当前位置:文档之家› Z6悬架系统计算报告

Z6悬架系统计算报告

Z6悬架系统计算报告
Z6悬架系统计算报告

悬架方案设计计算

项目名称:Z6前后双横臂独立悬架

编希9: ___________________________

校对: __________________________

审查: __________________________

会审: __________________________

标准化: _________________________

审核: __________________________

批准: __________________________

1概述

1.1计算目的

通过计算,求得反映Z6轮边驱动电动车前、后悬架系统方案及

性能的基本特征,为零部件开发提供参考,计算内容主要包括悬架刚

度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。

1.2悬架系统基本方案介绍

Z6轮边驱动纯电动车前悬架系统采用双横臂独立悬架带横向稳定杆结构,后悬架系统采用双横臂独立悬架。

前、后悬架系统的结构图如图1-1、图1-2:

图1-1前悬架系统

图1-2后悬架系统1.3悬架系统设计的输入条件

悬架系统设计输入参数如表1-1:

2悬架系统的计算

2.1弹簧刚度

选定弹簧刚度:

前悬架弹簧刚度为:c S f =49.2N/mm

后悬架弹簧刚度为:C S r = 62.4N / mm

2.2悬架偏频的计算

悬架系统将车身与车轮弹性的连接起来,由此弹性元件与它所支承的质量组成的振动系统决定了车身的固有频率,这是影响汽车行驶平顺性的重要性能指标。

图2-1前悬架刚度计算示意图

1840

图2-2后悬架系统刚度计算示意图

2.2.1前悬架刚度计算

前悬架刚度按式(2-1)计算: K = C sf

式中:

K ――悬架刚度,N/mm

b

——前弹簧中心线与转向瞬时运动中心距离, mm P ――车轮中心面距转向瞬时运动中心距离,

mm

根据图2-1得出b = 4334mm , p = 4629mm 代入式(2-1)得前悬 架刚度为:

取摆臂衬套的刚度为悬架刚度的15%,所以前悬架总刚度为:

1225

(2-1)

K f

49

?2

4S 2

= 56.1N / mm

222前悬架偏频计算

前悬架偏频按式(2-2)计算:

1000 K f

式中:

nf - 前悬架偏频

Kf ——前悬架刚度,

N

/ mm

mf

――前悬架簧载质量,Kg

mf1

――前悬架满载簧载质量,Kg

mf2

――前悬架空载簧载

质量,Kg 根据表 1-1 得 m f1 = 3100-400 /2 =1350Kg

m f2 二 2000-400 /2 =800Kg

并把K f = 64.5N / mm 代入式(2-2)得出: 前悬架偏频:⑴工打鶯;5

“10

2.2.3后悬架刚度计算

K r 二 C sr COS :

2-2。

K r =C sr cos 0 [=62.4 N/mm

考虑在悬架系统中橡胶块的变形,其刚度约为悬架刚度的 15%-20% 此处取15%,因此

m f

(2-2)

(2-3)

-=0'。见图

式中:弹簧中心线与后轴垂线垂线间的夹角,

224后悬架偏频计算

后悬架偏频按式(2-4)计算:

1 |1000的

式中:

n r ----- 后悬架偏频

K r

后悬架刚度,

N/mm

m

r

—后悬架簧载质量,Kg

m r1 —后悬架满载簧载质量,Kg

m r2 -一后悬架空载簧载质量,Kg

根据表(1-1)得 m

r

广3300-400 /2 =1450Kg

m

r1

= 2050-400 /2 =825Kg

并把K

r

=71.8N /mm代入式(4-4)得出:

后悬架满载偏频:n

r =丄J

100""8 =1.12 2 八1450

2.3悬架静挠度的计算

静挠度也是表征悬架性能的参数,按式(2-5)计算: f^ mg / K

式中:

f c 静挠度,mm;

前悬架满载静挠度,mm ;(2-4) (2-5)

ri 后悬架满载静挠度,mm ;

f r 2 ――后悬架空载静挠度,mm ;

m

簧载质量,Kg

2

g

——重力加速度,

m/s

K ——悬架刚度,N/mm

所以按照(2-5)计算得出:

