当前位置:文档之家› 生物化学名词解释

生物化学名词解释

生物化学名词解释
生物化学名词解释

名词解释

生物化学生物化学,是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门科学。它是从分子水平来研究生物体(包括人类、动物、植物和微生物)内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。

分子生物学分子生物学是以生物大分子为研究目标,通过对蛋白质、酶和核酸等大分子的结构、功能及其相互作用等运动规律的研究来阐明生命分子基础,从而探索生命奥秘的一门科学。它是由生物化学、遗传学、微生物学、病毒学、结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学,目前已发展成生命科学中的带头学科。

第一章糖的化学

单糖凡不能被水解成更小分子的糖称为单糖。单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。单糖可根据其分子中含碳原子多少分类,最简单的单糖是三碳糖,在自然界分布广、意义大的五碳糖和六碳糖,也分别称为戊糖和己糖。

寡糖寡糖是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。其中二糖是寡糖中存在最为广泛的一类。

多糖多糖是由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的根本不溶于水,均无甜味,也无还原性。多糖有旋光性,但无变旋现象。最重要的多糖有淀粉、糖原和纤维素等。多糖中有一些是与非糖物质结合的糖称为复合糖,如糖蛋白和糖脂。

同聚多糖同聚多糖也称为均一多糖,是由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。

杂聚多糖杂聚多糖也称为不均一多糖,是由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。

粘多糖粘多糖也称为糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。如透明质酸、肝素、硫酸软骨素等。

结合糖结合糖也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。主要有糖蛋白、蛋白聚糖、糖脂和脂多糖等。

糖蛋白糖蛋白是糖与蛋白质以共价键结合的复合分子,其中糖的含量一般小于蛋白质。常见的糖蛋白包括人红细胞膜糖蛋白、血浆糖蛋白、粘液糖蛋白等。

蛋白聚糖蛋白聚糖是一类由糖与蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。蛋白聚糖是构成动物结缔组织大分子的基本物质,也存在于细胞表面,参与细胞与细胞,或者细胞与基质之间的相互作用等。

糖脂糖脂是糖和脂类以共价键结合形成的复合物,组成和总体性质以脂为主体。根据脂质部分的不同,糖脂又可分为分子中含鞘氨醇的鞘糖脂,分子中含甘油酯的甘油糖脂,由磷酸多萜醇衍生的糖脂和由类固醇衍生的糖脂。

脂多糖脂多糖是糖与脂类结合形成的复合物,与糖脂不同的是在脂多糖中以糖为主体成分。常见的脂多糖有胎盘脂多糖,细菌脂多糖等。

第二章脂类的化学

脂类脂类是脂肪及类脂的总称,是一类低溶于水而高溶于有机溶剂(如乙醚、丙酮、氯仿等),并能为机体利用的有机化合物。其化学本质为脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、鞘氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。

必需脂肪酸必需脂肪酸是指机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸。必需脂肪酸主要包括ω-3系列的α-亚麻酸和ω-6系列的亚油酸。

磷脂磷脂是含磷的脂类,包括甘油磷脂和鞘磷脂两大类。前者为甘油酯衍生物,而后者为鞘氨醇酯衍生物。它们主要参与细胞膜系统的组成。

第三章维生素与微量元素

维生素是机体维持正常生理功能所必需,但在体内不能合成或合成量很少,必须由食物供给的一组低分子量有机物质。

脂溶性维生素脂溶性维生素包括维生素A、D、E、K。它们不溶于水,而溶于脂类及多数有机溶剂。

水溶性维生素水溶性维生素能溶于水,包括B族维生素和维生素C。

微量元素微量元素是指人体中每人每日的需要量在100mg以下的元素,主要包括有铁、碘、铜、锌、锰、硒、氟、钼、钴、铬等。虽然所需甚微,但生理作用却十分重要。

第四章蛋白质的化学

蛋白质的一级结构蛋白质是由不同的氨基酸种类、数量和排列顺序,通过肽键而构成的高分子有机含氮化合物。它是蛋白质作用的特异性、空间结构的差异性和生物学功能多样性的基础。

肽键是蛋白质分子中基本的化学键,它是由一分子氨基酸的α羧基与另一分子氨基酸的α氨基缩合脱水而成。

肽单位肽键是构成蛋白质分子的基本化学键,肽键与相邻的两个α碳原子所组成的基团,称为肽单位或肽平面。多肽链是由许多重复的肽单位连接而成,它们构成肽链的主链骨架。

蛋白质的二级结构蛋白质的二级结构是指多肽链的主链骨架中若干肽单位,各自沿一定的轴盘旋或折迭,并以氢键为主要的次级键而形成有规则的构象,如α螺旋、β折迭和β转角等。

α螺旋蛋白质分子中多个肽键平面通过氨基酸α碳原子的旋转,使多肽链的主骨架沿中心轴盘曲成稳定的α螺旋构象。

蛋白质的三级结构具有二级结构、超二级结构或结构域的一条多肽链,由于其序列上相隔较远的氨基酸残基侧链的相互作用,而进行范围更广泛的盘曲与折叠,形成包括主、侧链在内的空间排列,这种在一条多肽链中所有原子或基团在三维空间的整体排布称为三级结构。

蛋白质的四级结构许多有生物活性的蛋白质由两条或多条肽链构成,肽链与肽链之间并不是通过共价键相连,而是由非共价键维系。每条肽链都有自己的一、二和三级结构,这种蛋白质的每条肽链被称为一个亚基。由两个或两个以上的亚基之间相互作用,彼此以非共价键相联而形成更复杂的构象,称为蛋白质的四级结构。

