当前位置:文档之家› 汽轮机结构与运行分析

汽轮机结构与运行分析

汽轮机在运行中的维护常识

汽轮机在运行中的维护 常识 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

汽轮机在运行中的维护常识汽轮机正常运行中的维护,是保护汽轮机的安全与经济运行的重要环节之一。汽轮机的维护是汽轮机运行人员的职责,勤于检查分析情况,防止事故发生,并尽可能提高运行的经济性。 一、汽轮机运行人员基本工作 配备必要的操作、维护人员后必须进行专门训练,务必使他们熟悉机组的结构、运转特性和操作要领。运行人员的基本工作有以下几个方面: 1、通过监盘,定时抄表(一般每小时抄录一次或按特殊规定时间抄录),对各种表计的指示进行观察,对比、分析,并做必要的调整,保持各项数值在允许变化范围内。 2、定时巡回检查各设备、系统的严密性,各转动设备(泵、风机)的电流,出口压力,轴承温度,润滑油量、油质及汽轮机振动状况,各种信号显示、自动调节装置的工作,调节系统动作是否平稳和灵活,各设备系统就地表计指示是否正常。保持所管辖区域的环境清洁,设备系统清洁完整。

3、按运行规程的规定或临时措施,做好保护装置和辅助设备的定期试验和切换工作,保证它们安全,可靠地处于备用状态。 4、除了每小时认真清晰地抄录运行记录表外,还必须填写好运行交接班日志,全面详细地记录8h值班中出现的问题。 二、汽轮机运行监视 在汽轮机运行中,操作人员应对汽轮机本体、凝汽系统和油系统进行全面的监视。主要监视的项目有:新汽压力和温度、真空(或排汽压力)、段压力、机组振动、转子轴向位移、汽缸热膨胀、机组的异声、凝汽器的蒸汽负荷、循环水的进口温度及水量、真空系统的密闭程度、油压、油温、油箱油位、油质和油冷却器进出口水温等。特别是对各项的变化趋势进行检查和记录,这对防止事故发生、查明事故原因和研究处理措施都是很必要的。 1、监视段压力检查 在汽轮机中,汽轮机第一级后压力与通过汽轮机蒸汽流量近似成正比,如因结垢使流通面积小于设计值,欲维持相同的蒸汽流量或功率,

汽轮机运行分析

机组运行分析 、进汽压力 进汽压力升高的影响: ①汽压升高,汽温不变,汽机低压段湿度增加,不但使汽机的湿汽损失增加,降低汽机的相对内效率,并且增加了几级叶片的侵蚀作用,为了保证安全,一般要求排汽干度大于88%,高压大容量机组为了使后几级蒸汽湿度不致过大,一般都采用中间再热,提高中压进汽温度。 ②运行中汽压升高,调门开度不变,蒸汽流量升高,负荷增加,要防止流量过大,机组过负荷,对汽动给泵则应注意转速升高,防止发生超速,给水压力升高过多。 ③汽压升高过多至限额,使承压部件应力增大,主汽管、汽室,汽门壳体、汽缸法兰和螺栓吃力过大,材料达到强度极限易发生危险,必须要求锅炉减负荷,降低汽压至允许范围内运行。 进汽压力降低的影响: ①汽压降低,则蒸汽流量相应减少,汽轮机出力降低,汽动给泵则转速降低,影响给水压力,流量降低。 ②要维持汽轮机出力不变,汽压降低时,调门必须开大,增加蒸汽流量,各压力级的压力上升,会使通汽部分过负荷,尤其后几级过负荷较严重;同时机组轴向推力增加,轴向位移上升,因此一般汽压过多要减负荷,限制蒸汽流量不过大。 ③低汽压运行对机组经济性影响较大,中压机组汽压每下 降O.IMpa,热耗将增加0.3? 0.5%,一般机组汽压降低1%,使汽耗量上升0.7%。 、进汽温度: 进汽温度升高的影响; ①维持高汽温运行可以提高汽轮机的经济性,但不允许超限运行,因为在超过允许温度运行时,引起金属的高温强度降低,产生蠕胀和耐劳强度降低,脆性增加,长期汽温超限运行将缩短金属部件的使用寿命。 ②汽温升高使机组的热膨胀和热变形增加、差胀上升,汽温升高的速度过快,会引起机组部件温差增大,热应力上升,还使叶轮与轴的紧力、叶片与叶轮的紧力发生松弛,易发生通汽部分动静摩擦,如由于管道补偿作用不足或机组热膨胀不均易引起振动增加。进汽温度降低的影响; ①汽温降低,使汽轮机焓降减少,要维持一定负荷,蒸汽流量增加,调节级压力上升,调节级的焓降减小,对调节级来讲安全性较好。 ②在汽压、出力不变的情况下,汽温降低蒸汽流量增加,末级叶片焓降显著增大,会 使末级叶片和隔板过负荷,一般中压机组汽温每降低10C,就会使最后一级过负荷约1.5%, 一般汽温降低至某一规定值要减负荷,防止蒸汽流量过大。 ③汽温降低为维持同一负荷,蒸汽流量增加,要使蒸汽从各级叶片中通过,叶片反动度要增加,引起转子轴向推力加大,因此低汽温时应加强对轴向位移、推力瓦温的监视。 ④汽温降低,汽轮机后几级蒸汽湿度增加,加剧了湿蒸汽对后几级叶片的冲蚀,缩短叶片的使用寿命。 ⑤汽温降低要注意下降速度不能过快,汽温突降将引起机组各金属部件温差增大,热 应力上升,因温降产生的温差会使金属承受拉伸应力,其允许值比压缩应力小,且差胀向