前悬架满载静挠度: 上 1350 汉 9.8

f f 4 = m f1

g / K f 205.1mm 前悬架空载静挠度: 800 9.8

f f 2 - m f2

g / K f

121.6mm

后悬架满载静挠度:

z

1450^9.8

f r1 = m r1

g / K r 197.9mm

后悬架空载静挠度: z 825父9.8

f r2 = m r2

g / K r

112.6mm

满载后前静挠度比:

197.9

f r1 / f f 1 0.96

满载后前静挠度比: f r2/ f f2 二112

^ =0.93 r2 f2

121.6

后悬架静挠度小于前悬架静挠度,有利于防止车身产生较大的纵 向角

振动。

后前悬架偏频比n r2/ n f2 =1.12/1.1 =1.02

悬架刚度匹配结论:一般空气悬架客车的空气弹簧根据整车簧载 质量可自动调节内部气压,以获得足够的承载力并保持整车的高度, 为悬架刚度可变的非线性弹性特性悬架。前悬架偏频在

1.1L1.2之间,

后悬架偏频在「〔L 1

.4

之间。开发目标车前后悬架的空、满载静挠度 和频率值以及偏频比较合理,适合空气悬架客车。

前悬架空载静挠度,

mm ;

2.4侧倾角刚度计算 241前悬架侧倾角刚度

前悬架的侧倾角刚度由两部分共同作用,即空气弹簧引起 的侧倾角刚度与横向稳定杆引起的侧倾角刚度。 1)空气弹簧引起的侧倾角刚度按式(2-6)计算: C 1 :bB I 2

C

C 厂2忖一 C xf

式中:

C f --- 前空气弹簧引起的侧倾角刚度,

N 「mm/rad

b

——前弹簧中心线与转向瞬时运动中心距离,

mm

p

――车轮中心面距转向瞬时运动中心距离,

mm

B ——前轮距,

mm

C xf ――前空气弹簧刚度,N / mm

根据图2-1得出b = 4334mm , p = 4629mm ,根据表(1-1)得,

B = 1840mm ,并把

C sf =49.2N / mm 带入式(2-6)得出空气弹簧

的侧倾角刚度为:

2_ 4629 49_7.

3 107

NL

mm/rad

参考KC 试验数据衬套扭转时的刚度约有15%的影响,则前悬 架由螺旋

弹簧引起的侧倾角刚度为

C f = 7.3 107 1.15 =8.4 107NLkm/rad 2)横向稳定杆引起的角钢度

按式(7)计算:

(2-6)

2

1「4334 江

1840

式中各参数参见示意图2-2:

C b

__横向稳定杆引起的角刚度,Nlmm/rad

d --- 稳定杆直径,mm

I ――稳定杆的截面惯性矩, mm

2

E ——材料的弹性模量,(N/mm)

前稳定杆直径d =30mm ,因此|

八30 = 39760.8mm 4

64

64

前悬架稳定杆材料为:60si2MnA ,所以E = 206000( N/mm )

3y

206000江 39760.^ 11202

3EIL * 2

(2-7

)

= 5.87 1 07

NLmm/rad

2 L : — a 3

L

J 3 — a 3 q a b — 4L 2 b c

图2-2前横向稳定杆结构示意图

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参 数的选取、计算、验证等作出较详细的工作模板。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的 修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991汽车钢板弹簧技术条件 QC/T 517-1999汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984汽车悬挂系统的固有频率和阻尼比测定方法 3符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013汽车操纵稳定性术语及其定义 GB 7258-2017机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999汽车操纵稳定性指标限值与评价方法 QC/T 474-2011客车平顺性评价指标及限值 GB/T 12428-2005客车装载质量计算方法 GB 1589-2016道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置 (减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的 振动,保证汽车的正常行驶。悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种

多核编程与并行计算实验报告 (1)

(此文档为word格式,下载后您可任意编辑修改!) 多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日

实验一 // exa1.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! "; } return 0; } int main(int argc, char* argv[]) { int input=0; HANDLE hand1=CreateThread (NULL, 0, FunOne, (void*)&input, CREATE_SUSPENDED,