超二级结构超二级结构又称模体或模序,是指在多肽内顺序上相邻的二级结构常常在空间折叠中靠近,彼此相互作用,形成有规则的二级结构聚集体。

结构域结构域是位于超二级结构和三级结构间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密的三维实体,即结构域。

亚基亚基又称亚单位,原聚体或单体。一般由一条多肽链组成,也有由两条或更多的多肽链组成。亚基本身各具有一、二、三级结构。

蛋白质的变性某些物理的和化学的因素使蛋白质分子的空间构象发生改变或破坏,导致其生物活性的丧失和一些理化性质的改变,这种现象称为蛋白质的变性作用。

蛋白质的变构一些蛋白质由于受某些因素的影响,其一级结构不变而空间构象发生一定的变化,导致其生物学功能的改变,称为蛋白质的变构效应或别构作用。

第五章核酸的化学

核酸核酸是含有磷酸基团的重要生物大分子,因最初从细胞核分离获得,又具有酸性,故称为核酸。核酸在细胞内通常以与蛋白质结合成核蛋白的形式存在。天然的核酸分为两大类,即核糖核酸(RNA)和脱氧核糖核酸(DNA)。核酸的基本结构单位是单核苷酸,每个单核苷酸包括三部分:戊糖、含氮碱基和磷酸基。

超螺旋DNA DNA双螺旋进一步盘绕称超螺旋。超螺旋有正超螺旋和负超螺旋两种,负超螺旋的存在对于转录和复制都是必要的。

转运RNA(tRNA) tRNA是细胞中一类最小的RNA,一般由73~93个核苷酸构成,分子量23 000~28 000,沉降系数为4S。tRNA约占细胞中RNA总量的15%。在蛋白质生物合成中tRNA起携带氨基酸的作用。细胞内tRNA的种类很多,每一种氨基酸都有与其相对应的一种或几种tRNA。

核不均一RNA(HnRNA) hnRNA为存在于真核生物细胞核中不稳定的、大小不均的一组高分子RNA 的总称,在核内主要存在于核仁的外侧。hnRNA多为信使RNA的前体,包括各种基因的转录产物及其成为mRNA前的各中间阶段的分子。

信使RNA (mRNA)mRNA在细胞中含量很少,占RNA总量的3%~5%。mRNA在代谢上很不稳定,它是合成蛋白质的模板,每种多肽链都由一种特定的mRNA负责编码。mRNA 的分子量极不均一,其沉降系数在4~25S间,mRNA的平均分子量约500 000。

核蛋白体RNA (rRNA) 核蛋白体RNA是细胞中主要的一类RNA,rRNA占细胞中全部RNA的80%左右,是一类代谢稳定、分子量最大的RNA,存在于核蛋白体内。核蛋白体又称为核糖体或核糖核蛋白体,它是细胞内蛋白质生物合成的场所。

小干涉RNA(SiRNAs)SiRNAs是含有21~22个单核苷酸长度的双链RNA,通常人工合成的SiRNA为22个碱基左右的单核苷酸双链RNA。细胞内的SiRNAs由双链RNA经特异RNA酶Ⅲ家族的Dicer核酸酶切割形成的19~21个碱基左右的双链RNA。

微小RNA(miRNAs)miRNAs是一类含19~25单核苷酸的单链RNA,在3’-端有1~2个碱基长度变化,广泛存在于真核生物中不编码任何蛋白,本身不具有开放阅读框架,具有保守

性、时序性和组织特异性。成熟的miRNA可以和上游或下游序列不完全配对而形成基环结构。

核酸的变性与复性核酸分子具有一定的空间结构,维持这种空间结构的作用力主要是氢键和碱基堆积力。有些理化因素会破坏氢键和碱基堆积力,使核酸分子的空间结构改变,从而引起核酸理化性质和生物学功能改变,这种现象称为核酸的变性。变性核酸在适当条件下,可使两条彼此分开的链重新由氢键连接而形成双螺旋结构,这一过程称为复性。

核酸杂交将不同来源的DNA经热变性,冷却,使其复性,在复性时,如这些异源DNA 之间在某些区域有相同的序列,则会形成杂交DNA分子。DNA与互补的RNA之间也会发生杂交。

增色效应核酸在变性时,e(p)值显著升高,此现象称为增色效应。

染色质构成真核细胞的染色体物质称为染色质,具有三级结构的DNA和组蛋白紧密结合组成染色质。它们是不定形的,几乎是随机地分散于整个细胞核中,当细胞准备有丝分裂明,染色质凝集,并组装成因物种不同而数目和形状特异的染色体。

染色体真核细胞有丝分裂和减数分裂时由染色质聚缩而成的结构,一般呈棒状,因易被碱性染料染色故称染色体。染色质是由核内的DNA与组蛋白、非组蛋白等结合形成的线状结构。

基因基因指含有合成一个功能性生物分子(蛋白质或RNA)所需信息的一个特定DNA 片段。

基因组基因组指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。核基因组是单倍体细胞核内的全部DN分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。

第六章酶

酶酶是生物体内一类具有催化活性和特定空间构象的生物大分子,包括蛋白质和核酸等。酶与一般的催化剂不同,催化效率非常高,具有高度的专一性,催化活性受到调节和控制。

核酶核酶又称催化RNA,核糖酶,类酶,酶性RNA,另有建议称“酉亥”。核酶是具有生物催化活性的RNA,其功能是切割和剪接RNA,底物是RNA分子。核酶的切割效率低,易被Rnase破坏。核酶作用于RNA,包括催化转核苷酰反应,水解反应(RNA限制性内切酶的反应)和连接反应(聚合酶活性)等。

抗体酶抗体酶也叫催化抗体,是一类新的模拟酶。根据酶与底物作用的过渡态结构设计合成一些类似物——半抗原,用人工合成的半抗原免疫动物,以杂交瘤细胞技术生产针对人工合成半抗原的单克隆抗体,这种抗体具有与半抗原特异结合的抗体特性又具有催化半抗原进行化学反应的酶活性,称为抗体酶。