参数的选择与汽轮机内效率分析

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的为表计显示值。其他为计算或模拟值。

本机组型号B6-35 /5,设计蒸汽压力℃,排汽压力。设计内效率%。 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。 从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 2、纯碱行业真空透平机、压缩透平机和背压汽轮机相对内效率比较

各个背压供热机组热效率都接近100%,但汽耗率分别为、、、kg/kwh,即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那

(工艺流程)电厂工艺流程图

外部的煤用火车或汽车运进厂后,由螺旋卸车机(或汽车卸车机)卸入缝式煤槽,经运煤皮带送到贮煤仓,经碎煤机破碎后,再由运煤皮带机送到煤仓间,经磨煤机粉末处理后被送到锅炉燃烧,加热锅炉的水,使其变为高温高压蒸汽,之后,高温高压蒸汽被送往汽轮机膨胀做功,推动转子高速旋转,从而带动发电机发电。 从汽轮机出来的热蒸汽通过冷凝器冷却成凝结水,经处理后循环使用。锅炉烟气经脱硝、除尘、脱硫后经烟囱排到空气中。 以下根据单元划分对各系统的工艺流程和设备布局进行详细叙述。各种职业病危害因素标注:1煤尘、2矽尘、3石灰石尘、4石膏尘、5其它粉尘、6噪声、7高温、8辐射热、9全身振动10一氧化碳、二氧化碳、二氧化硫、一氧化氮、二氧化氮、11工频电场、12六氟化硫、13盐酸、14氨、15肼。16硫化氢、17氢氧化钠、18硫酸、19二氧化氯、20甲酚。 2.7.1输煤系统: 自备热电厂改造工程建设时,电厂燃煤厂外运输采用火车来煤与公路汽车运输相结合的方式。拟从原有该项目铁路专用线上接出电厂运煤铁路专用线,所需燃料可方便地运送入厂。在厂址西侧与该项目的运煤通道相连,为燃料运输车辆的出、入口。本电厂燃用煤种为原煤。锅炉对燃料粒度要求:粒度范围≤30mm。 输煤系统中设有三处交叉。火车煤沟下部皮带机头部、筒仓下部皮带机头部、进煤仓间皮带机头部通过交叉均可实现带式输送机甲、乙路的切换运行。 2.7.1.1火车来煤: 火车来煤由该项目内部铁路将煤运至煤场,煤受卸设施为双线缝隙式煤槽。煤沟设计长150m,配三台螺旋卸车机将煤卸入缝式煤沟,煤沟上口宽13m,有效容量约4000t,可存放3列车的来煤量。火车煤沟下部皮带机头部、筒仓下部皮带机头部、进煤仓间皮带机头部通过交叉均为带式输送机甲、乙路的切换运行。

汽轮机设备及系统安全运行常识参考文本

汽轮机设备及系统安全运行常识参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机设备及系统安全运行常识参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 对于汽轮机组除机组本身外,大部分转动机械是离心 式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水 泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺 少的重要辅助设备,它的安全经济运行将直接影响发电供 热的安全和经济效益。转动机械运行中应注意以下几点事 项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂 物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范 围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘