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

课程设计报告

课程设计报告 题 目 基于数据挖掘的航电系统故障诊断 专业名称 电子信息工程 学生姓名 王腾飞 指导教师 陈 杰 完成时间 2014年3月18日

摘要 航电系统是飞机的重要组成部分,由于其综合应用了电子、机械、计算机及自动检测等许多学科的先进技术,结构层次很多,所以对其实施故障诊断具有涉及专业领域多、诊断难度大、要求时间短等特点。这对快速处理故障数据提出了很大的挑战。 从独立的联合式航电机箱的按键通电测试,到集中式飞机管理系统数据收集,飞机维修系统经过漫长的发展已演变成故障诊断工具。 现代飞机均采用了中央维修系统,用以收集所有子系统的故障报告、判断故障根源并推荐修理方法。飞机的故障信息和历史数据存放在数据库中。如果用传统的数据分析方法对这些海量的数据进行分析时会显得力不从心,不仅浪费时间而且对于隐含的知识难以有效的进行挖掘。数据挖掘技术十分符合现实的需要,它可以客观地挖掘出历史数据库中潜在的故障规则,这些规则能更好地指导故障的定位与检修,并对潜在的故障做出预测。随着数据的不断增长,如何能自动获取知识已经成为故障诊断技术发展的主要制约条件,而数据挖掘技术为解决这个“瓶颈”问题提供了一条有效的途径。 本文详细介绍了故障诊断技术与数据挖掘技术,并总结了航电系统的故障诊断的特点。拟采用聚类分析的技术对故障数据快速处理,实现对故障的快速定位。 关键词:故障诊断数据挖掘聚类分析航电系统

故障诊断技术 故障诊断技术简介 故障诊断就是指当设备系统不能完成正常的功能时,利用一定的方法找出使该功能丧失的原因及发生故障的部位,实现对故障发展趋势的预测的过程。故障诊断涉及到多方面的技术背景,主要以系统论、信息论、控制论、非线性科学等最新技术理论为基础,它是一门综合性的学科,具有重要的实用价值。 设备系统故障及故障诊断 随着现代化工业的发展,设备系统能够以最佳状态可靠地运行,对于保证产品质量、提高企业的产能、保障生命财产安全都具有极其重要的意义。设备系统的故障是指设备系统在规定时间内、规定条件下丧失规定功能的状况。故障诊断的作用则是发现并确定发生故障的部位及性质,找出故障的起因,预测故障的发展趋势并提出应对措施。故障诊断技术的使用范围不应只局限于设备系统使用和维修过程中,在设备系统的设计制造过程中也可以使用故障诊断技术,为以后的故障监测和设备系统维护创造条件。因此,故障诊断技术应该贯穿于设备系统的设计、制造、运行和维护的全过程当中。 机载设备的故障诊断流程框图:

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

方程式赛车悬架系统设计分析中期报告

河北工业大学本科毕业设计(论文)中期报告 毕业设计(论文)题目:方程式赛车悬架系统设计分析 专业:车辆工程 学生信息:学号:082886;姓名:樊广阔;班级:车辆083 指导教师信息:教师号:86024;姓名:武一民;职称:教授 报告提交日期:2012.04.17 一、前期具体工作及取得进展 1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。 根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。 悬架杆件采用SAE4130钢管,尺寸为12x1.5以及10.3x1.73。上下横臂与车架的链接以及拉杆与上横臂的链接均采用轴销式配合,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。 摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。整体结构的布置形式大概如下图所示:

2.初步确定悬架相关参数。 根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。 根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。 根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。因此,初步设计赛车轴距为1535mm。 根据赛事规定2.4 轮距赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。此次设计初步设计前轮距为1200mm,后轮距为1180mm。 根据赛事规定6.1.1 赛车所有车轮必须安装有功能完善的、带有减震器的悬架。在有车手乘坐的情况下,轮胎的跳动行程至少为50.8mm(2 英寸),其中向上25.4mm (1 英寸),向下25.4mm(1 英寸)。因此,本次设计初步设计悬架静挠度为25.5mm,动挠度设计为28mm。 根据赛事关于车架部分的规定,本次设计按照最小的车架尺寸设计,由此及选取的轮距确定: 前轮:转向节上铰点据车架铰接点距离为260mm,转向节下铰点据车架铰接点距离为312mm。上A臂夹角为38°,下A臂夹角为36°。 后轮:后立柱上铰接点据车架铰接点距离为302mm,下铰接点据车架铰接点距离为368mm。上A臂夹角为50°,下A臂夹角为32°。 3.悬架参数计算。 本次设计初步选取有车手乘坐时总质量为260Kg,再根据所选取的前后悬架静挠度及动挠度,通过作图法确定悬架的侧倾中心,将上下横臂内外转动点的连线延长到极点,将极点与车轮接地点链接即可在汽车垂直于地面的中心线上的到侧倾中心,得到的侧倾中心高度为45.24mm。在独立悬架中,赛车前后悬架侧倾中心的连线称为侧倾轴线,侧倾轴线与点平行。双横臂悬架侧倾中心位于上下控制臂转动延长线的交点,可以确定纵倾中心,进一步计算抗制动前倾角。 4.减震器的选择。 根据赛车图片及论坛相关资料,选取筒式减震器。