活性中心酶的活性中心又称活性部位,是酶与底物结合并发挥其催化作用的部位。就功能而论,活性部位又可分为底物结合部位和催化部位。底物结合部位是与底物特异结合的有关部位,因此也叫特异性决定部位。催化部位直接参与催化反应,底物的敏感键在此部位被切断或形成新键,并生成产物。

必需基团酶分子中与酶的活性密切相关的化学基团叫做酶的必需基团。酶的活性中心内的一些化学基团,是酶发挥催化作用与底物直接作用的有效基团,故称为活性中心内的必需基团。但酶活性中心外还有一些基团虽然不与底物直接作用,却与维持整个分子的空间构象有关,这些基团可使活性中心的各个有关基团保持最适的空间位置、间接地对酶的催化作用发挥其必不可少的作用,这些基团称为活性中心外的必需基团。

辅酶酶的辅助因子包括辅酶和辅基。这是按其与酶蛋白结合的牢固程度来区分的。与酶蛋白结合比较疏松(一般为非共价结合)并可用透析方法除去的称为辅酶。

辅基 酶的辅助因子包括辅酶和辅基。这是按其与酶蛋白结合的牢固程度来区分的。与酶蛋白结合牢固(一般以共价键结合),不能用透析方法除去的称为辅基。

转换数 酶的转换数是指单位时间,每一个催化中心所转换的底物分子数。通常指每秒钟每个酶分子转换底物的微摩尔数(μmol)。

因为V max =K 3[Et],故转换数可表示如下:转换数(Kcat)=K 3=][max

Et V

Katal 酶活力的单位。1Kat 单位定义为,在最适条件下,每秒钟可使1摩尔(1mol/L)底物转化的酶量。

米氏常数 米氏常数K m 为酶促反应速度达到最大反应速率一半时的底物浓度,单位是mol/L(摩尔/升),K m 是酶的特征性常数。当pH 、温度和离子强度等因素不变时,K m 是恒定的。K m 值的范围一般在10-7~10-1mol/L 之间。

比活力 酶的纯度用比活力表示,比活力即每毫克蛋白(或每毫克蛋白氮)所含的酶活力单位数。比活力(纯度)=活力单位数/毫克蛋白(氮)

诱导契合学说 诱导契合学说认为:酶分子与底物的契合是动态的契合,当酶分子与底物分子接近时,酶蛋白受底物分子的诱导,其构象发生有利于同底物结合的变化,酶与底物在此基础上互补契合,进行反应。

竞争性抑制 竞争性抑制是较常见而重要的可逆抑制。它是指抑制剂(I)和底物(S)对游离酶(E)的结合有竞争作用,互相排斥,酶分子结合S 就不能结合I ,结合I 就不能结合S 。这种情况往往是抑制剂和底物争夺同一结合位置。竞争性抑制程度与[I]成正比,而与[S]成反比,故当底物浓度极大时,同样可达到最大反应速度,即抑制作用可以解除。

非竞争性抑制 非竞争性抑制是指底物S 和抑制I 与酶的结合互不相关,既不排斥,也不促进,S 可与游离E 结合,也可和EI 复合体结合。同样I 可和游离E 结合,也可和ES 复合体结合,但IES 不能释放出产物。抑制程度只与[I]成正比,而与[S]无关。

反竞争性抑制反竞争性抑制为抑制剂I不与游离酶E结合,却和ES中间复合体结合成EIS,但EIS不能释出产物。抑制程度既与[I]成正比,也和[S]成正比。

激活剂凡能提高酶的活性,加速酶促反应进行的物质都称为激活剂。酶的激活剂可以是一些简单的无机离子,无机阳离子如Na+、K+、Ca2+、Mg2+、Cu2+、Zn2+、Co2+、Cr3+、Fe2+等,无机阴离子如Cl-、Br-、I-、CN-、NO3-、PO43-等。一些小分子的有机物如抗坏血酸、半胱氨酸、还原型谷胱甘肽等,对某些含巯基的酶具有激活作用。激活剂的作用是相对的,一种酶的激活剂对另一种酶来说,也可能是一种抑制剂。不同浓度的激活剂对酶活性的影响也不相同。

酶原某些酶(绝大多数是蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身称为酶原。使酶原转变为有活性酶的作用称为酶原激活。

最适pH酶表现最大活力时的pH称为酶的最适pH。pH对不同酶的活性影响不同。

最适温度化学反应的速度随温度增高而加快,但酶是蛋白质,可随温度的升高而变性。反应速度最大时的温度,称为酶的最适温度。

寡聚酶寡聚酶含有2个以上的亚基,多的可含60个亚基,这些亚基巧妙地结合成具有催化活性的酶。寡聚酶可分为含有相同亚基的寡聚酶和含有不同亚基的寡聚酶两大类。

同工酶同工酶是指能催化相同的化学反应,但分子结构不同的一类酶,它不仅存在于同一机体的不同组织中,也存在于同一细胞的不同亚细胞结构中,它们在生理上、免疫上、理化性质上都存在很多差异。

诱导酶诱导酶是指当细胞中加入特定诱导物质而诱导产生的酶。它的含量在诱导物存在下显著增高,这种诱导物往往是该酶底物的类似物或底物本身。

变构酶变构酶又名别构酶,迄今已知的变构酶都是寡聚酶,它含有两个以上的亚基。分子中除了有可以结合底物的活性中心外,还有可以结合调节物(或称效应剂)的变构中心。这两个中心可位于不同的亚基上也可位于同一个亚基的不同部位上。变构酶的活性中心与底物结合,起催化作用,变构中心则调节酶反应速度。

