.001%时,试验体系的稳定性变化不大;质量分数在0.01~0.02%时样品底部富水层出现,但体系无明显分层;质量分数大于0.02%时,乳状液很快分层。只有当质量分数超过0.25%时,黄原胶才能起到提高体系稳定性的作用。 2.2 水溶性 黄原胶在水中能快速溶解,有很好的水溶性。特别是在冷水中也能溶解,可省去繁杂的加热过程,使用方便。 2.3 流变性

发酵工艺条件的优化修订稿

发酵工艺条件的优化集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

发酵工艺条件的优化 发酵优化对于搞发酵的工作者而言是非常必需的,下面结合其他战友的一些经验之谈引出此专题,希望大家踊跃讨论,以其提高发酵水平和解决实际问题。 发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。 注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!!!谢谢大家的参与!!!!!!!!!一. 好氧发酵1. PH 工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化 二. 厌氧工艺的优化三.固体发酵的工艺优化四.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的P H,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化

高性能淀粉酶菌株的筛选及培养基优化进展[文献综述]

毕业论文文献综述 生物工程 高性能淀粉酶菌株的筛选及培养基优化进展 1 前言 淀粉酶( amylase,EC 3. 2. 1. 1)以淀粉或糖原为底物,是能够催化淀粉水解转化成葡萄糖、麦芽糖及其它低聚糖的一群酶的总称。它能从分子内部水解α- 1, 4- 糖苷键, 广泛存在于动物、植物和微生物中。如今淀粉酶在酶市场销售中占据了约25%的比例,应用于粮食加工、食品工业、酿造、发酵、纺织、石油开采等行业。由于该酶是一种有内切活性的淀粉酶, 可在中性pH 条件下将淀粉水解为糊精、寡糖、麦芽糖和葡萄糖等, 从而使黏稠的淀粉糊很快失去黏性而液化, 碘的呈色反应很快消失, 故又称为淀粉液化酶[1,2]。此外它也可作为促消化剂运用于食品[3]、医药工业.淀粉酶的巨大潜力使其在当今社会中需求量日益提高.因此,如何获得高产量、高活性的淀粉酶显得至关重要。 2 淀粉酶生产菌株的筛选 2.1 初筛 将在土壤中收集得到的菌株划线接种在淀粉培养基平皿上培养2~4 d,采用革兰氏碘液染色,在菌落周围有透明圈产生证明为产淀粉酶。用游标卡尺分别测量透明圈直径和菌落直径,根据两者比值大小初步确定酶活性的高低。[4] 但应保存所有产淀粉酶的菌株以用来复筛,因为同一菌株在不同的培养基以及不同的培养条件下产酶的情况可能不同。在平皿上生长和在发酵液中培养也可能会有很大的差别。 2.1 复筛 在淀粉酶生产菌株筛选的过程中,最关键的是其产物,也就是淀粉酶的酶活的检测。由于测定原理和底物性质的不同,淀粉酶的测定方法已经超过200种以上。[5]这些方法可以归纳为两类:天然淀粉底物方法和(分子组成)确定的底物方法。以天然淀粉底物为底物的测定方法,如淀粉分解法、糖化法和色素淀粉法等。由于天然淀粉分子结构的不确定,故不同植物来源的淀粉和不同批号的淀粉,其分子结构和化学性质不尽相同,因此难以达到方法学标准化,测定误差较大。[6]目前除碘·淀粉法和DNS外,这类方法已被淘汰。使用(分子组成)确定的淀粉酶底物和辅助酶与指示酶组成的淀粉酶测定系统,可以改进酶反应的化学计