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

悬架设计计算说明书

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计(论文)客车悬架系统设计计算说明书 院系:长安大学汽车学院 指导教师:张平 专业班级: 22010803 学生姓名:杨文亮 2012年6月18日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 目前我国的客车普遍采用的是传统钢板弹簧悬架,只有少数的高级客车才配置了空气悬架。传统钢板弹簧的结构简单,成本较低。而相对于传统机械钢板弹簧悬架而言,空气悬架具有乘坐更舒适、更好改善车辆的行驶平顺性等显著优点,但是造价也相对较高。 本文针对客车的悬架设计,在传统钢板弹簧悬架的基础上对前悬进行改进,前悬采用钢板弹簧与空气弹簧并联的混合式空气悬架,而后悬采用主副复合式钢板弹簧悬架。前悬的混合式空气悬架能满足驾驶员舒适性的要求,而后悬架的主副复合式钢板弹簧降低了整车的生产成本。 对前、后悬架的主要零部件的尺寸进行设计计算,并运用CATIA进行建模和装配。关键词混合式空气悬架,CATIA,主副复合式钢板弹簧悬架

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ ABSTRACT At present, buses generally use the traditional leaf spring suspension in our country , only a handful of senior buses was equipped with air suspension. Traditional leaf spring structure is simple and with low cost . In contrast to traditional mechanical leaf spring suspension, the air suspension has more significant advantages, such as , more comfortable to ride, better improvement of the vehicle ride comfort. However , the cost is relatively high. This paper is about the bus suspension design .to improve the front suspension on the basis of the traditional leaf spring suspension , front suspension uses hybrid air suspension combined parallel with leaf springs and air springs , and then rear suspension uses primary and secondary compound leaf spring suspension. the front air suspension can meet the requirements of driver comfort , but leaf spring in the rear suspension can reduce the manufacturing cost. Design and calculate the size parameters of the main components in the front and rear suspension, and modeling and assembly in use of CATIA. KEYWORDS: hybrid air suspension ,catia ,primary and secondary compound leaf spring suspension

并行计算课程设计报告

并行计算与多核多线程技术 课程报告 专业 班级 学号 姓名 成绩___________________ 年月日

课程报告要求 手写内容:设计目的、意义,设计分析,方案分析,功能模块实现,最终结果分析,设计体会等。 允许打印内容:设计原理图等图形、图片,电路图,源程序。硬件类的设计,要有最终设计的照片图;软件类设计,要有各个功能模块实现的界面图、输入输出界面图等。 评价 理论基础 实践效果(正确度/加速比) 难度 工作量 独立性

目录 1. 设计目的、意义(功能描述) (1) 2. 方案分析(解决方案) (1) 3. 设计分析 (1) 3.1 串行算法设计 (1) 3.2 并行算法设计 (1) 3.3 理论加速比分析 (2) 4. 功能模块实现与最终结果分析 (2) 4.1 基于OpenMP的并行算法实现 (2) 4.1.1 主要功能模块与实现方法 (2) 4.1.2 实验加速比分析 (3) 4.2 基于MPI的并行算法实现 (3) 4.2.1 主要功能模块与实现方法 (3) 4.2.2 实验加速比分析 (4) 4.3 基于Java的并行算法实现 (4) 4.3.1 主要功能模块与实现方法 (4) 4.3.2 实验加速比分析 (5) 4.4 基于Windows API的并行算法实现 (5) 4.4.1 主要功能模块与实现方法 (5) 4.4.2 实验加速比分析 (6) 4.5 基于.net的并行算法实现 (6) 4.5.1 主要功能模块与实现方法 (6) 4.5.2 实验加速比分析 (6) 4.6并行计算技术在实际系统中的应用 (6) 4.6.1 主要功能模块与实现方法 (6) 4.6.2 实验加速比分析 (7) 5. 设计体会 (7) 6. 附录 (9) 6.1 基于OpenMP的并行程序设计 (9) 6.1.1 代码及注释 (9) 6.1.2 执行结果截图 (11) 6.1.3 遇到的问题及解决方案 (12) 6.2 基于MPI的并行程序设计 (12)