调节酶也称共价调节酶,是指调节剂通过共价键与酶分子结合,以增、减酶分子上的基团从而调节酶的活性状态与非活性状态的相互转化。

固定化酶固定化酶是借助于物理和化学的方法把酶束缚在一定空间内并仍具有催化活性的酶制剂。

第八章生物氧化

生物氧化物质在生物体内的氧化分解称为生物氧化,主要是指糖、脂肪及蛋白质等在体内氧化分解最终生成二氧化碳和水,并释放出能量的过程。

黄素蛋白黄素蛋白种类很多,其辅基有两种,一种为黄素单核苷酸(FMN),另一种为黄素腺嘌呤二核苷酸(FAD)。两者均含核黄素(维生素B2),此外FMN尚含一分子磷酸,而FAD则比FMN多含一分子腺苷酸(AMP)。

铁硫蛋白又称铁硫中心,其特点是含铁原子和硫原子,铁是与无机硫原子或是与蛋白质肽链上半胱氨酸残基的硫相结合。

双加氧酶双加氧酶又叫转氧酶。催化2个氧原子直接加到底物分子特定的双键上,使该底物分子分解成两部分。其催化反应的通式可表示为:

R = R′ + O2→ R = O + R′ ═ O

单加氧酶单加氧酶又称为羟化酶,或称混合功能氧化酶。催化在底物分子中加1个氧原子的反应。单加氧酶的特点是它催化分子氧中2个氧原子分别进行不同的反应,其分子氧中的一个氧原子加到底物分子上,而另一个氧原子则与还原型辅酶= 2 \* ROMAN II上的两个质子作用生成水,其催化反应可表示如下:

RH + NADPH + H+ + O2→ ROH + NADP + H2O

过氧化氢酶过氧化氢酶又叫触酶,以血红素为辅基,是催化H2O2分解的重要酶。其催化的反应如下:

过氧化氢酶

H2O2 + H2O22H2O + O2

过氧化物酶过氧化物酶以血红素为辅基,可催化H2O2分解生成H2O,并释放出氧原子直接氧化酚类和胺类物质。其催化的反应如下:

过氧化物酶

RO2 + H2O2 R + 2H2O

过氧化物酶

R + H2O2 RO + H2O

底物水平磷酸化底物分子内部能量重新分布形成高能磷酸键并伴有ADP磷酸化生成ATP的作用称为底物水平磷酸化,与呼吸链的电子传递无关。

氧化磷酸化代谢物脱氢经呼吸链传递给氧生成水的同时,释放能量用以使ADP磷酸化生成ATP,由于是代谢物的氧化反应与ADP的磷酸化反应偶联发生,故称为氧化磷酸化。

解偶联剂解偶联剂是氧化磷酸化的一类抑制剂,使氧化与磷酸化脱偶联,虽然氧化照常进行,但磷酸化不能进行,不能生成ATP,则P/O比值降低,甚至为零。解偶联剂为离子

载体或通道,能增大线粒体内膜对H+的通透性,消除H+梯度,因而无ATP生成,使氧化释放出来的能量全部以热的形式散发。如质子载体2,4-二硝基酚(DNP)。

呼吸链在生物氧化体系中,传递氢的酶或辅酶称为递氢体,传递电子的酶或辅酶称为电子传递体,它们按一定的顺序排列在线粒体内膜上,组成递氢或递电子体系,统称为电子传递链。该体系进行的一系列连锁反应是与细胞摄取氧的呼吸过程相关,故又称为呼吸链。

P/O比值P/O比值是指每消耗一摩尔氧原子所需消耗无机磷的摩尔数。

ATP合酶ATP合酶位于线粒体内膜上,是一个大的膜蛋白质复合体,是由两个主要组分(或称因子)构成,一是疏水的F0,另一是亲水的F1,又称F0F1复合体。ATP合酶催化ADP 与Pi合成的。

ATP循环在能量代谢中起关键作用的是ATP-ADP系统,ADP能接受代谢物质中所形成的一些高能化合物的一个磷酸基团和一部分能量转变成ATP,也可以在呼吸链氧化过程中直接获取能量,用无机磷酸合成ATP;ATP水解释放出一个磷酸基团又变成ADP,同时释放出能量又被用于合成代谢和其他需要能量的生理活动,这就是ATP循环。

高能磷酸键生物氧化过程中释放的能量大约有40%以化学能的形式储存于一些特殊的有机磷化合物中,形成磷酸酯。这些磷酸酯键水解时释放能量较多(大于21kJ/mol),一般称之为高能磷酸键,常用“~p”符号表示。含有高能磷酸键的化合物称之为高能磷酸化合物。

第九章糖代谢

糖酵解在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。

糖酵解途径糖酵解途径是指在细胞质中分解葡萄糖生成丙酮酸的过程,此过程中伴有少量ATP的生成。

糖的有氧氧化葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化,有氧氧化是糖氧化的主要方式,绝大多数细胞都通过它获得能量。

三羧酸循环乙酰CoA进入由一连串反应构成的循环体系,被氧化生成水和二氧化碳。由于这个循环反应开始于乙酰CoA与草酰乙酸缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环。又因为Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环。

磷酸戊糖途径磷酸戊糖途径也称为磷酸戊糖旁路,是一种葡萄糖代谢途径。葡萄糖可经此途径代谢生成磷酸核糖、NADPH和CO2,而主要意义不是生成ATP。

糖异生从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。

乳酸循环肌肉收缩(尤其是氧供应不足时)通过糖酵解生成乳酸。肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌肉摄取,这就构成了一个循环,此循环称为乳酸循环,也叫作Cori循环。