黄原胶的发酵和提取

黄原胶的发酵和提取 牛佐朕 (组别:周三组指导教师:魏东盛日期:2014.11.19) [摘要]:利用野油菜黄单胞菌(Xanthomonas campestris)可以产生胞外荚膜多糖的性质,通过种子培养基的培养,种子培养基提取液接种到发酵培养基培养72h,并用乙醇提纯制得黄原胶,求得多糖产率,了解微生物多糖在工业上的制法以及用途。 [关键词] 黄原胶,发酵,提纯 正文: 1.前言: 黄原胶应用范围很广,目前世界上食品工业应用占60%,石油及其它工业占40%。黄原胶在食品工业中是理想的增稠剂、乳化剂、成型剂,在某些苟刻条件下(如pH3— 9,温度80—130℃),它的性能基本稳定,比明胶、CMC、海藻胶、果胶等优越。黄原胶另一个大市场是石油工业,黄原胶在增粘、增稠、抗盐、抗污染能力远比其它聚台物强,尤其在海洋、海滩、高卤层和永冻土层钻井,黄原胶用于泥浆处理、完井液和三次采油等方面效果显著,对加快钻井速度、防止油井坍塌、保护油气田、防止井喷、大幅度提高采油率等方面都有明显的作用。黄原胶在其它行业中也有广大的市场。用它作为釉浆悬浮剂和粘结剂.被称为陶瓷工业的重大技术革新。对于具有如此重要作用的黄原胶,我国黄原胶的还存在许多影响和制约因素。本文着重阐述了黄原胶对于食品的应用、黄原胶的生产工艺及黄原胶生产工艺中影响因素的控制。 多糖是多个单糖分子经脱水缩合形成的结构复杂、高分子量的糖类物质,广泛分布与自然界中。多糖也出现在微生物中——G+和G-细胞壁的主要成分肽聚糖就是细菌的细胞质合成运送至细胞膜外,构成细胞壁的多糖物质。 黄原胶是用黄单孢菌经微生物发酵制取的生物细胞外粘多糖,具有良好的增粘性、假塑性、耐酸碱性和抗高温性,能耐高浓度盐,具有乳化和均匀悬浮颗粒等性能。用微生物发酵的方法生产黄原胶在国内外有着广泛的前景,并且越来越引起人们的重视。

培养基优化设计

课程设计说明书 课程名称:新编生物工艺学 设计题目: 培养基优化设计 院系:生物与食品工程学院 学生姓名: 学号:200806040035 专业班级:08生物技术 指导教师:关现军 2011 年6月3 日

课程设计任务书

目录 1.摘要··页码 2.关键字··页码 3.设计背景·页码 3.1培养基简介··页码 3.2培养基优化设计的重用意义··页码 4 设计方案·页码 4.1原材料制备··页码 4.2菌种的选择··页码 4.3营养因子的比例设··页码 4.4理化条件控制··页码 4.5总工艺流程列叙··页码 5 预期结果··页码 6 方案实施时可能出现的问题与对策·页码 7 设计感受··页码 7.1 关于本方案··页码 7.2 关于自我··页码 8参考文献··页码 .

1 摘要 以改良MRS发酵培养基为墓础,选择玉米浆、牛肉膏、乳糖、番茄汁、际蛋白陈等7个营养因子增菌培养乳酸菌进行优化。利用L8(2的7次方)正交实验,优化出培养墓营养因子最佳组成是:玉米浆3%、牛肉膏1%、乳糖1%。研究结果表明,嗜酸乳杆菌、嗜热链球菌、保加利亚乳杆菌、嗜酸乳酸菌,在优化后的MRS培养基发酵液中,37℃培养20h,菌落数均高于原MRS培养基发酵液的菌落数,达到1护cumL以上,乳酸菌发酵液得到了浓缩,大大降低了乳酸菌发酵培养墓的成本,原料成本降低了约40%,同时使菌种数量达到最大。 2 关键字 乳酸菌,营养因子,优化培养,最大产菌 3. 设计背景 3.1乳酸菌培养基简介 乳酸菌工业产品为菌体本身细胞,因而设计出能增菌的培养基在工业上具有重要意义。设计选用工业上佳美低廉的原料,便于降低成本,也有利于降低菌种的适应期,利于增值。 乳酸菌增菌液配方设计中因营养要求复杂,影响生长的因素多,在实际工作中还应做其他条件的优化,如增菌液氧化还原电势、pH值、温度等,因工作量大而时间有限,只能对配方作初步的优化设计。为了降低生产成本,在工业应用时可选用乳清和脱脂乳经蛋白酶水解,用以提高增菌效果,再加入乳糖、啤酒酵母的自溶水解物,在发酵罐内完成乳酸

相关主题
文本预览
相关文档 最新文档