悬架系统设计资料

目录 1 绪论 (2) 1.1 悬架的概述 (2) 1.2 悬架的分类 (3) 1.3 重型载货汽车悬架系统目前的工作状况 (4) 1.4 悬架技术的研究现状及发展趋势 (5) 1.4.1悬架技术的研究现状 (5) 1.4.2悬架技术的发展趋势 (5) 1.4.3悬架设计的技术要求 (5) 2 空气悬架结构 (6) 2.1 空气悬架结构简介 (6) 2.1.1空气悬架系统的基本结构 (6) 2.1.2空气弹簧的类型 (6) 2.1.3导向机构 (7) 2.1.4高度控制阀 (7) 2.2 空气悬架系统的工作原理 (7) 3 悬架主要参数的确定 (8) 3.1 载货汽车的结构参数 (8) 3.2 悬架静挠度 (8) 3.3 悬架动挠度 (9) 3.4 悬架弹性特性 (10) 4 弹性元件的设计 (11) 4.1 空气弹簧力学性能 (11) 4.1.1空气弹簧刚度计算 (11) 4.1.2空气弹簧固有频率的计算 (13) 4.1.3空气弹簧的刚度特性分析 (14) 4.2 高度控制阀 (16) 5 悬架导向机构的设计 (17) 5.1 悬架导向机构的概述 (17) 5.2 横向稳定杆的选择 (17) 5.3 侧顷力臂的计算方法 (18) 5.4 稳定杆的角刚度计算 (19) 5.5 悬架的侧倾角校核 (20) 6 减振器机构类型及主要参数的选择计算 (21) 6.1 分类 (21) 6.2 主要参数的选择计算 (22) 7 技术与经济性分析 (26)

1 绪论 1.1 悬架的概述 悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都要传递到车架(或承载式车身)上,以保证汽 车的正常行驶]1[。 现代汽车的悬架尽管有各种不同的结构形式,但是一般都由弹性元件、减振器和导向机构三部分组成。由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。冲击力传到车架和车身时,可能引起汽车机件的早期损坏,传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。为了缓和冲击,在汽车行驶系统中,除了采用弹性的充气轮胎之外,在悬架中还必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。但弹性系统在受到冲击后,将产生振动。持续的振动易使乘员感到不舒适和疲劳。故悬架还应当具有减振作用,使振动迅速衰减(振幅迅速减小)。为此,在许多结构形式的汽车悬架中都设有专门的减振器。 以下对悬架重要的组成部分进行简单的介绍。 (一)弹性元件 弹性元件主要是把车架或车身与车桥或车轮弹性的连接起来,主要有空气弹簧,钢板弹簧、螺旋弹簧、扭杆弹簧等。 (1)空气弹簧 空气弹簧是由橡胶囊所围成的一个密闭容器,在其中贮入压缩空气,利用空气的可压缩性实现其弹簧的作用。这种弹簧的刚度是可变的,因为作用在弹簧上的载荷增加时,容器内的定量气体气压升高,弹簧刚度增大。反之,当载荷减小时,弹簧内的气压下降,刚度减小,故空气弹簧具有较理想的弹性特性。 随着科学技术突飞猛进,生活水平的不断提高,人们对汽车的乘坐舒适性及各方面的性能提出了更高的要求,这便迫使各汽车生产厂家不断的引进先进技术,生产出更好的产品,保持强大的竞争能力。从而空气弹簧的设计与研究也越来越受到车辆设计人员的青睐。在本论文主要是对空气弹簧进行了研究与探讨。 (2)钢板弹簧 由多片不等长和不等曲率的钢板叠合而成。钢板弹簧除具有缓冲作用外,还有一定的减震作用。 (3)螺旋弹簧 只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。 (4)扭杆弹簧 将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 (二)导向装置