糖原合成体内由葡萄糖(包括少量果糖和半乳糖)合成糖原的过程称为糖原合成,反应在细胞质中进行,需要消耗ATP和UTP。

糖原分解糖原分解是指肝糖原分解成为葡萄糖的过程。糖原的分解要经过四步酶促反应,分别由糖原磷酸化酶、脱枝酶、磷酸葡萄糖变位酶、葡萄糖-6-磷酸酶催化。葡萄糖-6-磷酸酶只存在于肝、肾中,而不存在于肌肉中。所以只有肝和肾可补充血糖;而肌糖原不能分解成葡萄糖,只能进行糖酵解或有氧氧化。

血糖血糖指血中的葡萄糖。血糖水平相当恒定,维持在3.89~6.11mmol/L之间,这是进入和移出血液的葡萄糖平衡的结果。

第十章脂类代谢

脂肪动员脂库中贮存的脂肪,经常有一部分经脂肪酶的水解作用而释放出脂肪酸与甘油,这一作用称为脂肪的动员。脂肪动员过程中使脂肪水解的酶主要为脂肪酶。

脂蛋白脂蛋白是脂类在血浆中的存在形式,也是脂类在血液中的运输形式。脂类物质与蛋白质结合,形成具有亲水性的脂蛋白。

乳糜微粒乳糜微粒是在小肠上皮细胞中合成的,其特点是含有大量脂肪(约占90%),而蛋白质含量很少。乳糜微粒中的脂肪是来自食物,因此,乳糜微粒为外源性脂肪的主要运输形式,其运输量与食物中脂肪的含量基本上一致。

极低密度脂蛋白极低密度脂蛋白主要由肝实质细胞合成,其合成及分泌过程,与小肠粘膜上皮细胞合成和分泌乳糜微粒的过程基本类似,其组成上只有量的变化而无质的差别。极低密度脂蛋白的主要成分也是脂肪,但磷脂和胆固醇的含量比乳糜微粒的多。极低密度脂蛋白是转运内源性脂肪的主要运输形式。

低密度脂蛋白低密度脂蛋白是血浆中极低密度脂蛋白在清除过程中,水解掉部分脂肪及少量蛋白质后的残余部分。由于其中脂肪已被水解掉一部分,低密度脂蛋白中脂肪含量较少,而胆固醇和磷脂的含量则相对地增高,因此,它的主要功能是运输胆固醇。

高密度脂蛋白高密度脂蛋白主要是在肝中生成和分泌出来的。其组成中除蛋白质含量最多外,胆固醇(约20%)和磷脂(30%)的含量也较高。它的主要功能是运输胆固醇和磷脂。

脂酰CoA合成酶在ATP、CoASH、Mg2+协同下,脂酰CoA合成酶催化脂肪酸活化生成脂酰CoA。脂肪组织中,有三种脂酰CoA合成酶:乙酰CoA合成酶、辛酰CoA合成酶、十二碳脂酰CoA合成酶。

肉毒碱长链脂酰CoA是通过一种特异的转运载体,从细胞液转运至线粒体内膜,这个载体就是肉毒碱。

脂肪酸的β-氧化脂肪酸氧化分解代谢的最主要途径,该途径的每次循环反应,是从脂肪酸的羧基端氧化水解下一个二碳化物。由于这种氧化作用,是在长链脂肪酸的β位碳原子进行,然后水解下二碳化物,故称为β氧化作用。β氧化作用是在线粒体基质中进行的。

脂肪酸合成酶系催化脂肪酸合成的酶,是一个由7种酶分子组成的复合体,这一复合体的各种成分不能分开,否则会失去活性。该复合体为同亚基二聚体,每个亚基包含脂肪酸合成酶的全部7种酶分子和一分子的脂酰基载体蛋白(ACP)。复合体的一个亚基中ACP的巯基,与另一个亚基的β-酮脂酰合成酶分子的半胱氨酸残基的-SH紧密相邻,因为这两个巯基均参与脂肪酸合成酶复合体的脂肪酸合成作用,所以只有二聚体才能够表现出催化活性。

酰基载体蛋白和7种酶分子参与组成脂肪酸合成酶多酶复合体,是一种对热稳定的蛋白质,由77个氨基酸残基组成,在其36位的丝氨酸残基的羟基上,通过磷酸酯键与其辅基相连,辅基为4′-磷酸泛酰巯基乙胺,起着传递酰基的作用。与复合体中的每一个酶顺序发生作用,以合成脂肪酸。

HMGCoA 羟甲基戊二酸单酰CoA。HMGCoA是脂肪酸、酮体及胆固醇代谢的共同中间产物,在脂类代谢中具有重要意义。乙酰乙酰CoA,在HMGCoA合成酶的催化下与1分子乙酰CoA缩合,生成HMGCoA,并释放出1分子CoASH,然后在HMGCoA裂解酶的作用下,裂解生成乙酰乙酸和乙酰CoA。

脂肪肝肝脏中合成的脂类是以脂蛋白的形式转运出肝脏外的,其中所含的磷脂是合成脂蛋白不可缺少的材料,当磷脂在肝脏中合成减少时,肝脏中脂肪不能顺利地被运出,引起脂肪在肝脏中堆积,称为脂肪肝。

酮血症糖尿病患者及正常人处于饥饿时,体内糖的利用失调,就要依靠增加脂肪的氧化来供应机体所需的能量,造成脂肪组织中脂肪被大量动员,运至肝中进行氧化,生成大量酮体。大量酮体进入血液后,肝外组织来不及氧化利用过多的酮体,使血液中酮体浓度升高,称酮血症。