根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。 (6)值班时工作服要符合要求,不应当有可能被转动机器绞住的部分,穿好绝缘鞋,戴好安全帽。 (7)检查或擦拭设备时,手脚或身体任何部位不能接触设备的转动部分,防止发生机械伤害事件。不允许运行中清扫转动部位的脏物和污垢。 (8)检查水泵盘根时,要侧对着盘根压盖部位,防止介质喷出造成人员伤害。监督无关人员禁止靠近转动的机械。 (9)运行中要把各冷却水管接头进行重点检查,防止松动冷却水喷出进入电动机内,造成电动机短路烧损。

电厂汽轮机运行中节能降耗的对策分析 孙利华

电厂汽轮机运行中节能降耗的对策分析孙利华 发表时间:2018-01-31T12:10:13.450Z 来源:《基层建设》2017年第33期作者:孙利华 [导读] 摘要:汽轮机运行的节能降耗在电厂的降耗管理中的作用重大,要使得汽轮机节能降耗工作能够顺利实施,就要对其影响因素进行研究分析,采取科学合理的解决措施,有效提升电场汽轮机运行的节能降耗。 神华国能(神东电力)郭家湾电厂陕西榆林 719408 摘要:汽轮机运行的节能降耗在电厂的降耗管理中的作用重大,要使得汽轮机节能降耗工作能够顺利实施,就要对其影响因素进行研究分析,采取科学合理的解决措施,有效提升电场汽轮机运行的节能降耗。本文探讨了电厂汽轮机运行中节能降耗的对策。 关键词:电厂;汽轮机运行;节能降耗;对策 在当前社会发展形势下,发展节能经济、绿色经济、环保经济已成为我国现代社会发展的主要内容。为了实现我国经济的可持续发展,在电厂汽轮机运行过程中,就必须做好节能降耗工作,保证凝汽器的真空度,保证汽轮机所需水的温度,做好余烟回收利用,加强管理,进而为电厂的综合效益提供保障。 1汽轮机节能降耗的必要性 汽轮机是电厂生产运行过程中的重要组成部分,同时也是电厂进行能源控制的关键设备。在我国电力系统的发展进程中,通过不断的研究探索,研发了有关汽轮机的节能改造技术,这一技术改造,可有效提高电能的使用效率,减少能耗损失,对电厂在正产运转情况下做到节能降耗有着重要的促进关系,不仅可在极大程度上提升电厂的经济效益,还对电厂实现可持续发展具有积极的促进作用。除此之外,相关研究人员在进行汽轮机节能降耗研究分析时,还提升了汽轮机的使用和维护水平,发挥了汽轮机的作用,提高了生产效益。 2发电厂汽轮机运行能耗问题 2.1汽轮机组能耗高问题 汽轮机是发电厂中的主要动力设备,通过汽轮机实现了电能、动能、热能的转化。通常情况下,汽轮机应配合其他相关设备一起使用才能最大程度发挥其应有的功能。这些相关设备包括:发电机、凝汽器、加热器、泵、锅炉等。而导致汽轮机组能耗高情况出现的原因主要有以下几方面:汽轮机外缸、喷嘴室发生变形;汽轮机轴端汽封部位、隔板汽封部位漏气;汽轮机低压缸出汽边被腐蚀,导致气阀压被损伤;调整汽轮机组时,冷却水温度过高;凝汽器真空度过高;汽轮机实际运行负荷与设计负荷存不相符;运转方式不合理,没有进行优化等。 2.2空冷凝汽器问题 导致空冷凝汽器出现问题的主要原因有以下几方面:受空气中风沙影响,凝汽器中会积累大量沙尘,造成凝汽器翘片管热阻增加,进而对凝汽器传热功能产生严重的影响,阻挡通道;凝汽器位于负风压区域时,风机会吸入部分空气,导致流通受阻;凝结水含溶氧量大时,会降低凝汽器热传效率,并导致管道和相关设备受侵蚀;冬季时,空冷凝汽器容易出现流量不均衡情况,就会对汽轮机的正常运行造成严重影响,从而使得汽轮机运行效率被降低。 