并行处理实验报告:用MPI实现的矩阵乘法的加速比分析

华中科技大学 课程名称并行处理 实验名称矩阵乘法的实现及加速比分析考生姓名李佩佩 考生学号 M201372734 系、年级计算机软件与理论2013级类别硕士研究生 考试日期 2014年1月3日

一. 实验目的 1) 学会如何使用集群 2) 掌握怎么用并行或分布式的方式编程 3) 掌握如何以并行的角度分析一个特定的问题 二. 实验环境 1) 硬件环境:4核CPU、2GB内存计算机; 2) 软件环境:Windows XP、MPICH2、VS2010、Xmanager Enterprise3; 3) 集群登录方式:通过远程桌面连接211.69.198.2,用户名:pppusr,密码:AE2Q3P0。 三. 实验内容 1. 实验代码 编写四个.c文件,分别为DenseMulMatrixMPI.c、DenseMulMatrixSerial.c、SparseMulMatrixMPI.c和SparseMulMatrixSerial.c,用于比较并行和串行矩阵乘法的加速比,以及稀疏矩阵和稠密矩阵的加速比。这里需要说明一下,一开始的时候我是把串、并行放在一个程序中,那么就只有两个.c文件DenseMulMatrix.c 和SparseMulMatrix.c,把串行计算矩阵乘的部分放到了主进程中,即procsID=0的进程,但是结果发现执行完串行后,再执行并行就特别的慢。另外,对于稀疏矩阵的处理方面可能不太好,在生成稀疏矩阵的过程中非0元素位置的生成做到了随机化,但是在进行稀疏矩阵乘法时没有对矩阵压缩,所以跟稠密矩阵乘法在计算时间上没多大区别。 方阵A和B的初始值是利用rand()和srand()函数随机生成的。根据稀疏矩阵和稠密矩阵的定义,对于稀疏矩阵和稠密矩阵的初始化方法InitMatrix(int *M,int *N,int len)会有所不同。这里需要说明一下,一开始对于矩阵A和B的初始化是两次调用InitMatrix(int *M ,int len),生成A和B矩阵,但是随后我发现,由于两次调用方法InitMatrix的时间间隔非常短,又由于srand()函数的特点,导致生成的矩阵A和B完全一样;然后,我就在两次调用之间加入了语句“Sleep(1000);”,加入头文件“#include ”,这样生成的A、B矩阵就不一样了,但很快问题又出现了,在Xshell中不能识别头文件“#include ”。所以,最后决定用下面的方法生成矩阵A和B,B是A的转置。 //稠密矩阵的生成方法 void InitMatrix(int *M,int *N,int len) { srand((unsigned)time( NULL)); for(i=0; i < len*len; i++)

悬架系统计算报告样本

悬架系统计算报告 项目名 称: 03月编号: 版本号:V1.0

修订记录

目次 1 概述 (1) 1.1 计算目的 (1) 1.2 悬架系统基本方案介绍 (1) 1.3 悬架系统设计的输入条件 (2) 2 悬架系统的计算 (3) 2.1 弹簧刚度 (3) 2.2 悬架偏频的计算 (3) 2.2.1 前悬架刚度计算 (4) 2.2.2 前悬架偏频计算 (4) 2.2.3 后悬架刚度计算 (5) 2.2.4 后悬架偏频计算 (6) 2.3 悬架静挠度的计算 (6) 2.4 侧倾角刚度计算 (7) 2.4.1 前悬架的侧倾角刚度 (7) 2.4.2 后悬架的侧倾角刚度.......... 错误! 未定义书签。 2.5 整车的侧倾角计算 (10) 2.5.1 悬架质量离心力引起的侧倾力矩 (11) 2.5.2 侧倾后, 悬架质量引起的侧倾力矩 (12) 2.5.3 总的侧倾力矩 (12) 2.5.4 悬架总的侧倾角刚度 (12) 2.5.5 整车的侧倾角 (12) 2.6 纵倾角刚度 (12)

2.7 减振器参数 (13) 2.7.1 减振器平均阻力系数的确定错误! 未定义书签。 2.7.2 压缩阻尼和拉伸阻尼系数匹配 (16) 2.7.3 减震器匹配参数 (16) 3 悬架系统的计算结果 (17) 4 结论及分析 (18) 参考文献 (18)