酮尿症发生酮血症的同时,在尿液中有大量酮体出现,称酮尿症。

高脂血症临床上将空腹时血脂持续超出正常值上限称为高脂血症,如高胆固醇、高甘油三酯或两者兼高。

第十一章蛋白质的分解代谢

氨基酸降解氨基酸可通过脱氨作用,转氨作用,联合脱氨或脱羧作用,分解成α-酮酸、胺类及二氧化碳。氨基酸分解所生成的α-酮酸可以转变成糖、脂类或再合成某些非必需氨基酸,也可以经过三羧酸循环氧化成二氧化碳和水,并放出能量。分解代谢过程中生成的氨,在不同动物体内可以氨、尿素或尿酸等形式排出体外。

转氨作用氨基酸的α-氨基与α-酮酸的酮基,在转氨酶的作用下相互交换,生成相应的新的氨基酸和α-酮酸,这个过程称为转氨作用或氨基移换作用。

转氨酶催化转氨作用的酶统称为转氨酶或氨基移换酶。大多数转氨酶需要α-酮戊二酸作为氨基的受体。转氨酶有多种,在体内广泛分布,不同的氨基酸各有特异的转氨酶催化其转氨反应。其中较重要的有谷丙转氨酶(GPT)和谷草转氨酶(GOT)。

联合脱氨作用主要方式为转氨作用偶联氧化脱氨作用α-氨基酸与α-酮戊二酸经转氨作用生成谷氨酸,后者在L-谷氨酸脱氢酶的催化下,经氧化脱氨作用而释出游离氨。

尿素循环尿素合成的途径称为鸟氨酸循环或尿素循环。该循环首先是氨与二氧化碳结合形成氨基甲酰磷酸,然后鸟氨酸接受由氨基甲酰磷酸提供的氨甲酰基形成瓜氨酸,瓜氨酸与天冬氨酸结合形成精氨琥珀酸分解为精氨酸及延胡索酸。最后,精氨酸水解为尿素和鸟氨酸。

第十二章核酸与核苷酸代谢

核酸内切酶生物体内普遍存在着使核酸水解的磷酸二酯酶,总称核酸酶。水解RNA的酶称RNA酶(RNase),水解DNA的酶称DNA酶(DNase),它们都能水解核酸分子内部的磷酸二酯键,故又称为核酸内切酶。

核酸外切酶能够切割末端单核苷酸的酶类称为核酸外切酶。

尿酸腺嘌呤与鸟嘌呤在人类及灵长类动物体内分解的最终产物为尿酸。尿酸仍具有嘌呤环,仅取代基发生氧化。若嘌呤分解代谢过盛,尿酸的生成太多或排泄受阻,以致血液中尿酸浓度增高,则导致痛风。痛风症患者血中尿酸的含量升高,当超过8mg%时,尿酸盐结晶即可沉积于关节、软组织、软骨甚至肾等处,而导致关节炎、尿路结石和肾疾病。

黄嘌呤氧化酶黄嘌呤氧化酶属于黄酶类,其辅基为FAD,尚含有铁及钼。此酶的专一性不高,对次黄嘌呤与黄嘌呤都有催化作用。次黄嘌呤受黄嘌呤氧化酶的作用依次氧化成黄嘌呤及尿酸。黄嘌呤最后也在黄嘌呤氧化酶作用下氧化成尿酸。

别嘌呤醇别嘌呤醇是一种治疗痛风的药物。化学结构与次黄嘌呤相似,是黄嘌呤氧化酶的竞争性抑制剂,可以抑制黄嘌呤的氧化,减少尿酸的生成。同时,别嘌呤醇在体内经代谢转变与5-磷酸核糖-1-焦磷酸盐(PRPP)反应生成别嘌呤醇核苷酸,消耗PRPP,使嘌呤核苷酸的合成减少。

次黄嘌呤-鸟嘌呤磷酸核糖转移酶HGPRT HGPRT催化次黄嘌呤核苷酸和鸟嘌呤核苷酸的生成。

鸟嘌呤 + PRPP 次黄嘌呤-鸟嘌呤磷酸核糖转移酶

GMP + PPi

次黄嘌呤 + PRPP 次黄嘌呤-鸟嘌呤磷酸核糖转移酶

IMP + PPi

有一种遗传性疾病称Lesch Nyhan综合征,就是由于基因缺陷导致HGPRT完全缺失造成的,患儿在二到三岁时即表现为自毁容貌的症状,很少能存活。

乳清酸合成尿嘧啶核苷酸的一个重要的中间产物。氨基甲酰磷酸再与天冬氨酸结合,经一系列变化生成尿嘧啶甲酸(乳清酸),然后再与5-磷酸核糖焦磷酸作用生成乳清酸核苷酸,最后脱羧生成尿嘧啶核苷酸。

第十四章DNA的复制与修复

中心法则遗传信息的流向是DNA→RNA→蛋白质。1970年发现逆转录酶,证实在某些情况下,RNA也可以是遗传信息的携带者,完善和补充了中心法则。

半保留复制一个DNA分子可复制成两个DNA分子,新合成的两个子代DNA分子与亲代DNA分子的碱基顺序完全一样。每个子代DNA中的一条链来自亲代DNA,另一条链是新合成的,这种合成方式称为半保留复制。

模板利用自身的核苷酸排列顺序,根据碱基互补的原则,指导新链合成的核酸链。

拓扑异构酶在DNA复制过程中,使超螺旋放松的酶是拓扑异构酶。拓扑异构酶I能切断DNA的一条链,使超螺旋放松,它只能放松负超螺旋。DNA复制时复制叉前面出现的正超螺旋通常由拓扑异构酶II(又称旋转酶)来放松。此类酶可切断DNA的两条链,待超螺旋恢复正确旋转程度后再使两条链重新接上。它也可在DNA分子中造成负超螺旋来中和正超螺旋。这是一个需要ATP的过程。细胞内DNA的正确缠结状态取决于拓扑异构酶I和II 的平衡。