2.3冷却塔问题 冷却塔问题主要表现在以下方面:冷却塔喷头堵塞;喷头与喷孔设计部匹配。一旦冷却塔出现上述问题,就会使得冷却塔内部水温升高,进而导致汽轮机排气温度升高,降低其真空度,造成能耗增加。 3电厂汽轮机运行中节能降耗的对策 3.1汽封换型 导致汽轮机组热耗高的一个重要原因是汽轮机的汽缸运行效率低。汽轮机通流间隙是否合理、汽封密封性的优劣直接影响着汽缸的运行效率。部分电厂的梳齿式汽封为结构落后的传统汽封,它的安装间隙较大,密封效果不佳,这将显著降低汽缸的运行效率。因此,选择合理的气封形式,科学调整通流间隙是提高汽轮机缸效率的有效途径。目前,汽轮机最常用的气封类型有七种:梳齿型汽封、侧齿型汽封、刷式汽封、蜂窝型汽封、接触型汽封、DAS型汽封、布莱登汽封。这七种气封类型各有优缺点,采用何种类型应根据具体电厂的实际情况,充分考虑改造效果和设备运行的可靠性。 3.2通流部分节能降耗措施 3.2.1通流部分湿蒸汽冲洗及化学冲洗方法。针对通流部件会出现积垢问题,在此提出两种冲洗方法,湿蒸汽冲洗与化学冲洗方法。在处理通流部分的积垢时,将转子吊出,置于备妥的支架上,首先使用高压水或溶剂进行湿冲洗,之后用刮刀、砂纸等工具手工清除,清除积垢时要叶片的保护。湿蒸汽冲洗是最常使用的清洗措施,它是将清洗装置(减温减压器)产生的饱和蒸汽通入汽轮机,在运转状态下冲洗积垢,积盐被湿蒸汽中凝结水带走而得以清除,对垢层是盐和SiO2混合物的积垢,当溶于水的化合物被冲掉后,不溶于水的SiO2垢层会随之瓦解而被除去。在特殊情况下,当湿蒸汽冲洗不能有效清除硅垢时(湿蒸汽冲洗方法不能彻底清除积垢),可以用化学冲洗,化学冲洗是在冲洗蒸汽的基础上加入化学药品进行冲洗,如加入NaOH溶液。但化学药品会腐蚀通流部分的构件,当时用化学冲洗时,应严格控制添加剂的浓度、温度,并在最后用纯净的湿蒸汽进行二次冲洗以避免残留的化学药剂对叶片产生腐蚀。 3.2.2低压缸排气通道优化节能改造。国产汽轮机低压缸排汽通道普遍存在一定的结构设计缺陷,这就是在排汽通道内部设计安装了7号、8号低压加热器;此外,还安装了大量的支撑钢架和抽汽管道。此种结构既加大了汽轮机低压缸排汽的阻力系数,同时使凝汽器汽侧排汽场的汽流分配严重不均,甚至产生涡流场。这种不合理的结构是致使凝汽器换热效率低、真空低的一个重要原因。针对这一问题,根据Fluent流场模型在通道内部安装排气导流板。 3.3加强汽轮机的运行管理 汽轮机在运行过程中可以采用定—滑—定的运行方式。就是在高负荷区域下,改变通流面积。在低负荷下,使用低水平的定压调节。而在中间负荷区,根据实际情况来加减负荷,使得汽门的开关处于滑压运行状态。为了提高给水温度和投入率,减少加热器端差,应该在高负荷运行时适当提高汽轮机的主汽温度、主汽压力。 3.4汽轮机冷端改造 3.4.1凝汽器改造。针对凝汽器换热效率低的问题,可以采用基于先进三维计算流体力学开发的新型管束布置(可以采用基于流体力学软件优化的管束布置),可以增大管束边界、降低汽侧边界流速、缩短汽流流程、均衡凝结负荷、疏通不凝结气体抽气通道、消除不凝结