1概述 1.1 计算目的 经过计算,求得反映MA02-ME10Q纯电动车悬架系统性能的基本特征,为零部件开发提供参考。计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。 1.2 悬架系统基本方案介绍 MA02-ME10 0纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。 前、后悬架系统的结构图如图1、图2: 图1前悬架系统

并行与串行数据结构与算法课程设计报告

课程实验报告课程名称:并行与串行数据结构与算法 专业班级:ACM1301 学号:U201315057 姓名:李海锋 指导教师:陆枫 报告日期:2015.9.23 计算机科学与技术学院

目录 1、课程设计概述 (2) 1.1 课设目的 (2) 1.2 课设要求 (2) 1.3 实验环境 (3) 2、系统总体设计 (4) 2.1 系统主模块结构体 (4) 2.2 找附近的最近的三个某地 (5) 2.3 找两点之间最短路径 (6) 2.4 数据录入模块 (7) 3、数据结构和算法详细设计 (7) 3.1 地图的存储 (7) 3.1.1 地图背景图片的存储 (7) 3.1.2 地图点 (7) 3.2 找附近的最近的特定地点(findNearby) (8) 3.3 找最短路径 (8) 4、程序实现简要说明 (9) 4.1开发环境 (9) 4.2 支持包 (9) 4.3 函数原型 (10) MainActivity.java:实现了地图主要功能 (10) Setting.java:地图数据的录入 (12) 4.4 函数功能调用关系 (14) MainActivity.java:地图主要功能程序 (15) Setting.java:数据录入程序 (15) 5、程序测试及结果分析 (16) 5.1 功能测试 (16)

5.2 测试结果分析 (22) 6、复杂度分析 (22) 6.1 输入地点名查找,鼠标点击显示 (22) 6.2 找两点之间的最短路径(dijkstra) (22) 6.3 找附近最近的三个某地 (22) 7、软件的用户使用说明 (23) 8、特色与不足 (23) 8.1 特色 (23) 8.2 不足 (23) 九、主要参考文献 (24)

悬架的设计计算.doc

3.1 弹簧刚度 弹簧刚度计算公式为: 前螺旋弹簧为近似圆柱螺旋弹簧:前 n 8D Gd 3 14 1 1= Cs (1) 1 后螺旋弹簧为圆柱螺旋弹簧:后 n 8D Gd 3 24 2 2= Cs (2) 式中:G 为弹性剪切模量79000N/mm 2 d 为螺旋弹簧簧丝直径, 前螺旋弹簧簧丝直径d 1=11.5mm , 后螺旋弹簧簧丝直径d 2=12mm ; 1D 为前螺旋弹簧中径,D 1=133.5mm 。 D 2为后螺旋弹簧中径,D 2=118mm 。 n 为弹簧有效圈数。根据《汽车设计》(刘惟信)介绍的方法,判断前螺旋弹簧有效圈数为4.25圈,即n 前=4.25;后螺旋弹簧有效圈数为5.5圈,即 n 后=5.5。 前螺旋弹簧刚度: =18.93 N/mm 后螺旋弹簧刚度: 后 n 8D Gd 324 2 2= Cs =22.6N/mm 螺旋弹簧刚度试验值: 前螺旋弹簧刚度:18.8N/mm ; 1 螺旋弹簧刚度计算公式,参考《汽车工程手册》设计篇 3 1 41 116n Gd D Cs 前=

后螺旋弹簧刚度:22.78N/mm 。 前螺旋弹簧刚度和后螺旋弹簧刚度计算值与试验值基本相符。G08设计车型轴荷与参考样车的前轴荷相差<2.0%,后轴荷相差<0.8%。设计车型直接选用参考样车的弹簧刚度,刚度为: Cs=18.8 N/mm; 1 Cs=22.6 N/mm。 2 3.5 减震器参数的确定 汽车的悬架中安装减振装置的作用是衰减车身的振动保证整车的行驶平顺性和操纵稳定性。下面仅考虑由减振器引起的振动衰减,Array不考虑其他方面的影响,以方便对减振器参数的计算。 汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

相关主题
文本预览
相关文档 最新文档