单链结合蛋白SSB SSB对单链DNA有很高亲和力,无碱基顺序专一性。DNA复制时,一旦双链分开,SSB就会结合到单链上,使它们稳定。当DNA合成后,它们就被替代,离开双链DNA分子。

DNA聚合酶以DNA为复制模板,从将DNA由5’端开始复制到3’端的酶称为DNA聚合酶。大肠杆菌中的DNA pol Ⅰ涉及DNA损伤修复,在半保留复制中起辅助的作用。DNA pol Ⅱ在修复损伤中也是有重要的作用。DNA pol Ⅲ是一种多亚基的蛋白,在DNA新链的从头合成中起复制酶的作用。真核细胞的DNA聚合酶有五种。Polα和Pol δ合成细胞核DNA,它们相当于大肠杆菌的Pol III。Polα有引物酶与之相连,没有3’→5’的核酸外切酶活性。Pol δ具有3’→5’核酸外切酶活力。Pol γ主要参与线粒体DNA复制。Polβ和Pol ε主要参与DNA的修复。

主导链也称领头链,前导链。沿着复制叉打开的方向,模板DNA中那条3’→5’走向的单链(即顺向单链)可以按5’→3’方向复制新链,这条新链称为主导链。

随从链模板DNA中的那条5’→3’走向的单链(反向单链)的复制较为复杂,因为DNA 聚合酶不能催化3’→5’链的延长,它必须随着复制叉的打开,一小段一小段地合成新链,这条新链被称为随从链。

冈崎片段随从链的复制有许多起始点,每一个起始点按5’→3’方向复制一小段DNA,这些小片段称为冈崎片段。

引物酶DNA聚合酶不能直接起始DNA链的合成,所以在合成DNA之前必须先合成一段RNA作为引物,这段引物长度约为2—10个碱基。合成引物RNA的酶称为引物酶。

校对作用Pol I在DNA合成时还能发挥校对作用,它具有3’→5’的核酸外切酶活性,如果在DNA合成时加入的碱基与模板链不能配对,Pol I就能将它切除。

连接酶DNA连接酶是一种封闭DNA链上缺口酶,借助ATP或NAD水解提供的能量催化DNA链的5'-PO4与另一DNA链的3'-OH生成磷酸二酯键。但这两条链必须是与同一条互补链配对结合的,而且必须是两条紧邻DNA链才能被DNA连接酶催化成磷酸二酯键。

第十五章转录与基因表达调控

转录由DNA为模板指导RNA合成,称转录。转录过程是在DNA指导下由RNA聚合酶催化进行的,即以DNA为模板,四种NTP为原料,合成RNA。

逆转录在某些RNA病毒和高等动物的特定组织中,可由RNA为模板进行DNA的复制,称为逆转录。

转录酶参与转录的转录酶即RNA聚合酶,这类酶在原核细胞和真核细胞中均广泛存在。

启动子转录开始时,RNA聚合酶(全酶)与DNA模板的启动基因结合,启动基因称为启动子。启动子是基因的一个组成部分,控制基因表达(转录)的起始时间和表达的程度。启动子是位于结构基因5’端上游的一段DNA序列,能够指导全酶同模板正确结合,活化RNA聚合酶,启动基因转录。

增强子真核细胞中能增强启动子活性的核苷酸序列,称为增强子。增强子序列可以位于远离启动子数千bp处,或位于基因的上游或下游,或位于模板链或位于编码链上均能发挥效应,与方向性无关,但有组织特异性。

初级转录产物基因转录的直接产物即初级转录产物,通常是没有功能的。

转录后加工在转录中新合成的RNA往往是较大的前体分子,需要经过进一步的加工修饰,才转变为具有生物学活性的、成熟的RNA分子,这一过程称为转录后加工。加工有四种形式:①减少部分片段:如切除5′端前导序列,3′端尾巴和中部的内含子;②增加部分片段:5′加帽,3′加poly(A),通过归巢插入内含子;③修饰:对某些碱基进行甲基化等。④以指导RNA(gRNA)为模板在mRNA上插入或删除一些碱基,其作用是增加信息量,校正遗传信息和调控表达。

外显子外显子是指编码区的DNA顺序,既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。

内含子内含子是指非编码区的DNA顺序,是在转录后加工中,从最初的转录产物除去的内部的核苷酸序列。

剪接hnRNA含有从内含子转录来的部分和外显子转录来的部分,内含子不能指导翻译蛋白质,所以,hnRNA必须经过编辑来除去由内含子转录来的部分,这个过程称为剪接。

转酯化反应转酯化反应是剪接的关键反应。hnRNA通过二次磷酸酯转移反应使前后二个外显子以5’,3’-磷酸二酯键相连,而被切除的内含子呈套索状。这些反应在剪接体内进行,而剪接体则是由SnRNA和多种蛋白质因子在内含子和外显子交界处组装的结构。

操纵子原核基因组中,由几个功能相关的调控结构基因及其调控区组成一个基因表达的协同单位,这种单位称作操纵子。

操纵基因操纵基因控制结构基因的转录速度,控制RNA聚合酶能否通过的“开关”。位于结构基因的附近,本身不能转录成mRNA。

逆转录酶也称反向转录酶。它以RNA为模板,在四种dNTP存在及合适的条件下,按碱基互补原则,合成互补的DNA。这种聚合酶是RNA指导的DNA聚合酶,与通常转录过程中遗传信息流从DNA到RNA的方向相反,故称逆转录酶。