提高汽轮机性能及运行特性分析

提高汽轮机性能及运行特性分析 发表时间:2018-11-02T21:44:21.237Z 来源:《电力设备》2018年第17期作者:梁柯 [导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 (呼和浩特热电厂内蒙古呼和浩特 010080) 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且有较大改进空间的环节,基于此,本文作者就哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组进行分析,其中不足之处,希望同行多加指正。 关键词:汽轮机;性能;技术 1高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 2高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。 因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 3优化反动式叶片的开发 3.1开发背景 本次使用的是呼和浩特热电厂2×350MW供热机组,汽轮机采用哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组。为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 3.2强化设计的应用 3.2.1测量特性和信号因子 将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。 3.2.2误差因子和控制因子 误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。 3.2.3叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。 3.2.4SN比和灵敏度特性 针对9种计算方案,进行二维紊流分析,根据此计算结果在三种情况下4个控制因子(A―D),对SN比和灵敏度平均值的因果图。在此研究中,目标是不公将离散度变小(SN比变大),最终还要开发出损失小的叶片。 3.2.5根据最优条件的研究 按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3.3利用二维叶栅风洞进行性能确认试验 通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 3.4利用空气透平进行级效率的确认试验 为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压

汽轮机经济指标分析

汽轮机经济指标 汽轮机的经济、定义、计算及测试、评价方法讲义 华电瑞能电力中试有限责任公司—周国强 1 工作内容 对于电厂来说,汽轮机组运行的安全性永远是处于首要位置的,因此,汽轮机组的经济性工作,就是在保证机组安全运行的前提下,使机组在更为经济的状况下运行。 汽轮机组的经济性主要涉及到以下五个方面的工作: (1) 确认汽轮机组的真实运行状况 获取机组的运行状况可以通过以下三种方式: ——与现场相关人员交流即通过与现场相关专业的专工、运行人员、检修人员交谈来了解机组的运行状况。 ——查阅相关报表即通过对电厂日报表和月统计报表中相关数据的分析来获取机组的运行状况。 ——对机组进行热力性能测试。 前两种方式是节能监督工作中较为常用的方法,其可使监督人员在较短的时间内了解机组的运行状况。另外,当经济性工作者对机组的运行状况进行初步了解时,前两种方式也是较为有较的手段。 但是对于获取机组的运行状况,最为重要和最为常见的方法是第三种。 通过热力性能试验可以更为全面、更为准确地了解机组真实的运行状况,并可通过对试验数据的分析与比较判断出问题之所在。因此,对汽轮机组进行热力性能测试是确认机组运行状况最为常用的方法。这种性能测试所涉及的工作包括:大修前后的常规热力性能试验、新机组投入运行后所做的启动验收试验,以及针对某一设备故障或缺陷所做的专项试验。 (2) 对汽轮机组运行状况作出评价 在全面了解机组运行状况的基础之上,对汽轮机组的经济运行状况作出评价,这是节能监督工作的重要内容,同时也是编写热力试验报告不可缺少的内容。(3) 找出问题并提出改进措施

在全面了解机组运行状况的基础之上,找出汽轮机组经济运行中存在的问题并提出改进措施,这是汽轮机经济性工作和节能监督工作的一个重点。此项工作对现场机组的经济运行可起到指导作用,是电厂制定节能计划的重要依据。 (4) 节能改造/设备消缺 根据电厂需要和对此项工作涉入程度的不同,此方面工作内容有所不同,包括:编写节能改造的可行性报告、制定改造方案等。 (5) 对大修/改造效果作出评价 通过对大修后/改造后的汽轮机组进行测试,对机组的大修效果作出评价,判定机组改造后是否达到了预期的经济指标。主要涉及到的工作是大修后热力性能试验和改造后鉴定性试验。 2 常用经济指标(定义、计算及测试、评价方法) 首先介绍有关凝汽系统的几个经济指标。 2.1 凝汽器真空度 2.1.1 定义 (1) 真空:指在给定容器内低于当地大气压力的气体状态。 (2) 真空值:容器内部的绝对压力与外界大气压力的差值,叫真空值。 (3) 真空度 因为大气压力随时间和地点的不同而变化,因此用真空值并不能准确地反映凝汽器运行情况,而且也不便于不同电厂之间的比较,所以一般用真空度表示凝汽器真空情况的好坏。 真空度=(1-Pk/P0)×100% (1) 式中: Pk——凝汽器排汽压力,kPa; P0——标准大气压力,101.325kPa。 2.1.2 测试方法 (1) 仪表 精密真空表和大气压力表,也可利用现场经校验合格的精度为0.5级以上的仪表。 (2) 测试方法