第十八章生物药物

生物药物生物药物是利用生物体、生物组织或其成分,综合应用生物学、生物化学、微牛物学、免疫学、物理化学和药学等的原理与方法制造的一大类用于预防、诊断、治疗的制品。广义的生物药物包括从动物、植物、微生物等生物体中制取的各种天然生物活性物质及其人工合成或半合成的天然物质类似物。

生物技术药物也称基因工程药物,指以DNA重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体和细胞生长因子等药物。

转基因动物凡是用实验方法将外源性基因导入并整合在细胞染色体上,正确表达和按照孟得尔定律传与后代的动物称为转基因动物。其制备可用显微注射法将外源基因导入胚胎,经妊娠、分娩、筛选而得到有外源基因整合的幼仔。

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生物化学重点名词解释汇总情况

生物化学名词解释(英汉)完全版! 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。不能再水解成更小分子的糖类,如葡萄糖等。同生化 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线性的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 15,肽聚糖(peptidoglycan):N-乙酰葡糖胺和N-乙酰胞壁酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽链组成的杂化的分子,多糖是分子的主要成分。 第六章1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有一对—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰甘油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和甘油是三脂酰甘油的混合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着划分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞通讯有关的重要部位。 13,在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或在的膜蛋白的离子相互作用和形成氢键与膜的或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 17,通道蛋白(channel protein):是带有中央水相通道的在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

最新生物化学名词解释总结

1、CDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录 成cDNA,与适当的载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA 克隆集。 2、柠檬酸-丙酮酸循环:线粒体内CoA与草酰乙酸缩合柠檬酸后,经 内膜上的三羧酸载体转运至胞液中,在柠檬酸裂解酶催化下需消 耗ATP将柠檬酸裂解回草酰乙酸和乙酰CoA,后者可利用脂肪酸合成,而草酰乙酸经还原后,在苹果酸脱氢酶的催化下生成苹果 酸,苹果酸又在苹果酸酶的催化下变成丙酮酸,丙酮酸经内膜载 体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸。 3、三羧酸循环:乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸, 反复地进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。 4、抗代谢物:是指化学结构上与天然代谢物类似,这些物质进入体 内可与正常代谢物拮抗,从而影响正常代谢的进行。 1、从头合成:指利用简单物质,经复杂酶促反应合成嘌呤核苷酸。 2、补救合成:指利用体内游离的嘌呤或嘌呤核苷,经简单反应合成 嘌呤核苷酸。 3、(嘌呤核苷酸)从头合成途径:是指由磷酸核糖、甘氨酸、天冬氨 酸、谷氨酰胺、一碳单位及CO2等简单物质为原料,经一系列酶促反应合成嘌呤核苷酸的过程。

4、(嘌呤核苷酸)补救合成途径:指利用体内游离的嘌呤或嘌呤核苷, 经过简单的反应重新合成嘌呤核苷酸的过程。 5、(嘧啶核苷酸)从头合成途径:指由磷酸核糖、谷氨酰胺、CO2和 天冬氨酸等简单物质为原料,经一系列酶促反应合成嘧啶核苷酸 的过程。 6、(嘧啶核苷酸)补救合成途径:指利用体内游离的嘧啶或嘧啶核苷, 经过简单的反应步骤合成嘧啶核苷酸的过程。 7、痛风症:是一种嘌呤代谢性疾病,基本生化特征是高尿酸血症, 临床常用别嘌呤醇治疗,别嘌呤醇与次黄嘌呤结构类似,可抑制 黄嘌呤氧化酶,从而抑制尿酸的生成。 DNA生物合成 1、中心法则:DNA通过复制将遗传信息由亲代传递给子代;通过转 录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现 型,DNA的复制、转录、翻译过程,称中心法则。 2、反转录:以RNA为模板,指导DNA合成的过程,也称逆转录。即 遗传信息是从RNA流向DNA,是RNA指导下的DNA合成过程,以RNA为模板,四种dNTP为原料,合成与RNA互补的DNA单链,称反转录。 3、半保留复制:DNA在复制时,以亲代DNA的每一股作为模板,合 成完全相同的两个双链子代DNA,每个子代DNA中含由一股亲代

生物化学名词解释全

生物化学名词解释全

————————————————————————————————作者: ————————————————————————————————日期: ?

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essentialaminoac id) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein aminoacid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(proteinsecond ary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( vander Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromiceffect) 10.减色效应(hypo chromiceffect)11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(meltingtemperatureTm) 14.分子杂交(molecularhybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(Km 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomericenzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allostericenzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymaticcompare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidativephosphorylation) 4. 磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle)

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

生物化学名词解释

9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”。 10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。 8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生 不同程度的重新结合而形成双链螺旋结构,这现象称为“退火” 7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。 13. DNA 的熔解温度(T m 值):引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。 14分子杂交cular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。 1DNA双螺旋(DNA double helix)是一种核酸的,在该构象中,两条反向平行的多核苷酸链相互缠绕形成一个右手的双螺旋结构。 2 核小体是由DNA和组蛋白形成的染色质基本结构单位。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。4.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 10 同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。 3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。 4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y 型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

生物化学名词解释完整版

生物化学名词解释完全版 第一章 1,氨基酸(amino acid ):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在 a -碳上。 2, 必需氨基酸(esse ntial ami no acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需 要从食物中获得的氨基酸。 3,非必需氨基酸(non esse ntial ami no acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point ):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH 值。 5,茚三酮反应(ninhydrin reaction ):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。8,蛋白质一级结构(primary structure )指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分 开的技术。 10,离子交换层析(ion-exchange column )使用带有固定的带电基团的聚合树脂或凝胶层析柱 11, 透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography ):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE 只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pl)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶 电泳(按照pI)分离,然后再进行SDS-PAGE (按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman 降解(Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein ):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

相关主题
文本预览
相关文档 最新文档