135MW汽轮机组滑压运行经济性分析

135MW汽轮机组滑压运行经济性分析 摘要:汽轮机组是发电厂中重要的发电设备,汽轮机组在低负荷运行中会由于 低负荷调峰运行时间过长,而降低热经济性,这大大影响了热能的利用效率。为 了更好的完成电力生产,满足社会发展需要,电厂必须重点研究汽轮机组的滑压 运行经济性,进而掌握汽轮机组在低负荷运行时的最佳运行参数,通过调整运行 方式提升汽轮机组的滑压运行经济性。本文就是特别针对135MW型汽轮机组做 出的技术分析,凭借对热耗率的分析,找出影响汽轮机组滑压运行经济性的原因,以供参考。 关键词:汽轮机组;滑压运行;热耗率 引言:近年来,随着城市用电量的增加,让电网用电高峰及用电低谷的差距 明显增大,汽轮机组在低负荷调峰运行状态下的运行时间明显增加,而汽轮机组 在低负荷运行状态下的热经济性较低。因此,技术人员必须找出汽轮机组在低负 荷运行状态下的最佳运行参数,这样才能最大限度让汽轮机组发挥功效,从而减 少燃煤的使用量。135MW汽轮机很多都是在150MW单缸汽轮机的基础上改进而 来的,其对单缸汽轮机的热力系统进行了改进,延长了汽轮机末级叶片,提高了 低压气缸的气流流通性,进而可以提升汽轮机组的整体性能。 一、汽轮机组的简介 (一)135MW汽轮机组的结构 电厂中使用的135MW汽轮机组大体分为单缸、双缸型,单缸型的汽轮机组 比双缸机组的重量更轻,机组结构更加简单,其采用单缸单转子结构,可以实现 中间再热,单向排气,并且具有超高压性能,相比于135MW双缸汽轮机组更加 轻便,凭据尺寸均小于双缸汽轮机组7-9M,由于结构简单,相对重量也得到了减轻。使用双缸型135MW汽轮机组,可以实现对汽轮机组的调峰运行。双缸型 135MW汽轮机组使用的热力系统由一级除氧器、二级高压加热器和三级低压加 热器组成,低压加热器设计在凝汽器蒸汽入口处,其背压可以达到9.7kPa,热耗率为8530.8kJ/(kW·h)。 (二)汽轮机组的运行方式 汽轮机组的运行方式分为4种,分别为定压运行、滑压运行、阀点滑压运行 以及复合滑压运行。定压运行方式是指汽轮机组在常规运行状态下,主蒸汽压力 维持在一个稳定数值范围内,在定压运行方式下,其主蒸汽压力数值不受到因负 荷量的影响。使用定压运行方式的汽轮机可以通过单阀调节的方式调整气流,也 可以利用多阀调节的方式控制气流。 滑压运行方式是指利用高压调速阀全开的方式,调整锅炉气压,进而调整汽 轮机组的负荷量。通过锅炉气压调控负荷的方式,具有较好的节能效果,其损耗 的能量较低,但是也存在负荷量响应速度较慢的问题,所以不能单纯依靠锅炉压 力来调节负荷。 阀点滑压运行方式是指控制高压调速阀的阀点,其具体阀点需要根据汽轮机 组的型号决定,不同汽轮机组的阀点也有所不同。控制高压调速阀后,确保其他 阀门不开启或轻微开启,减少高压调节阀的节流损失,保证主蒸汽温度在额定范围,通过控制燃料使用量来控制压力、调整负荷量,这样可以显著提升负荷量相 应速度,并且具有较高的经济性。 复合滑压运行方式是一种滑压运行与定压运行相结合的运行方式,其通过控 制高压调节阀来调控负荷,这样可以压力保持在额定范围内;在低压符合去,可

汽轮机叶片制造工艺过程

轴流式蒸汽轮机动叶片制造工艺简述 摘要:介绍了汽轮机等截面直叶片、自由成型叶片、有成型规律叶片汽道加工的毛坯制造、型面加工工艺过程,并介绍了五联动加工中心的基本特点,简单说明了汽轮机叶片几种特种加工方法的基本原理。 关键字:汽轮机动叶片毛坯制造加工工艺特种加工 一:汽轮机简介 汽轮机是将蒸汽的能量转换为机械功的旋转式动力机械,是蒸汽动力装置的主要设备之一。主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要。汽轮机是一种高温高压高速旋转的机械,尤其对于发电用汽轮机来说,又是大功率输出地原动力机械,所以设计要求汽轮机具有高效率,高安全可靠性,而且可调性要好。 目前我国发电用汽轮机以300~600MW居多,体积庞大,结构精细复杂。由于多级轴流式汽轮机绝热焓降大,能够充分利用蒸汽的热能,因此绝大多数为发电用汽轮机均为多级轴流式汽轮机。 汽轮机本体主要由转动部分和静止部分两个方面组成。转子包括主轴、叶轮、动叶片和联轴器等。静子包括进汽部分、汽缸、隔板和静叶栅、汽封及轴承等。因此汽轮机的制造工艺主要为上述部件的制造工艺。汽轮机制造工艺的特点为:属单件生产,生产期长,材料品种多,材

料性能要求高,零件种类多,加工精度高,设备要求高,操作技能要求高,机械加工工种齐全,设计冷热工艺且面广,检测手段齐备要求高,计量设备、测量工具齐全而且要求高采用专门工装多。 二:轴流式蒸汽轮机动叶片制造工艺 1:叶片的结构 静叶片一般由工作部分和安装部分组成 动叶片一般由叶根、叶型部分和叶顶三部分组成 2:叶片的工作条件及材料选择 叶片的工作条件复杂,除因高速旋转和气流作用而承受较高的静应力和动应力外,还因其分别处在过热蒸汽区、两相过渡区、和湿蒸汽区段内工作而承受高温、高压、腐蚀和冲蚀作用。因此叶片的材料要满足以下要求: 良好的常温和高温机械性能、良好的抗蚀性、良好的减震性、和一定的耐磨性良好的冷热加工性能。 叶片的常用材料有: (1):铬不锈钢1Cr13和2Cr13属于马氏体耐热钢,它们除了在室温和工作温度下具有足够的强度外,还具有高的耐蚀性和减振性,是世界上使用最广泛的汽轮机材料。 (2):强化型铬不锈钢弥补了1Cr13型铬不锈钢热强性较低的缺点,在其中加入钼、钨、钒、铌、硼等。 (3):低合金珠光体耐热钢用于制造工作温度在450℃以下中压汽轮机各级动叶片和静叶片。

浅谈提高汽轮机性能及运行特性分析研究

浅谈提高汽轮机性能及运行特性分析研究 发表时间:2019-03-25T16:03:20.293Z 来源:《基层建设》2018年第35期作者:纪震[导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 哈尔滨汽轮机厂有限责任公司哈尔滨 150001 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且 有较大改进空间的环节,本文就应用于实机的各种提高性能的技术中,摘出与叶片开发有关的技术,尤以高载荷静叶的开发,并详细介绍了优化反动式叶片的开发,从而对汽轮机性能控制进行总结,其中不足之处,希望予以指正。关键词:汽轮机;性能;运行特性一、高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 二、高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 三、优化反动式叶片的开发 1、开发背景 为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 2、强化设计的应用 (1)测量特性和信号因子将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。(2)误差因子和控制因子误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。(3)叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。(4)根据最优条件的研究按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3、利用二维叶栅风洞进行性能确认试验通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 4、利用空气透平进行级效率的确认试验为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压力、温度和流角进行了逐点测量。然后根据流量孔扳的测量、测功器的出力和探针测量计算出级效率。以顶部的汽封结构也不一样。与以往动叶片相比,效率提高了1.5%。经确认:由于动叶顶部反动度与密封结构的不同,考虑到漏流影响的话,叶片自身的效率可提高3%。此优化反动叶片已应用于实机。 四、汽轮机的控制方式研究

提高汽轮机的运行经济性

提高汽轮机的运行经济性 一. 汽轮机的发展 汽轮机是将蒸汽的能量转换为机械功的旋转式动力机械,是蒸汽动力装置的主要设备之一。汽轮机是一种透平机械,又称蒸汽透平。 公元一世纪时,亚历山大的希罗记述了利用蒸汽反作用力而旋转的汽转球,又称为风神轮,这是最早的反动式汽轮机的雏形;1629年意大利的布兰卡提出由一股蒸汽冲击叶片而旋转的转轮。 19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。单级冲动式汽轮机功率很小,现在已很少采用。 20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。帕森斯在1884年取得英国专利,制成了第一台10马力的多级反动式汽轮机,这台汽轮机的功率和效率在当时都占领先地位。

20世纪初,美国的柯蒂斯制成多个速度级的汽轮机,每个速度级一般有两列动叶,在第一列动叶后在汽缸上装有导向叶片,将汽流导向第二列动叶。现在速度级的汽轮机只用于小型的汽轮机上,主要驱动泵、鼓风机等,也常用作中小型多级汽轮机的第一级。 单级背压式汽轮机 小型多级背压式汽轮机 与往复式蒸汽机相比,汽轮机中的蒸汽流动是连续的、高速的,单位面积中能通过的流量大,因而能发出较大的功率。大功率汽轮机可以采用较高的蒸汽压力和温度,故热效率较高。19世纪以来,汽轮机的发展就是在不断提高安全可靠性、耐用性和保证运行方便的基础上,增大单机功率和提高装置的热经济性。 汽轮机的出现推动了电力工业的发展,到20世纪初,电站汽轮机单机功率已达10兆瓦。随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000兆瓦,如果单机功率只有10兆瓦,则需要装机近百台,因此20年代时单机功率就已增大到60兆瓦,30年代初又出现了165兆瓦和208兆瓦的汽轮机。 此后的经济衰退和第二次世界大战期间爆发,使汽轮机单机功率的增大处于停顿状态。50年代,随着战后经济发展,电力需求突飞猛进,单机

汽轮机设备及系统安全运行常识通用版

安全管理编号:YTO-FS-PD178 汽轮机设备及系统安全运行常识通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

汽轮机设备及系统安全运行常识通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 对于汽轮机组除机组本身外,大部分转动机械是离心式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺少的重要辅助设备,它的安全经济运行将直接影响发电供热的安全和经济效益。转动机械运行中应注意以下几点事项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。

大型汽轮机组运行方式优化试验研究及经济性分析

大型汽轮机组运行方式优化试验研究及经济性分析 李 明,黄丕维,焦庆丰,徐 曙,邱应军,蒋北华 (湖南省电力公司试验研究院,湖南长沙410007) 摘 要:介绍了汽轮机组2种基本的运行方式:定压运行和滑压运行。比较不同运行方 式的经济性。通过开展300MW和600MW机组滑压运行优化试验,得出机组不同负 荷下合理的运行方式和最佳滑压曲线,达到了降低机组供电煤耗、提高经济效益的目 的。 关键词:汽轮机;滑压运行;经济性;优化 中图分类号:T K26 文献标识码:A 文章编号:100820198(2008)0120027204 收稿日期:2007212214R esearch on test of large steam turbine units optimal operation and economy analysis L I Ming,HUAN G Pi2wei,J IAO Qing2feng,XU Shu,Q IU Y ing2jun,J IAN G Bei2hua (Hunan Electric Power Test and Research Institute,Changsha410007,China) Abstract:Two basic operation modes of turbine unit s,constant pressure and sliding pressure operation,were intro2 duced.The economies of two operation modes were compared.The reasonable operation mode and optimized sliding pressure curves of unit s under different loads were gained by300MW and600MW unit s sliding pressure optimization test s,which lowered power supply coal consumption and improved economy benefit. K ey w ords:steam turbine;sliding pressure operation;economy;optimization 1 前 言 近年来,国民经济增长迅速,社会电力需求日益提高,用电结构发生较大变化,电网负荷昼夜峰谷差越来越大,大容量机组需要参与电网调峰运行,而随着国家宏观调控及电源建设的快速发展,电力供需矛盾已趋缓和,火电机组利用小时数逐年降低,低负荷运行时间增加。汽轮机长期低负荷运行,偏离设计工况,热经济性大大降低,提高机组在低负荷下的经济性是一个亟待解决的问题。如何在确保机组安全运行的前提下,使机组保持最佳运行工况,从而最大限度地降低供电煤耗是市场经济对发电企业提出的现实要求。国内现有的大容量机组大多数按照基本负荷设计,不能适应频繁的启停和变负荷,因此必须对机组运行方式进行优化,以提高机组低负荷运行的经济性。影响机组低负荷运行热经济性的主要因素有:系统设计、设备状况、运行方式等,其中只有运行方式可人为调整。因此,研究汽轮机变负荷运行时,不同运行方式的特点及对热经济性的影响,对发电企业节能降耗具有十分重要的意义。 2 汽轮机的运行方式 2.1 定压运行方式 定压运行指汽轮发电机组在正常运行时,主蒸汽压力保持额定值,不随负荷变化而变化。定压运行的汽轮机可采用节流配汽,也可采用喷嘴配汽。节流配汽是通过调节汽门的节流来改变进汽量以达到所需负荷;喷嘴配汽是通过几个调节汽门改变进汽度来改变负荷,节流只作用在单个阀门上。 2.2 滑压运行方式 滑压运行主要有纯滑压运行、节流滑压运行和复合滑压运行3种方式。前2种运行方式既可用于节流调节、全周进汽的机组,也可用于喷嘴调节、 ? 7 2 ? 第28卷/2008年第1期湖 南 电 力节能降耗专栏

相关主题
文本预览
相关文档 最新文档